1
|
Bharali P, Gogoi B, Sorhie V, Acharjee SA, Walling B, Alemtoshi, Vishwakarma V, Shah MP. Autochthonous psychrophilic hydrocarbonoclastic bacteria and its ecological function in contaminated cold environments. Biodegradation 2024; 35:1-46. [PMID: 37436665 DOI: 10.1007/s10532-023-10042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023]
Abstract
Petroleum hydrocarbon (PH) pollution has mostly been caused by oil exploration, extraction, and transportation activities in colder regions, particularly in the Arctic and Antarctic regions, where it serves as a primary source of energy. Due to the resilience feature of nature, such polluted environments become the realized ecological niches for a wide community of psychrophilic hydrocarbonoclastic bacteria (PHcB). In contrast, to other psychrophilic species, PHcB is extremely cold-adapted and has unique characteristics that allow them to thrive in greater parts of the cold environment burdened with PHs. The stated group of bacteria in its ecological niche aids in the breakdown of litter, turnover of nutrients, cycling of carbon and nutrients, and bioremediation. Although such bacteria are the pioneers of harsh colder environments, their growth and distribution remain under the influence of various biotic and abiotic factors of the environment. The review discusses the prevalence of PHcB community in colder habitats, the metabolic processes involved in the biodegradation of PH, and the influence of biotic and abiotic stress factors. The existing understanding of the PH metabolism by PHcB offers confirmation of excellent enzymatic proficiency with high cold stability. The discovery of more flexible PH degrading strategies used by PHcB in colder environments could have a significant beneficial outcome on existing bioremediation technologies. Still, PHcB is least explored for other industrial and biotechnological applications as compared to non-PHcB psychrophiles. The present review highlights the pros and cons of the existing bioremediation technologies as well as the potential of different bioaugmentation processes for the effective removal of PH from the contaminated cold environment. Such research will not only serve to investigate the effects of pollution on the basic functional relationships that form the cold ecosystem but also to assess the efficacy of various remediation solutions for diverse settings and climatic conditions.
Collapse
Affiliation(s)
- Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India.
| | - Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, NCR Delhi, India
| | - Maulin Pramod Shah
- Industrial Waste Water Research Lab, Division of Applied and Environmental Microbiology Lab at Enviro Technology Ltd., Ankleshwar, Gujarat, India
| |
Collapse
|
2
|
Ashok A, Høj L, Brinkman DL, Negri AP, Agusti S. Food-chain length determines the level of phenanthrene bioaccumulation in corals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118789. [PMID: 34990739 DOI: 10.1016/j.envpol.2022.118789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/12/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Exposure from the dissolved-phase and through food-chains contributes to bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in organisms such as fishes and copepods. However, very few studies have investigated the accumulation of PAHs in corals. Information on dietary uptake contribution to PAHs accumulation in corals is especially limited. Here, we used Cavity-Ring-Down Spectroscopy (CRDS) to investigate the uptake rates and accumulation of a 13C-labeled PAH, phenanthrene, in Acropora millepora corals over 14 days. Our experiment involved three treatments representing exposure levels of increasing food-chain length. In Level W, corals were exposed to 13C-phenanthrene directly dissolved in seawater. In Level 1 representing herbivory, Dunaliella salina microalgal culture pre-exposed to 13C-phenanthrene for 48 h was added to the coral treatment jars. In Level 2 representing predation, corals were provided a diet of copepod (Parvocalanus crassirostris) nauplii fed on D. salina pre-exposed to 13C-phenanthrene. Bioconcentration factors (BCF) and bioaccumulation factors (BAF) were calculated as appropriate for all organisms, and biomagnification factors (BMF) were calculated for A. millepora. We found that while phenanthrene uptake rates were not significantly different for the treatments, the accumulated concentration in corals was significantly higher in Level W (33.5 ± 2.83 mg kg-1) than in Level 1 (27.55 ± 2.77 mg kg-1) and Level 2 (29.36 ± 3.84 mg kg-1). Coral log BAF values increased with food-chain length; Level 2 log BAF (6.45) was higher than Level W log BCF (4.18) and Level 1 log BAF (4.5). Coral BMF was also higher for Level 2 than for Level 1. Exposure to dissolved or diet-bound phenanthrene had no significant effect on the coral symbionts' photosynthetic efficiency (Fv/Fm) as monitored by pulse-amplitude-modulation (PAM) fluorometry, indicating the PAH can be accumulated without toxic effects to their Photosystem II. Our study highlights the critical role of dietary exposure for pollutant accumulation in corals.
Collapse
Affiliation(s)
- Ananya Ashok
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Lone Høj
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Diane L Brinkman
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Susana Agusti
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
3
|
Xie Z, Wang Z, Magand O, Thollot A, Ebinghaus R, Mi W, Dommergue A. Occurrence of legacy and emerging organic contaminants in snow at Dome C in the Antarctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140200. [PMID: 32599399 DOI: 10.1016/j.scitotenv.2020.140200] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 05/20/2023]
Abstract
Concentrations of 9 organophosphate esters (OPEs), 16 perfluoroalkylated substances (PFASs) and 17 polycyclic aromatic hydrocarbons (PAHs) were investigated in surface snow samples collected at Dome C on the Antarctic Plateau in summer 2016. Tris(1-chloro-2-propyl) phosphate (TCPP), tris-(2-chloroethyl) phosphate (TCEP) and tri-n-butylphosphate (TnBP) were the dominant compounds of OPEs, with mean concentrations of 8157 ± 4860, 1128 ± 928 and 1232 ± 1147 pg/L. Perfluorooctanoic acid (PFOA, mean: 358 ± 71 pg/L) was the dominant compound of PFASs, and following by perfluoro-n-hexanoic acid (PFHxA, mean: 222 ± 97 pg/L), perfluoro-n-heptanoic acid (PFHpA, 183 ± 60 pg/L) and perfluoro-n-pentanoic acid (PFPeA, 175 ± 105 pg/L). 2-(Heptafluoropropoxy)propanoic acid (HFPO-DA, mean: 9.2 ± 2.6 pg/L) was determined in the Antarctic for the first time. Significantly positive correlations were observed between HFPO-DA and the short-chain PFASs, implying they have similar emission sources and long-range transport potential. High levels of 2-methylnaphthalene and 1-methylnaphthalene, as well as the ratios of PAH congeners indicated PAHs were attributable mostly to combustion origin. Occurrence and profiles of the indicators of OPEs, PFASs and PAHs, as well as air mass back-trajectory analysis provided direct evidences of human activities on Concordia station and posed obvious impacts on local environments in the Antarctic. Nevertheless, the exchange processes among different environmental matrices may drive the long-range transport and redistribution of the legacy and emerging Organic contaminants from coast to inland in the Antarctic.
Collapse
Affiliation(s)
- Zhiyong Xie
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Geesthacht 21502, Germany.
| | - Zhen Wang
- National Marine Environmental Monitoring Center, Dalian, China
| | - Olivier Magand
- Institut des Géosciences de l'Environnement, Univ Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Alban Thollot
- Institut des Géosciences de l'Environnement, Univ Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Geesthacht 21502, Germany
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21502, Germany
| | - Aurelien Dommergue
- Institut des Géosciences de l'Environnement, Univ Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| |
Collapse
|
4
|
Toxværd K, Dinh KV, Henriksen O, Hjorth M, Nielsen TG. Delayed effects of pyrene exposure during overwintering on the Arctic copepod Calanus hyperboreus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105332. [PMID: 31698182 DOI: 10.1016/j.aquatox.2019.105332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Calanus hyperboreus is the largest copepod and a key species in the Arctic food web. During the spring bloom, C. hyperboreus builds up large lipid reserves, which enable it to survive and produce eggs during overwintering. The ecological effects of oil exposure on overwintering C. hyperboreus are unknown. The present study empirically tested if exposure to the polycyclic aromatic hydrocarbon (PAH) pyrene from crude oil affects the survival, egg production, and hatching success of overwintering C. hyperboreus. We also tested the delayed effects on faecal pellet production and lipid recovery in clean seawater. Direct exposure did not reduce survival and egg production, but reduced hatching success 3-18 times by the end of the exposure period. Remarkably, we documented strong delayed effects of pyrene on faecal pellet production and the recovery of lipid reserves. The current study reveals a high vulnerability of this key species of Arctic zooplankton to oil exposure during winter. Together with our previous study on C. glacialis, we complete the picture of the impact of oil on the largest and most lipid-rich copepod C. hyperboreus, which potentially can have huge ecological consequences for the fragile Arctic marine food web.
Collapse
Affiliation(s)
- Kirstine Toxværd
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet Building 201, 2800 Kgs. Lyngby, Denmark; Cowi Denmark, Department of Water & Nature, Parallelvej 2, 2800 Kgs. Lyngby, Denmark.
| | - Khuong V Dinh
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet Building 201, 2800 Kgs. Lyngby, Denmark.
| | - Ole Henriksen
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet Building 201, 2800 Kgs. Lyngby, Denmark.
| | - Morten Hjorth
- Cowi Denmark, Department of Water & Nature, Parallelvej 2, 2800 Kgs. Lyngby, Denmark.
| | - Torkel Gissel Nielsen
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet Building 201, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Mai Y, Peng S, Li H, Lai Z. Histological, biochemical and transcriptomic analyses reveal liver damage in zebrafish (Danio rerio) exposed to phenanthrene. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108582. [PMID: 31374294 DOI: 10.1016/j.cbpc.2019.108582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/05/2019] [Accepted: 07/28/2019] [Indexed: 01/03/2023]
Abstract
Phenanthrene (PHE) is a common polycyclic aromatic hydrocarbon (PAH) in aquatic environments, and this contaminant can cause adverse effects on teleostean performance. In this study, we exposed the model freshwater fish (zebrafish; Danio rerio) to 300 μg/L PHE for 15 days. Histological analysis demonstrated that liver morphology deteriorated in PHE-exposed zebrafish, and cellular damage in the liver increased. Biological analysis revealed that exposure to PHE elicited significant changes in glutathione S-transferases (GST) and superoxide dismutase (SOD) activities. 476 differentially expressed genes (DEGs) were identified in liver between control and PHE treated groups through the transcriptomic analysis. Gene Ontology enrichment analysis (GO) suggested that PHE exposure induced changes in the expression of genes associated with "lipid transporter activity", "catalytic activity", "metal ion binding", "lipid transport" and "transmembrane transport". Furthermore, the "vitamin digestion and absorption" and "fat digestion and absorption" pathways enriched in Kyoto Encyclopedia of Genes and Genomes analysis (KEGG). Additionally, five candidate biomarkers associated with the PHE response in zebrafish were identified. In conclusion, our results elucidate the physiological and molecular responses to PHE exposure in the liver of zebrafish, and provide a framework for further studies of the mechanisms underlying the toxic effects of polycyclic aromatic hydrocarbons (PAHs) on aquatic organisms.
Collapse
Affiliation(s)
- Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Songyao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Haiyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
6
|
Aune M, Aniceto AS, Biuw M, Daase M, Falk-Petersen S, Leu E, Ottesen CAM, Sagerup K, Camus L. Seasonal ecology in ice-covered Arctic seas - Considerations for spill response decision making. MARINE ENVIRONMENTAL RESEARCH 2018; 141:275-288. [PMID: 30249455 DOI: 10.1016/j.marenvres.2018.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/09/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Due to retreating sea ice and predictions of undiscovered oil and gas resources, increased activity in Arctic shelf sea areas associated with shipping and oil and gas exploration is expected. Such activities may accidentally lead to oil spills in partly ice-covered ocean areas, which raises issues related to oil spill response. Net Environmental Benefit Analysis (NEBA) is the process that the response community uses to identify which combination of response strategies minimises the impact to environment and people. The vulnerability of Valued Ecosystem Components (VEC's) to oil pollution depends on their sensitivity to oil and the likelihood that they will be exposed to oil. As such, NEBA requires a good ecological knowledge base on biodiversity, species' distributions in time and space, and timing of ecological events. Biological resources found at interfaces (e.g., air/water, ice/water or water/coastline) are in general vulnerable because that is where oil can accumulate. Here, we summarize recent information about the seasonal, physical and ecological processes in Arctic waters and evaluate the importance these processes when considering in oil spill response decision making through NEBA. In spring-time, many boreal species conduct a lateral migration northwards in response to sea ice retraction and increased production associated with the spring bloom. However, many Arctic species, including fish, seabirds and marine mammals, are present in upper water layers in the Arctic throughout the year, and recent research has demonstrated that bioactivity during the Arctic winter is higher than previously assumed. Information on the seasonal presence/absence of less resilient VEC's such as marine mammals and sea birds in combination with the presence/absence of sea ice seems to be especially crucial to consider in a NEBA. In addition, quantification of the potential impact of different, realistic spill sizes on the energy cascade following the spring bloom at the ice-edge would provide important information for assessing ecosystem effects.
Collapse
Affiliation(s)
- Magnus Aune
- Akvaplan-niva AS, The Fram Centre, Hjalmar Johansens Gate 14, 9007, Tromsø, Norway.
| | - Ana Sofia Aniceto
- Akvaplan-niva AS, The Fram Centre, Hjalmar Johansens Gate 14, 9007, Tromsø, Norway; ARCEx (Research Centre of Arctic Petroleum Exploration), UiT The Arctic University of Tromsø, Department of Geology, Dramsveien 201, Postboks 6050 Langnes, N-9037, Tromsø, Norway
| | - Martin Biuw
- Institute of Marine Research, 9294, Tromsø, Norway
| | - Malin Daase
- Department of Arctic and Marine Biology, University of Tromsø - The Arctic University of Norway, 9037, Tromsø, Norway
| | - Stig Falk-Petersen
- Akvaplan-niva AS, The Fram Centre, Hjalmar Johansens Gate 14, 9007, Tromsø, Norway; Department of Arctic and Marine Biology, University of Tromsø - The Arctic University of Norway, 9037, Tromsø, Norway
| | - Eva Leu
- Akvaplan-niva AS, Gaustadalléen 21, 0349, Oslo, Norway
| | - Camilla A M Ottesen
- Department of Arctic and Marine Biology, University of Tromsø - The Arctic University of Norway, 9037, Tromsø, Norway
| | - Kjetil Sagerup
- Akvaplan-niva AS, The Fram Centre, Hjalmar Johansens Gate 14, 9007, Tromsø, Norway
| | - Lionel Camus
- Akvaplan-niva AS, The Fram Centre, Hjalmar Johansens Gate 14, 9007, Tromsø, Norway
| |
Collapse
|
7
|
Toxværd K, Van Dinh K, Henriksen O, Hjorth M, Nielsen TG. Impact of Pyrene Exposure during Overwintering of the Arctic Copepod Calanus glacialis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10328-10336. [PMID: 30130096 DOI: 10.1021/acs.est.8b03327] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While ongoing warming and sea ice decline threaten unique Arctic ecosystems, they improve the prospect of exploiting fossil fuels in the seafloor. Arctic Calanus copepods can accumulate oil compounds in the large lipid reserves that enable them to cope with highly seasonal food availability characteristic of the Arctic. While spending a significant part of their lives overwintering at depth, their vulnerability to oil contamination during winter remains unknown. We investigated effects of the hazardous crude oil component pyrene on overwintering Calanus glacialis, a key species in Arctic shelf areas. Females were exposed from December to March and then transferred to clean water and fed until April. We showed that long-term exposure during overwintering reduced survival and lipid mobilization in a dose-dependent manner at concentrations previously considered sublethal. After exposure, strong delayed effects were observed in lipid recovery, fecal pellet, and egg production. We showed that 50% lethal threshold concentrations were at least 300 times lower than expected, and that 50% effect thresholds for pellet and egg production were at least 10 times lower than previously documented. Our study provides novel insights to the effects of oil contamination during winter, which is essential to evaluate ecological impacts of Arctic oil pollution.
Collapse
Affiliation(s)
- Kirstine Toxværd
- Section for Oceans and Arctic, National Institute of Aquatic Resources , Technical University of Denmark , Kemitorvet Building 201 , 2800 Kongens Lyngby , Denmark
- COWI Denmark , Department of Water & Nature , Parallelvej 2 , 2800 Kongens Lyngby , Denmark
| | - Khuong Van Dinh
- Section for Oceans and Arctic, National Institute of Aquatic Resources , Technical University of Denmark , Kemitorvet Building 201 , 2800 Kongens Lyngby , Denmark
| | - Ole Henriksen
- Section for Oceans and Arctic, National Institute of Aquatic Resources , Technical University of Denmark , Kemitorvet Building 201 , 2800 Kongens Lyngby , Denmark
| | - Morten Hjorth
- COWI Denmark , Department of Water & Nature , Parallelvej 2 , 2800 Kongens Lyngby , Denmark
| | - Torkel Gissel Nielsen
- Section for Oceans and Arctic, National Institute of Aquatic Resources , Technical University of Denmark , Kemitorvet Building 201 , 2800 Kongens Lyngby , Denmark
| |
Collapse
|
8
|
Agersted MD, Møller EF, Gustavson K. Bioaccumulation of oil compounds in the high-Arctic copepod Calanus hyperboreus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 195:8-14. [PMID: 29220691 DOI: 10.1016/j.aquatox.2017.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Oil and gas exploration in the Arctic will increase the risk for accidental oil spills and thereby have a potential impact on the ecosystem and the organisms inhabiting these areas. Lipid rich copepods are an important food source for higher trophic levels in Arctic marine ecosystems. However, high lipid content and a slower metabolism increase the risk for bioaccumulation in Arctic species. Here we exposed three late development stages of the lipid rich high-Arctic copepod species Calanus hyperboreus to two different 14C-marked crude oil model compounds, the alkane dodecane (log Kow 6.10) and the polycyclic aromatic hydrocarbon (PAH) phenanthrene (log Kow 4.46) on a short-term scale of 4days. Exposure was followed by a depuration phase of 3days. We observed a difference in estimated bioaccumulation of the two model compounds between stages and found a slower depuration of dodecane than of phenanthrene in the two largest and most lipid rich stages. However, depuration of dodecane and phenanthrene was non-significant for all three stages. The results indicate that even short-term exposure may result in long-term bioaccumulation and internal exposure of oil compounds in the lipid rich high-Arctic copepods C. hyperboreus. Slow elimination and depuration of oil components indicate a risk for transfer of oil component up the food web to pelagic fish, seabirds and baleen whales.
Collapse
Affiliation(s)
| | - Eva Friis Møller
- Aarhus University, Arctic Research Centre, Department of Bioscience, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark.
| | - Kim Gustavson
- Aarhus University, Arctic Research Centre, Department of Bioscience, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark.
| |
Collapse
|
9
|
Krause KE, Dinh KV, Nielsen TG. Increased tolerance to oil exposure by the cosmopolitan marine copepod Acartia tonsa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:87-94. [PMID: 28688259 DOI: 10.1016/j.scitotenv.2017.06.139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/19/2017] [Accepted: 06/17/2017] [Indexed: 06/07/2023]
Abstract
Oil contamination is an environmental hazard to marine ecosystems, but marine organism tolerance to oil after many generations of exposure remains poorly known. We studied the effects of transgenerational oil exposure on fitness-related traits in a cosmopolitan neritic copepod, Acartia tonsa. Copepods were exposed to an oil compound, the PAH pyrene, at concentrations of 1, 10, 100 and 100+(the saturated pyrene concentration in seawater)nM over two generations and measured survival, sex ratio, size at maturity, grazing rate and reproductive success. Exposure to the pyrene concentration of 100+nM resulted in 100% mortality before adulthood in the first generation. At the pyrene concentration of 100nM, pyrene reduced grazing rate, increased mortality, reduced the size of females and caused lower egg production and hatching success. Importantly, we found strong evidence for increased tolerance to pyrene exposure in the second generation: the reduction in size at maturity of females was less pronounced in the second generation and survival, egg production and hatching success were recovered to control levels in the second generation. The increased tolerance of copepods to oil contamination may dampen the direct ecological consequences of a coastal oil spill, but it raises the concern whether a larger fraction of oil components accumulated in survived copepods, may be transferred up the food web.
Collapse
Affiliation(s)
- Kamille Elvstrøm Krause
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, bygning 201, Lyngby Campus, 2800 Kgs. Lyngby, Denmark
| | - Khuong V Dinh
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, bygning 201, Lyngby Campus, 2800 Kgs. Lyngby, Denmark.
| | - Torkel Gissel Nielsen
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, bygning 201, Lyngby Campus, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Nevalainen M, Helle I, Vanhatalo J. Preparing for the unprecedented - Towards quantitative oil risk assessment in the Arctic marine areas. MARINE POLLUTION BULLETIN 2017; 114:90-101. [PMID: 27593852 DOI: 10.1016/j.marpolbul.2016.08.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 05/23/2023]
Abstract
The probability of major oil accidents in Arctic seas is increasing alongside with increasing maritime traffic. Hence, there is a growing need to understand the risks posed by oil spills to these unique and sensitive areas. So far these risks have mainly been acknowledged in terms of qualitative descriptions. We introduce a probabilistic framework, based on a general food web approach, to analyze ecological impacts of oil spills. We argue that the food web approach based on key functional groups is more appropriate for providing holistic view of the involved risks than assessments based on single species. We discuss the issues characteristic to the Arctic that need a special attention in risk assessment, and provide examples how to proceed towards quantitative risk estimates. The conceptual model presented in the paper helps to identify the most important risk factors and can be used as a template for more detailed risk assessments.
Collapse
Affiliation(s)
- Maisa Nevalainen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 University of Helsinki, Finland.
| | - Inari Helle
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 University of Helsinki, Finland
| | - Jarno Vanhatalo
- Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, FI-00014 University of Helsinki, Finland; Department of Biosciences, University of Helsinki, P.O. Box 65, FI-00014 University of Helsinki, Finland
| |
Collapse
|