1
|
Kennedy V, Kaszecki E, Donaldson ME, Saville BJ. The impact of elevated sulfur and nitrogen levels on cadmium tolerance in Euglena species. Sci Rep 2024; 14:11734. [PMID: 38777815 PMCID: PMC11111685 DOI: 10.1038/s41598-024-61964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Heavy metal (HM) pollution threatens human and ecosystem health. Current methods for remediating water contaminated with HMs are expensive and have limited effect. Therefore, bioremediation is being investigated as an environmentally and economically viable alternative. Freshwater protists Euglena gracilis and Euglena mutabilis were investigated for their tolerance to cadmium (Cd). A greater increase in cell numbers under Cd stress was noted for E. mutabilis but only E. gracilis showed an increase in Cd tolerance following pre-treatment with elevated concentrations of S or N. To gain insight regarding the nature of the increased tolerance RNA-sequencing was carried out on E. gracilis. This revealed transcript level changes among pretreated cells, and additional differences among cells exposed to CdCl2. Gene ontology (GO) enrichment analysis reflected changes in S and N metabolism, transmembrane transport, stress response, and physiological processes related to metal binding. Identifying these changes enhances our understanding of how these organisms adapt to HM polluted environments and allows us to target development of future pre-treatments to enhance the use of E. gracilis in bioremediation relating to heavy metals.
Collapse
Affiliation(s)
- Victoria Kennedy
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Emma Kaszecki
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Michael E Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
- Forensic Science Department, Trent University, Peterborough, ON, Canada
| | - Barry J Saville
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada.
- Forensic Science Department, Trent University, Peterborough, ON, Canada.
| |
Collapse
|
2
|
Ramos-Perez D, Alcántara-Hernández RJ, Romero FM, González-Chávez JL. Changes in the prokaryotic diversity in response to hydrochemical variations during an acid mine drainage passive treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156629. [PMID: 35691343 DOI: 10.1016/j.scitotenv.2022.156629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Acid mine drainage (AMD) causes major environmental problems and consequently, several treatments are proposed, favoring the passive systems because of their many advantages. The main goal of these procedures is the neutralization and removal of potentially toxic elements (PTE), yet little is known about the changes in the microbial assemblages in response to the hydrochemical variations during the treatments. Therefore, the main objective of this research was to determine the changes in the diversity and structure of the prokaryotic assemblages in a hybrid abiotic and biological (wetland) passive treatment system. The 16S rRNA gene survey showed that the AMD coming from the mine (pH 2.6) was mainly composed of acidophilic genera such as Acidithiobacillus, Leptospirillum, Ferritrophicum, and Cuniculiplasma (up to 76 % relative abundance). In the abiotic treatment, Acidiphilium was dominant in the sections with limestone filters (pH 2.2-4.8), followed by Limnobacter in the subsequent dolomite/limestone and phosphoric rock filters (pH 5.2-5.8). In these abiotic passive treatment sections, the microbial assemblage showed a limited diversity and richness. However, when the treated AMD reached the two final wetlands (pH ~6.8), the microbial diversity and richness increased, suggesting that further bioattenuation mechanisms might be occurring. Limnobacter and Novosphingobium were the main bacterial genera in the water samples of the wetland sections (Arundo donax). These changes in the composition of the microbial assemblages were highly correlated with the pH and Eh values during the treatment (p-value <0.001); however, the concentration of metal(loid)s such as Al, Cd, Fe, Mn, Ni, and Zn were also significantly related (p-value <0.05). In conclusion, the studied passive AMD treatment system enhanced the chemical quality of the treated AMD, showing high removal efficiencies for Al and Fe (> 99 %), and increasing the microbial diversity and richness in the effluent.
Collapse
Affiliation(s)
- Daniel Ramos-Perez
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México (UNAM), Mexico
| | - Rocio J Alcántara-Hernández
- Instituto de Geología, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, México.
| | - Francisco M Romero
- Instituto de Geología, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, México; Laboratorio Nacional de Geoquímica y Mineralogía, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, México
| | - José Luz González-Chávez
- Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, México
| |
Collapse
|
3
|
Liu Y, Liu Y, Chen Y, Zhao P, Yang S, He S, Long G. Sulfur fertiliser enhancement of Erigeron breviscapus (Asteraceae) quality by improving plant physiological responses and reducing soil cadmium bioavailability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70508-70519. [PMID: 35585458 DOI: 10.1007/s11356-022-20778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Erigeron breviscapus (Vant.) Hand.-Mazz. is an important medicinal plant; however, its quality is severely diminished by cadmium (Cd) pollution. Sulfur fertilisation can improve the production and application of E. breviscapus. This study examined Cd stress alleviation in the soil-plant system and determined the plant growth response after the application of sulfur fertiliser. The soil Cd concentration used in the treatments was 100 g·kg-1, and the sulfur fertiliser application rates were 0.1, 0.2, and 0.3 g·kg-1. Using pot experiments, we explored the impacts of high, medium, and low amounts of sulfur fertiliser on Cd accumulation and the quality and activity of E. breviscapus. The results showed that the application of sulfur fertiliser promoted Cd transformation to residual Cd under oxidation conditions, reducing Cd accumulation in E. breviscapus. Throughout the growth period, the application of sulfur fertiliser increased the soluble protein content and antioxidant enzyme activity, which alleviated Cd toxicity. The net photosynthetic rate, transpiration rate, intercellular CO2 concentration, chlorophyll level, and leaf width increased significantly. The biomass content of E. breviscapus also increased. Sulfur fertiliser improves the quality of herbaceous medicinal plants by reducing Cd accumulation and increasing scutellarin, chlorogenic, isochlorogenic acid B, and isochlorogenic acid C contents. A reasonable application of sulfur fertiliser is essential for improving E. breviscapus quality. This study provides a new method to reduce the ecological risk of planting herbaceous medicinal plants in Cd-contaminated soil.
Collapse
Affiliation(s)
- Yonglin Liu
- School of Municipal and Environment Engineering, Qingdao University of Technology, Qingdao, 266000, People's Republic of China
| | - Yingpin Liu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650000, People's Republic of China
| | - Yu Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650000, People's Republic of China
| | - Ping Zhao
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650000, People's Republic of China
| | - Shengchao Yang
- National and Local Joint Engineering Research Center On Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650000, People's Republic of China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Kunming, 650000, People's Republic of China
| | - Shuran He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650000, People's Republic of China.
- National and Local Joint Engineering Research Center On Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650000, People's Republic of China.
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Kunming, 650000, People's Republic of China.
| | - Guangqiang Long
- National and Local Joint Engineering Research Center On Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650000, People's Republic of China.
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Kunming, 650000, People's Republic of China.
| |
Collapse
|
4
|
Zheng Y, Wang Z, Xue D, Tao M, Jiang F, Jia B, Li Y, Huang G, Hu Z. Characterization of a new selenoprotein methionine sulfoxide reductase from Haematococcus pluvialis and its antioxidant activity in response to high light intensity, hydrogen peroxide, glyphosate, and cadmium exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113903. [PMID: 35870349 DOI: 10.1016/j.ecoenv.2022.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Selenium incorporates into selenocysteine (Sec) which is a key component of selenoproteins implicated in antioxidant defense and redox homeostasis. Methionine sulfoxide reductases (Msr) play crucial roles in cellular defense against environmental stress. Whereas mammals have the MsrB selenoprotein form, unicellular organisms have MsrA. The Sec residue at the conserved catalytic sites of selenoprotein MsrA confers a metabolic advantage over the non-selenoprotein type MsrA. In the present study, the novel selenoprotein HpMsrA from Haematococcus pluvialis was cloned by the rapid amplification of cDNA ends and transformed into the model green alga Chlamydomonas reinhardtii. Alignment of homologs revealed the presence of the conserved catalytic domain GUFW and showed that the HpMsrA protein comprises Sec (U) at the N-terminus but no recycled Cys at the C-terminus. We studied the response of HpMsrA expression to selenite, high light intensity, hydrogen peroxide, cadmium nitrate, and glyphosate exposure via real-time quantitative PCR and enzyme activity analysis. The results demonstrated that HpMsrA protects cellular proteins against oxidative and environmental stressors. Compared with wild type C. reinhardtii, the transformant exhibited a superior antioxidant ability. The discoveries made herein shed light on the antioxidant physiology and environmental stress resistance mechanisms of the selenoproteins in microalgae. This information may aid in conducting environmental risk assessments of aquatic ecosystems involving microalgae known to respond rapidly and quantitatively to abiotic stress factors promoting excessive reactive oxygen species generation.
Collapse
Affiliation(s)
- Yihong Zheng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Ziyan Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Dengfeng Xue
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Ming Tao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Fajun Jiang
- Guangxi Key Laboratory of Marine Environmental Science, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bin Jia
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Youhao Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Guanqin Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China.
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China.
| |
Collapse
|
5
|
Coordinated Role of Nitric Oxide, Ethylene, Nitrogen, and Sulfur in Plant Salt Stress Tolerance. STRESSES 2021. [DOI: 10.3390/stresses1030014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salt stress significantly contributes to major losses in agricultural productivity worldwide. The sustainable approach for salinity-accrued toxicity has been explored. The use of plant growth regulators/phytohormones, mineral nutrients and other signaling molecules is one of the major approaches for reversing salt-induced toxicity in plants. Application of the signaling molecules such as nitric oxide (NO) and ethylene (ETH) and major mineral nutrient such as nitrogen (N) and sulfur (S) play significant roles in combatting the major consequences of salt stress impacts in plants. However, the literature available on gaseous signaling molecules (NO/ETH) or/and mineral nutrients (N/S) stands alone, and major insights into the role of NO or/and ETH along with N and S in plant-tolerance to salt remained unclear. Thus, this review aimed to (a) briefly overview salt stress and highlight salt-induced toxicity, (b) appraise the literature reporting potential mechanisms underlying the role of gaseous signaling molecules and mineral nutrient in salt stress tolerance, and (c) discuss NO and ETH along with N and S in relation to salt stress tolerance. In addition, significant issues that have still to be investigated in this context have been mentioned.
Collapse
|
6
|
Aslam A, Thomas-Hall SR, Mughal T, Zaman QU, Ehsan N, Javied S, Schenk PM. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO 2 concentrations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:243-250. [PMID: 31005725 DOI: 10.1016/j.jenvman.2019.03.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/15/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Sustainability assessments have revealed that integration of CO2 from coal-fired flue gas with microalgae cultivation systems could reduce greenhouse gas emissions. The technical goal of this integration is to utilize exhaust from coal power plants to enhance microalgae cultivation processes by capturing and recycling of carbon dioxide from a more toxic to a less toxic form. However, heavy metals are also introduced along with CO2 to the cultivation system which could contaminate biomass and have deleterious effects on products derived from such systems. The present study aimed at shedding some light on capability of microalgae to sustain their diversity and propagate them under different CO2 concentrations from coal-fired flue gas. Mixed microalgal culture was grown in nutrient rich medium and heavy metals (Al, Cu, Fe, Mn and Zn) are expected to be introduced from flue gas. Three concentrations (1%, 3% and 5.5%) of CO2 were evaluated (reference concentrations from flue gas). Comparative studies were carried out by flue gas and control systems in photobioreactors. Under the 3% CO2 (30% flue gas), the highest fraction of B, Mn and Zn were found to be internalized by the cells (46.8 ±9.45 gL-1, 253.66 ± 40.62 gL-1 and 355.5 ±50.69 gL-1 respectively) during their cultivation period into biomass. Hence, microalgae may offer solution to two major challenges: providing potential biofuel feedstock for energy security and reducing heavy metal pollution to the air.
Collapse
Affiliation(s)
- Ambreen Aslam
- Environmental Science Department, University of Lahore (UOL), Raiwind Road, Lahore, Pakistan; Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Skye R Thomas-Hall
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tahira Mughal
- Environmental Science Department, Lahore College for Women University (LCWU), Lahore, Pakistan
| | - Qamar-Uz Zaman
- Environmental Science Department, University of Lahore (UOL), Raiwind Road, Lahore, Pakistan
| | - Nusrat Ehsan
- Environmental Science Department, University of Lahore (UOL), Raiwind Road, Lahore, Pakistan
| | - Sabiha Javied
- Environmental Science Department, University of Lahore (UOL), Raiwind Road, Lahore, Pakistan
| | - Peer M Schenk
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
7
|
Akbudak MA, Filiz E, Kontbay K. Genome-wide identification and cadmium induced expression profiling of sulfate transporter (SULTR) genes in sorghum (Sorghum bicolor L.). Biometals 2017; 31:91-105. [PMID: 29236185 DOI: 10.1007/s10534-017-0071-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/06/2017] [Indexed: 11/24/2022]
Abstract
Sulfur is an essential element for all living organisms. Plants can convert inorganic sulfur into organic sulfur compounds by complex enzymatic steps. In this study, we conducted a genome-wide analysis of sulfate transporter genes (SULTRs) in the sorghum (Sorghum bicolor) genome and examined expression profiles of SbSULTR genes under 200 µM cadmium (Cd) exposure. As a result of sorghum genome analysis, 11 SULTR genes were identified, including SbSULTR1;1, SbSULTR1;2, SbSULTR1;3, SbSULTR2;1, SbSULTR2;2, SbSULTR3;1, SbSULTR3;2, SbSULTR3;3, SbSULTR3;4, SbSULTR3;5, and SbSULTR4. Given names are based on phylogeny and chromosomal locations. Except SbSULTR4, all SbSULTR proteins contained Sulfate_transp (PF00916), STAS (PF01740) domains and 12 trans-membrane domains. Phylogenetic analysis revealed that four major groups were identified such as SULTR1, 2, 3, and 4 groups and SULTR4 group was separated to other SULTR groups. In promotor sequences of SbSULTR genes, many diverse cis-acting elements were found mainly related with physiological processes such as light, stress and hormone responsiveness. The expression profiles of SbSULTR genes showed that SULTR1;2, 1;3, 3;3, and 3;5 genes up-regulated in root, while expression level of SULTR4 decreased under 200 µM Cd exposure. The predicted 3D structures of SULTR proteins showed some conformational changes, suggesting functional diversities of SbSULTRs. Finally, results of this study may contribute towards understanding SbSULTR genes and their regulations and roles in Cd stress in sorghum.
Collapse
Affiliation(s)
- M Aydın Akbudak
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey.
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Cilimli, Duzce, Turkey.
| | - Kubra Kontbay
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
8
|
Singh M, Kushwaha BK, Singh S, Kumar V, Singh VP, Prasad SM. Sulphur alters chromium (VI) toxicity in Solanum melongena seedlings: Role of sulphur assimilation and sulphur-containing antioxidants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:183-192. [PMID: 28088020 DOI: 10.1016/j.plaphy.2016.12.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/25/2016] [Accepted: 12/25/2016] [Indexed: 05/12/2023]
Abstract
The present study investigates modulation in hexavalent chromium [Cr(VI) 25 μM] toxicity by sulphur (S; 0.5, 1.0 and 1.5 mM S as low (LS), medium (MS) and high sulphur (HS), respectively) in Solanum melongena (eggplant) seedlings. Biomass accumulation (fresh and dry weights), photosynthetic pigments, photosynthetic oxygen evolution and S content were declined by Cr(VI) toxicity. Furthermore, fluorescence characteristics (JIP-test) were also affected by Cr(VI), but Cr(VI) toxicity on photosystem II photochemistry was ameliorated by HS treatment via reducing damaging effect on PS II reaction centre and its reduction side. Enhanced respiration, Cr content and oxidative biomarkers: superoxide radical, hydrogen peroxide, lipid peroxidation and membrane damage were observed under Cr(VI) stress. Though Cr(VI) enhanced adenosine triphasphate sulfurylase (ATPS) and o-acetylserine(thiol)lyase (OASTL), glutathione-S-transferase (GST), glutathione reductase (GR) and ascorbate peroxidase (APX) activity, and content of total glutathione, cysteine and NP-SH, however, their levels/activity were further enhanced by S being maximum with HS treatment. The results show that Cr(VI) toxicity does increase under LS treatment while HS protected Cr(VI)-induced damaging effects in brinjal seedlings. Under HS treatment, in mitigating Cr(VI) toxicity, S assimilation and its associated metabolites such as cysteine, glutathione and NP-SH play crucial role.
Collapse
Affiliation(s)
- Madhulika Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Bishwajit Kumar Kushwaha
- Govt. Ramanuj Pratap Singhdev Post Graduate College, Baikunthpur, 497335 Koriya, Chhattisgarh, India; Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Vipin Kumar
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Vijay Pratap Singh
- Govt. Ramanuj Pratap Singhdev Post Graduate College, Baikunthpur, 497335 Koriya, Chhattisgarh, India.
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
9
|
Puente-Sánchez F, Olsson S, Aguilera A. Comparative Transcriptomic Analysis of the Response of Dunaliella acidophila (Chlorophyta) to Short-Term Cadmium and Chronic Natural Metal-Rich Water Exposures. MICROBIAL ECOLOGY 2016; 72:595-607. [PMID: 27484342 DOI: 10.1007/s00248-016-0824-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Heavy metals are toxic compounds known to cause multiple and severe cellular damage. However, acidophilic extremophiles are able to cope with very high concentrations of heavy metals. This study investigated the stress response under natural environmental heavy metal concentrations in an acidophilic Dunaliella acidophila. We employed Illumina sequencing for a de novo transcriptome assembly and to identify changes in response to high cadmium concentrations and natural metal-rich water. The photosynthetic performance was also estimated by pulse amplitude-modulated (PAM) fluorescence. Transcriptomic analysis highlights a number of processes mainly related to a high constitutive expression of genes involved in oxidative stress and response to reactive oxygen species (ROS), even in the absence of heavy metals. Photosynthetic activity seems to be unaltered under short-term exposition to Cd and chronic exposure to natural metal-rich water, probably due to an increase in the synthesis of structural photosynthetic components preserving their functional integrity. An overrepresentation of Gene Ontology (GO) terms related to metabolic activities, transcription, and proteosomal catabolic process was observed when D. acidophila grew under chronic exposure to natural metal-rich water. GO terms involved in carbohydrate metabolic process, reticulum endoplasmic and Golgi bodies, were also specifically overrepresented in natural metal-rich water library suggesting an endoplasmic reticulum stress response.
Collapse
Affiliation(s)
- Fernando Puente-Sánchez
- Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
- Present address: Systems Biology Program. Centro Nacional de Biotecnología (CSIC). c/ Darwin 3, 28049, Madrid, Spain
| | - Sanna Olsson
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, FI-00014, Helsinki, Finland
- Department of Forest Ecology and Genetics, INIA, Forest Research Centre, Carretera A Coruña km 7.5, 28040, Madrid, Spain
| | - Angeles Aguilera
- Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain.
| |
Collapse
|
10
|
Mera R, Torres E, Abalde J. Effects of sodium sulfate on the freshwater microalga Chlamydomonas moewusii: implications for the optimization of algal culture media. JOURNAL OF PHYCOLOGY 2016; 52:75-88. [PMID: 26987090 DOI: 10.1111/jpy.12367] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/20/2015] [Indexed: 05/20/2023]
Abstract
The study of the microalgal growth kinetics is an indispensable tool in all fields of phycology. Knowing the optimal nutrient concentration is an important issue that will help to develop efficient growth systems for these microorganisms. Although nitrogen and phosphorus are well studied for this purpose, sulfur seems to be less investigated. Sulfate is a primary sulfur source used by microalgae; moreover, the concentration of this compound is increasing in freshwater systems due to pollution. The aim of this study was to investigate the effects of different sodium sulfate concentrations in the culture medium on growth and growth kinetics of the freshwater microalga Chlamydomonas moewusii. Production of biomass, chl content, kinetic equations, and a mathematical model that describe the microalgal growth in relation with the concentration of sodium sulfate were obtained. The lowest concentration of sodium sulfate allowing optimal growth was 0.1 mM. Concentrations higher than 3 mM generated a toxic effect. This work demonstrates that this toxic effect was not directly due to the excess of sulfate ion but by the elevation of the ionic strength. An inhibition model was successfully used to simulate the relationship between specific growth rate and sodium sulfate in this microalga.
Collapse
Affiliation(s)
- Roi Mera
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Alejandro de La Sota, No. 1, La Coruña, 15008, Spain
| | - Enrique Torres
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Alejandro de La Sota, No. 1, La Coruña, 15008, Spain
| | - Julio Abalde
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Alejandro de La Sota, No. 1, La Coruña, 15008, Spain
| |
Collapse
|
11
|
Mera R, Torres E, Abalde J. Isobolographic analysis of the interaction between cadmium (II) and sodium sulphate: toxicological consequences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2264-2278. [PMID: 26658783 DOI: 10.1007/s11356-015-5909-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Sulphate is an essential nutrient for autotrophic organisms and has been shown to have important implications in certain processes of tolerance to cadmium toxicity. Sodium sulphate is the main salt of sulphate in the natural environments. The concentration of this salt is increasing in the aquatic environments due to environmental pollution. The aim of this study was to investigate, using an analysis of isobolograms, the type and the degree of the interaction between Cd(II) and sodium sulphate in the freshwater microalga Chlamydomonas moewusii. Two blocks of experiments were performed, one at sub-optimal sodium sulphate concentrations (<14.2 mg/L) and the other at supra-optimal concentrations (>14.2 mg/L). Three fixed ratios (2:1, 1:1, and 1:2) of the individual EC50 for cadmium and sodium sulphate were used within each block. The isobolographic analysis of interaction at sub-optimal concentrations showed a stronger antagonistic effect with values of interaction index (γ) between 1.46 and 3.4. However, the isobologram with sodium sulphate at supra-optimal concentrations revealed a slight but significant synergistic effect between both chemicals with an interaction index between 0.54 and 0.64. This synergic effect resulted in the potentiation of the toxic effects of cadmium, synergy that was related to the increase of the ionic strength and of two species of cadmium, CdSO4 (aq), and Cd(SO4)2(2-) , in the medium. Results of the current study suggest that sodium sulphate is able to perform a dual antagonist/synergist effect on cadmium toxicity. This role was concentration dependent.
Collapse
Affiliation(s)
- Roi Mera
- Laboratorio de Microbiología, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071, La Coruña, Spain
| | - Enrique Torres
- Laboratorio de Microbiología, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071, La Coruña, Spain.
| | - Julio Abalde
- Laboratorio de Microbiología, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071, La Coruña, Spain
| |
Collapse
|
12
|
Modulation of cadmium bioaccumulation and enhancing cadmium tolerance inPichia kudriavzeviiby sodium chloride preincubation. J Basic Microbiol 2016; 56:711-8. [DOI: 10.1002/jobm.201500555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/18/2015] [Indexed: 11/07/2022]
|
13
|
Tang Y, Tian J, Li S, Xue C, Xue Z, Yin D, Yu S. Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 532:154-161. [PMID: 26070025 DOI: 10.1016/j.scitotenv.2015.05.081] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
In this work, the combined effects of graphene oxide (GO) and Cd(2+) solution on Microcystis aeruginosa were investigated. Chlorophyll fluorescence parameters were measured by a pulse-amplitude modulated fluorometer. GO at low concentrations exhibited no significant toxicity. The presence of GO at low concentrations significantly enhanced Cd(2+) toxicity as the 96 h half maximal effective concentration of the Cd(2+) reduced from 0.51 ± 0.01 to 0.474 ± 0.01 mg/L. However, concentrations of GO above 5mg/L did not significantly increase the toxicity of the Cd(2+)/GO system. Observations through scanning and transmission electron microscopy revealed that GO, with Cd(2+), easily attached to and entered into the algae. Reactive oxygen species and malondialdehyde were measured to explain the toxicity mechanism. The photosynthetic parameters were useful in measuring the combined toxicity of the nanoparticles and heavy metals.
Collapse
Affiliation(s)
- Yulin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Jinglin Tian
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Shuyan Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Chonghua Xue
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhehua Xue
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Shuili Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
14
|
Miazek K, Iwanek W, Remacle C, Richel A, Goffin D. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review. Int J Mol Sci 2015; 16:23929-69. [PMID: 26473834 PMCID: PMC4632732 DOI: 10.3390/ijms161023929] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 12/29/2022] Open
Abstract
Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.
Collapse
Affiliation(s)
- Krystian Miazek
- AgricultureIsLife Platform, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, Gembloux B-5030, Belgium.
| | - Waldemar Iwanek
- Faculty of Mathematics and Natural Sciences, the Jan Kochanowski University in Kielce, Swietokrzyska 15, Kielce 25-406, Poland.
| | - Claire Remacle
- Genetics and Physiology of Microalgae, Institute of Botany, University of Liege, B22, 27, Bld du Rectorat, Liège B-4000, Belgium.
| | - Aurore Richel
- Unit of Biological and Industrial Chemistry, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, Gembloux B-5030, Belgium.
| | - Dorothee Goffin
- Cellule Innovation et Créativité, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, Gembloux B-5030, Belgium.
| |
Collapse
|
15
|
Marieschi M, Gorbi G, Zanni C, Sardella A, Torelli A. Increase of chromium tolerance in Scenedesmus acutus after sulfur starvation: Chromium uptake and compartmentalization in two strains with different sensitivities to Cr(VI). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:124-133. [PMID: 26281774 DOI: 10.1016/j.aquatox.2015.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/16/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
In photosynthetic organisms sulfate constitutes the main sulfur source for the biosynthesis of GSH and its precursor Cys. Hence, sulfur availability can modulate the capacity to cope with environmental stresses, a phenomenon known as SIR/SED (Sulfur Induced Resistance or Sulfur Enhanced Defence). Since chromate may compete for sulfate transport into the cells, in this study chromium accumulation and tolerance were investigated in relation to sulfur availability in two strains of the unicellular green alga Scenedesmus acutus with different Cr-sensitivities. Paradoxically, sulfur deprivation has been demonstrated to induce a transient increase of Cr-tolerance in both strains. Sulfur deprivation is known to enhance the sulfate uptake/assimilation pathway leading to important consequences on Cr-tolerance: (i) reduced chromate uptake due to the induction of high affinity sulfate transporters (ii) higher production of cysteine and GSH which can play a role both through the formation of unsoluble complexes and their sequestration in inert compartments. To investigate the role of the above mentioned mechanisms, Cr accumulation in total cells and in different cell compartments (cell wall, membranes, soluble and miscellaneous fractions) was analyzed in both sulfur-starved and unstarved cells. Both strains mainly accumulated chromium in the soluble fraction, but the uptake was higher in the wild-type. In this type a short period of sulfur starvation before Cr(VI) treatment lowered chromium accumulation to the level observed in the unstarved Cr-tolerant strain, in which Cr uptake seems instead less influenced by S-starvation, since no significant decrease was observed. The increase in Cr-tolerance following S-starvation seems thus to rely on different mechanisms in the two strains, suggesting the induction of a mechanism constitutively active in the Cr-tolerant strain, maybe a high affinity sulfate transporter also in the wild-type. Changes observed in the cell wall and membrane fractions suggest a strong involvement of these compartments in Cr-tolerance increase following S-starvation.
Collapse
Affiliation(s)
- M Marieschi
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy
| | - G Gorbi
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy
| | - C Zanni
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy
| | - A Sardella
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy
| | - A Torelli
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy.
| |
Collapse
|
16
|
Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS, Rodrigo MAM, Adam V, Fujita M, Kizek R, Duarte AC, Pereira E, Ahmad I. Jacks of metal/metalloid chelation trade in plants-an overview. FRONTIERS IN PLANT SCIENCE 2015; 6:192. [PMID: 25883598 PMCID: PMC4382971 DOI: 10.3389/fpls.2015.00192] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/10/2015] [Indexed: 05/18/2023]
Abstract
Varied environmental compartments including soils are being contaminated by a myriad toxic metal(loid)s (hereafter termed as "metal/s") mainly through anthropogenic activities. These metals may contaminate food chain and bring irreparable consequences in human. Plant-based approach (phytoremediation) stands second to none among bioremediation technologies meant for sustainable cleanup of soils/sites with metal-contamination. In turn, the capacity of plants to tolerate potential consequences caused by the extracted/accumulated metals decides the effectiveness and success of phytoremediation system. Chelation is among the potential mechanisms that largely govern metal-tolerance in plant cells by maintaining low concentrations of free metals in cytoplasm. Metal-chelation can be performed by compounds of both thiol origin (such as GSH, glutathione; PCs, phytochelatins; MTs, metallothioneins) and non-thiol origin (such as histidine, nicotianamine, organic acids). This paper presents an appraisal of recent reports on both thiol and non-thiol compounds in an effort to shed light on the significance of these compounds in plant-metal tolerance, as well as to provide scientific clues for the advancement of metal-phytoextraction strategies.
Collapse
Affiliation(s)
- Naser A. Anjum
- Centre for Environmental and Marine Studies and Department of Chemistry, University of AveiroAveiro, Portugal
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural UniversityDhaka, Bangladesh
| | - Mohammad A. Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | - Palaniswamy Thangavel
- Department of Environmental Science, School of Life Sciences, Periyar UniversitySalem, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous)Kolkata, India
| | - Sarvajeet S. Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand UniversityRohtak, India
| | - Miguel A. Merlos Rodrigo
- Central European Institute of Technology, Brno University of TechnologyBrno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czech Republic
| | - Vojtěch Adam
- Central European Institute of Technology, Brno University of TechnologyBrno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czech Republic
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa UniversityMiki-cho, Japan
| | - Rene Kizek
- Central European Institute of Technology, Brno University of TechnologyBrno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czech Republic
| | - Armando C. Duarte
- Centre for Environmental and Marine Studies and Department of Chemistry, University of AveiroAveiro, Portugal
| | - Eduarda Pereira
- Centre for Environmental and Marine Studies and Department of Chemistry, University of AveiroAveiro, Portugal
| | - Iqbal Ahmad
- Centre for Environmental and Marine Studies and Department of Chemistry, University of AveiroAveiro, Portugal
- Centre for Environmental and Marine Studies and Department of Biology, University of AveiroAveiro, Portugal
| |
Collapse
|