1
|
Planelló R, Aquilino M, Beaugeard L, Llorente L, Herrero Ó, Siaussat D, Lécureuil C. Unveiling Molecular Effects of the Secondary Metabolite 2-Dodecanone in the Model Hymenopteran Nasonia vitripennis. TOXICS 2024; 12:159. [PMID: 38393254 PMCID: PMC10892068 DOI: 10.3390/toxics12020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Over the past decade, multiple studies have suggested that the secondary metabolites produced by plants against herbivorous insects could be used as biopesticides. However, as the molecular mechanism of action of these compounds remains unknown, it is difficult to predict how they would affect non-target insects; thus, their innocuity needs to be clarified. Here, we investigate, from the molecular level to the organism, the responses of a useful parasitic insect Nasonia vitripennis (Walker, 1836) being exposed at the pupae stage for 48 h (up to 6 days) to sublethal doses (5 µg/L and 500 µg/L) of 2-Dodecanone. 2-Dodecanone altered the gene expression of genes related to ecdysone-related pathways, biotransformation, and cell homeostasis. A significant induction of ecdysone response-genes (EcR, usp, E78, Hr4, Hr38) was detected, despite no significant differences in ecdysteroid levels. Regarding the cell homeostasis processes, the gene l(2)efl was differentially altered in both experimental conditions, and a dose-dependent induction of hex81 was observed. 2-Dodecanone also triggered an induction of Cyp6aQ5 activity. Finally, 2-Dodecanone exposure had a significant effect on neither development time, energy reserves, nor egg-laying capacity; no potential genotoxicity was detected. For the first time, this study shows evidence that 2-Dodecanone can modulate gene expression and interfere with the ecdysone signalling pathway in N. vitripennis. This could lead to potential endocrine alterations and highlight the suitability of this organism to improve our general understanding of the molecular effects of plant defences in insects. Our findings provide new insights into the toxicity of 2-Dodecanone that could potentially be explored in other species and under field conditions for plant protection and pest management as a means to reduce reliance on synthetic pesticides.
Collapse
Affiliation(s)
- Rosario Planelló
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - Mónica Aquilino
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - Laureen Beaugeard
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), CNRS-Université de Tours, 37200 Tours, France;
| | - Lola Llorente
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - Óscar Herrero
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - David Siaussat
- Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France;
| | - Charlotte Lécureuil
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), CNRS-Université de Tours, 37200 Tours, France;
| |
Collapse
|
2
|
Kalman J, Muñiz-González AB, García MÁ, Martínez-Guitarte JL. Chironomus riparius molecular response to polystyrene primary microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161540. [PMID: 36642273 DOI: 10.1016/j.scitotenv.2023.161540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Judit Kalman
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Spain; Grupo de Riesgos Ambientales para la Salud y el Medio Ambiente (RiSAMA), Facultad de Ciencias de la Salud, Universidad de Rey Juan Carlos, Spain
| | - Ana-Belén Muñiz-González
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Spain
| | | | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Spain.
| |
Collapse
|
3
|
Fu H, Yang J, Xin B, Yan Z, Zhu Y. Accentuated Hippo pathway and elevated miR-132 and miR-195a lead to changes of uteri and ovaries in offspring mice following prenatal exposure to vinclozolin. Reprod Toxicol 2023; 116:108335. [PMID: 36642194 DOI: 10.1016/j.reprotox.2023.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Vinclozolin (VCZ) has been identified as a broad-spectrum fungicide and an environmental endocrine disruptor. Also, the Hippo signaling pathway controls organ size by regulating cell proliferation and apoptosis, and moreover, overexpression of microRNA-132 (miR-132) and microRNA-195 (miR-195) inhibits cell proliferation and promotes apoptosis. So, in this study, the experimental mice were orally given 400 mg/kg/day VCZ (suspended in corn oil) at gestational day 12-18, while those of the control group were fed with corn oil of equal volume. Then unilateral ovaries and mid-uteri were isolated from 10 randomly-selected mice at the postnatal 1st week (7 days), 3rd week (20-21 days), and 7th week (48-49 days) respectively to observe gene levels, while 6 of the contralateral ovaries and uteri were subsequently examined for proteins respectively. Besides, 16 from both groups were determined with serum estradiol (E2) at week 7, of which 6 were randomized for histological observation. Here we found the levels of E2 reduced in VCZ-group at week 7, with fewer follicles and injured endometrium. Meanwhile, in VCZ mice of all ages, increased miR-132 and miR-195a, decreased G protein-coupled estrogen receptor (GPER), elevated phosphorylated large tumor suppressor (pLATS) and phosphorylated yes-associated protein (pYAP), and decreased yes-associated protein (YAP) were observed in their ovaries and uteri. These findings suggested ovarian and uterine dysplasia in the offspring induced by gestational VCZ-exposure were mainly attributed to higher miR-132 and miR-195a and accentuated Hippo-pathway.
Collapse
Affiliation(s)
- Hu Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan normal university, Changsha 410013, Hunan, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China
| | - Jinru Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan normal university, Changsha 410013, Hunan, China; Department of Immunization Planning, Hanzhong Center for Disease Control and Prevention, Hanzhong City 723000, Shaanxi, China
| | - Bingyan Xin
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan normal university, Changsha 410013, Hunan, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China
| | - Zhengli Yan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan normal university, Changsha 410013, Hunan, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China
| | - Yongfei Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan normal university, Changsha 410013, Hunan, China; Key Laboratory of Protein Chemistry and Fish Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
4
|
Lu HL, Kang CQ, Meng QY, Hu JR, Melvin SD. Functional and hepatic metabolite changes in aquatic turtle hatchlings exposed to the anti-androgenic fungicide vinclozolin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113220. [PMID: 35066435 DOI: 10.1016/j.ecoenv.2022.113220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Many man-made chemicals that are released into water bodies in agricultural landscapes have been identified as endocrine disruptors and can cause serious impacts on the growth and survival of aquatic species living in these environments. However, very little attention has been paid to their toxicological effects in cultured non-fish species, such as aquatic turtles. We exposed hatchlings of the Chinese soft-shelled turtle (Pelodiscus sinensis) to different concentrations of vinclozolin (0, 5, 50 and 500 μg/L) for 60 days to assess physiological and metabolic impacts of this fungicide. Despite no death occurrence, hatchling turtles exposed to the highest concentration of vinclozolin consumed less food, grew more slowly (resulting in smaller body size after exposure) and performed more poorly in behavioral swimming tests than controls and turtles exposed to lower concentrations. Hepatic metabolite profiles acquired via liquid chromatography-mass spectrometry (LC-MS) revealed multiple metabolic perturbations related to amino acid, lipid, and fatty acid metabolism in animals exposed to environmentally relevant concentrations. Specifically, many critical metabolites involved in energy-related metabolic pathways (such as some intermediates in the tricarboxylic acid cycle, lactate, and some amino acids) were present in livers of hatchling turtles exposed vinclozolin, though at lower concentrations, reflecting energy metabolism dysregulation induced by exposure to this fungicide. Overall, our results suggest that the changes in growth and behavioral performances caused by chronic vinclozolin exposure may be associated with internal physiological and metabolic disorders mediated at the biochemical level.
Collapse
Affiliation(s)
- Hong-Liang Lu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Chun-Quan Kang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Qin-Yuan Meng
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jian-Rao Hu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia.
| |
Collapse
|
5
|
de la Fuente M, Folgar RM, Martínez-Paz P, Cortés E, Martínez-Guitarte JL, Morales M. Effect of environmental stressors on the mRNA expression of ecdysone cascade genes in Chironomus riparius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10210-10221. [PMID: 34515935 PMCID: PMC8783914 DOI: 10.1007/s11356-021-16339-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/31/2021] [Indexed: 04/16/2023]
Abstract
Chemical compounds produced by humans are continuously reaching the environment. In this work, we characterised the expression patterns of important endocrine-related genes involved in the ecdysone pathway in the fourth larval instar of the model species Chironomus riparius after exposure to three chemicals: ethinyl oestradiol (EE), nonylphenol (NP) and bis(tributyltin) oxide (TBTO). We used real-time PCR to analyse the gene expression levels of ecdysone receptor (EcR) and ultraspiracle (usp), two genes that encode the dimerising partners of the functional ecdysone receptor; the orphan receptor ERR (oestrogen-related receptor), with an unknown function in invertebrates; and E74, an early response gene induced by ecdysteroids. We estimated the bioaccumulation potential, bioavailability and physicochemical properties of these chemicals, together with a number of other exogenous agents known to interfere with the hormonal system. We also provide a review of previous transcriptional studies showing the effect of all these chemicals on ecdysone cascade genes. This analysis provides useful data for future ecotoxicological studies involving invertebrate species. CAPSULE: Changes in transcriptional activities of EcR, E74, usp and ERR genes after exposure to endocrine-disrupting chemicals would be useful as molecular bioindicators of endocrine disruption in Chironomus riparius.
Collapse
Affiliation(s)
- Mercedes de la Fuente
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED. Urbanización Monte Rozas. Avda. Esparta s/n. Ctra. de Las Rozas al Escorial Km. 5, 28232, Las Rozas-Madrid, Spain
| | - Raquel Martín Folgar
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED. Urbanización Monte Rozas. Avda. Esparta s/n. Ctra. de Las Rozas al Escorial Km. 5, 28232, Las Rozas-Madrid, Spain.
| | - Pedro Martínez-Paz
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED. Urbanización Monte Rozas. Avda. Esparta s/n. Ctra. de Las Rozas al Escorial Km. 5, 28232, Las Rozas-Madrid, Spain
- Grupo de Biomedicina en Cuidados Críticos, Facultad de Medicina, Universidad de Valladolid, Av. Ramón y Cajal 7, 47005, Valladolid, Spain
| | - Estrella Cortés
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED. Urbanización Monte Rozas. Avda. Esparta s/n. Ctra. de Las Rozas al Escorial Km. 5, 28232, Las Rozas-Madrid, Spain
| | - José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED. Urbanización Monte Rozas. Avda. Esparta s/n. Ctra. de Las Rozas al Escorial Km. 5, 28232, Las Rozas-Madrid, Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED. Urbanización Monte Rozas. Avda. Esparta s/n. Ctra. de Las Rozas al Escorial Km. 5, 28232, Las Rozas-Madrid, Spain
| |
Collapse
|
6
|
Muñiz-González AB, Novo M, Martínez-Guitarte JL. Persistent pesticides: effects of endosulfan at the molecular level on the aquatic invertebrate Chironomus riparius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31431-31446. [PMID: 33608783 DOI: 10.1007/s11356-021-12669-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Although banned in multiple areas, due to its persistence in the environment, endosulfan constitutes a significant environmental concern. In this work, fourth instar Chironomus riparius larvae were exposed at environmentally relevant endosulfan concentrations of 0.1, 1, and 10 μg/L for 24 h to analyze the possible effects of this acaricide on gene expression and enzymatic activity. Transcriptional changes were studied through the implementation of a real-time polymerase chain reaction array with 42 genes related to several metabolic pathways (endocrine system, detoxification response, stress response, DNA reparation, and immune system). Moreover, glutathione-S-transferase (GST), phenoloxidase (PO), and acetylcholinesterase (AChE) activities were assessed. The five pathways were differentially altered by endosulfan exposure with significant changes in the E93, Dis, MAPR, Met, InR, GSTd3, GSTt3, MRP1, hsp70, hsp40, hsp24, ATM, PARP, Proph, and Def genes. Besides, all of the measured enzymatic activities were modified, with increased activity of GST, followed by PO and AChE. In summary, the results reflected the effects provoked in C. riparius at molecular level despite the absence of lethality. These data raise concerns about the strong alteration on different metabolic routes despite the low concentrations used. Therefore, new risk assessment strategies should consider include the effects at the sub-organismal level as endpoints in addition to the classical ecologically relevant parameters (such as survival). This endeavor will facilitate a comprehensive evaluation of toxicants in the environment.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Environmental Biology and Toxicology Group, Department of Mathematical and Fluid Physics, National University of Distance Education, UNED, Senda del Rey 9, 28040, Madrid, Spain.
| | - Marta Novo
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Environmental Biology and Toxicology Group, Department of Mathematical and Fluid Physics, National University of Distance Education, UNED, Senda del Rey 9, 28040, Madrid, Spain
| |
Collapse
|
7
|
Rister AL, Amato CM, Nash T, McCoy MW, Bereman M, McCoy KA. Toxicant exposure during pregnancy increases protective proteins in the dam and a sexually dimorphic response in the fetus. Toxicol Appl Pharmacol 2021; 413:115407. [PMID: 33434571 PMCID: PMC9152768 DOI: 10.1016/j.taap.2021.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/06/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
Endocrine disrupting compounds (EDCs) are ubiquitous environmental pollutants that alter endocrine system function, induce birth defects, and a myriad of other negative health outcomes. Although the mechanism of toxicity of many EDCs have been studied in detail, little work has focused on understanding the mechanisms through which pregnant dams and fetuses protect themselves from EDCs, or if those protective mechanisms are sexually dimorphic in fetuses. In this study, we examined proteomic alterations in the livers of mouse dams and their male and female fetuses induced by vinclozolin, a model antiandrogenic EDC. Dam livers upregulated nine phase I and phase II detoxification pathways and pathway analysis revealed that more pathways are significantly enriched in dam livers than in fetal livers. Phase I and II detoxification proteins are also involved in steroid and steroid hormone biosynthesis and vinclozolin likely alters steroid levels in both the dam and the fetus. The response of the fetal liver proteome to vinclozolin exposure is sexually dimorphic. Female fetal livers upregulated proteins in xenobiotic metabolism pathways, whereas male fetal livers upregulated proteins in oxidative phosphorylation pathways. These results suggest that female fetuses increase protective mechanisms, whereas male fetuses increase ATP production and several disease pathways that are indicative of oxidative damage. Females fetuses upregulate proteins and protective pathways that were similar to the dams whereas males did not. If this sexually dimorphic pattern is typical, then males might generally be more sensitive to EDCs.
Collapse
Affiliation(s)
- Alana L Rister
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | - Ciro M Amato
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Tara Nash
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael W McCoy
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Michael Bereman
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Krista A McCoy
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
8
|
Nozari A, Do S, Trudeau VL. Applications of the SR4G Transgenic Zebrafish Line for Biomonitoring of Stress-Disrupting Compounds: A Proof-of-Concept Study. Front Endocrinol (Lausanne) 2021; 12:727777. [PMID: 34867778 PMCID: PMC8635770 DOI: 10.3389/fendo.2021.727777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
Transgenic zebrafish models have been successfully used in biomonitoring and risk assessment studies of environmental pollutants, including xenoestrogens, pesticides, and heavy metals. We employed zebrafish larva (transgenic SR4G line) with a cortisol-inducible green fluorescence protein reporter (eGFP) as a model to detect stress responses upon exposure to compounds with environmental impact, including bisphenol A (BPA), vinclozolin (VIN), and fluoxetine (FLX). Cortisol, fluorescence signal, and mRNA levels of eGFP and 11 targeted genes were measured in a homogenized pool of zebrafish larvae, with six experimental replicates for each endpoint. Eleven targeted genes were selected according to their association with stress-axis and immediate early response class of genes. Hydrocortisone (CORT)and dexamethasone (DEX) were used as positive and negative controls, respectively. All measurements were done in two unstressed and stressed condition using standardized net handling as the stressor. A significant positive linear correlation between cortisol levels and eGFP mRNA levels was observed (r> 0.9). Based on eGFP mRNA levels in unstressed and stressed larvae two predictive models were trained (Random Forest and Logistic Regression). Both these models could correctly predict the blunted stress response upon exposure to BPA, VIN, FLX and the negative control, DEX. The negative predictive value (NPV) of these models were 100%. Similar NPV was observed when the predictive models trained based on the mRNA levels of the eleven assessed genes. Measurement of whole-body fluorescence intensity signal was not significant to detect blunted stress response. Our findings support the use of SR4G transgenic larvae as an in vivo biomonitoring model to screen chemicals for their stress-disrupting potentials. This is important because there is increasing evidence that brief exposures to environmental pollutants modify the stress response and critical coping behaviors for several generations.
Collapse
|
9
|
Muñiz-González AB. Ibuprofen as an emerging pollutant on non-target aquatic invertebrates: Effects on Chironomus riparius. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103537. [PMID: 33157253 DOI: 10.1016/j.etap.2020.103537] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
The concern about pharmaceuticals has been increased over the last decade due to their burgeoning consumption. Ibuprofen has an extensive presence in surface water with risks for the aquatic biota. This study focuses on the effects of ibuprofen at environmental concentrations on the survival, transcriptional level, and enzymatic activity for 24, 96 h on Chironomus riparius. Ibuprofen developed a substantial effect on survival by all the conditions. mRNA levels of EcR, Dronc, and Met (endocrine system), hsp70, hsp24, and hsp27 (stress response), and Proph and Def (immune system) were modified, joined to increased GST and PO activity. The results confirmed alterations on the development of C. riparius, as well as two essential mechanisms, involved in protection against external toxicological challenge. Ibuprofen poses an incipient risk to C. riparius and could at an organismal level by compromising their survival, development, and ability to respond to adverse conditions on the future populations.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Environmental Toxicology and Biology Group, Department of Mathematics and Fluid Physics, UNED, Spain.
| |
Collapse
|
10
|
Park K, Kwak IS. Multi-Level Gene Expression in Response to Environmental Stress in Aquatic Invertebrate Chironomids: Potential Applications in Water Quality Monitoring. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 259:77-122. [PMID: 34661753 DOI: 10.1007/398_2021_79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In freshwater ecosystems, aquatic invertebrates are influenced continuously by both physical stress and xenobiotics. Chironomids (Diptera; Chironomidae), or non-biting midges, are the most diverse and abundant invertebrates in freshwater habitats. They are a fundamental link in food chains of aquatic ecosystems. Chironomid larvae tolerate stress factors in their environments via various physiological processes. At the molecular level, environmental pollutants induce multi-level gene responses in Chironomus that regulate cellular protection through the activation of defense processes. This paper reviews literature on the transcriptional responses of biomarker genes to environmental stress in chironomids at the molecular level, in studies conducted from 1991 to 2020 (120 selected literatures of 374 results with the keywords "Chironomus and gene expression" by PubMed search tool). According to these studies, transcriptional responses in chironomids vary depending on the type of stress factor and defensive responses associated with antioxidant activity, the endocrine system, detoxification, homeostasis and stress response, energy metabolism, ribosomal machinery, apoptosis, DNA repair, and epigenetics. These data could provide a comprehensive overview of how Chironomus species respond to pollutants in aquatic environments. Furthermore, the transcriptomic data could facilitate the development of genetic tools for water quality and environmental monitoring based on resident chironomid species.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, South Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science and Fisheries Science Institute, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
11
|
Martín-Folgar R, Martínez-Guitarte JL. Effects of single and mixture exposure of cadmium and copper in apoptosis and immune related genes at transcriptional level on the midge Chironomus riparius Meigen (Diptera, Chironomidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:590-598. [PMID: 31071664 DOI: 10.1016/j.scitotenv.2019.04.364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Metals and heavy metals are natural contaminants with an increasing presence in aquatic ecosystems as a result of human activities. Although they are mixed in the water, research is usually focused on analyzing them in isolation, so there is a lack of knowledge about their combined effects. The aim of this work was to assess the damage produced by mixtures of cadmium and copper, two frequent metals used in industry, in the harlequin midge Chironomus riparius (Diptera). The effects of acute doses of cadmium and copper were evaluated in fourth instar larvae by analyzing the mRNA levels of six genes related to apoptosis (DRONC, IAP1), immune system (PO1, Defensin), stress (Gp93), and copper homeostasis (Ctr1). DRONC, Ctr1, and IAP1 transcripts are described here for first time in this species. Individual fourth instar larvae were submitted to 10 μM, 1 μM and 0.1 μM of CdCl2 or CuCl2, and mixture. The employed individuals came from different egg masses. Real-time PCR analysis showed a complex pattern of alterations in transcriptional activity for two genes, DRONC and Gp93, while the rest of them did not show any statistically significant differences. The effector caspase DRONC showed upregulation with the highest concentration tested of the mixture. In case of gp93, chaperone involved in regulation of immune response, differences in expression levels were found with 1 and 10 μM Cu and 0.1 and 10 μM of mixtures, compared to control samples. These results suggest that mixtures affect the transcriptional activity differently and produce changes in apoptosis and stress processes, although it is also possible that Gp93 alteration could be related to the immune system since it is homologous to human protein Gp96, which has been related with Toll-like receptors. In conclusion, cadmium and copper mixtures can affect the population by affecting the ability of larvae to respond to the infection and the apoptosis, an important process in the metamorphosis of insects.
Collapse
Affiliation(s)
- Raquel Martín-Folgar
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
12
|
Arambourou H, Planelló R, Llorente L, Fuertes I, Barata C, Delorme N, Noury P, Herrero Ó, Villeneuve A, Bonnineau C. Chironomus riparius exposure to field-collected contaminated sediments: From subcellular effect to whole-organism response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:874-882. [PMID: 30947058 DOI: 10.1016/j.scitotenv.2019.03.384] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
The toxicity of three field-collected sediments differentially contaminated with pesticides, heavy metals, phtalates and polycyclic aromatic hydrocarbons (PAHs), was assessed in Chironomus riparius. For this purpose, C. riparius larvae were exposed throughout their entire life cycle to sediments collected in three sites along the Saulx river in France, and the toxic effects were measured at different levels of biological organization: from the molecular (lipidomic analysis and transcriptional variations) to the whole organism response (respiration rate, shape markers and emergence rate). In the sediment characterized by an intermediate level of contamination with PAHs and phtalates, we detected an increase of the cell stress response and delayed emergence of males. In the group exposed to the most contaminated sediment with PAHs, phtalates and pesticides, genes related to endocrine pathways, cell stress response and biotransformation processes were overexpressed, while female wing shape was affected. Field-collected sediment exposure did not induce significant effects on mentum shape markers or on the lipid profile. The present study provides new insights into the multilevel effects of differentially contaminated sediments in insects. This integrative approach will certainly contribute to improved assessment of the risk that complex mixtures of pollutants pose to the aquatic ecosystem.
Collapse
Affiliation(s)
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| | - Lola Llorente
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | | | - Patrice Noury
- Irstea Lyon, Riverly Research Unit, Villeurbanne, France
| | - Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | | | | |
Collapse
|
13
|
Aquilino M, Sánchez-Argüello P, Novo M, Martínez-Guitarte JL. Effects on tadpole snail gene expression after exposure to vinclozolin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:568-577. [PMID: 30576892 DOI: 10.1016/j.ecoenv.2018.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/06/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The fungicide vinclozolin (Vz) is an endocrine disruptor with known anti-androgenic activity in vertebrates. However, there is a lack of information about the Vz mode of action in invertebrates, although some studies have shown that this compound can produce alterations in different species. Transcriptional activity was analyzed in the freshwater snail Physella acuta in order to elucidate putative cellular processes altered by this chemical during a response. In order to identify potential molecular biomarkers, a de novo transcriptome was generated for this species that constitutes a valuable source for future studies. This data, together with some already available data, permitted the identification of several genes related to detoxification mechanisms (Cyp2u1, Cyp3a7, Cyp4f22, GSTo1, GSTt2, and MRP1), stress response (Hsp20.4, Hsp17, Hsp16.6, and Cu,Zn-SOD), the hormonal system (Estrogen Receptor and Hsp90), apoptosis (Casp3), and copper homeostasis (ATOX1). Using quantitative Real-Time polymerase chain reaction, mRNA levels of these genes were examined in snails exposed to 20 or 200 µg/L Vz for 24 h. The results showed an overall weak response, with downregulation of Hsp20.4 and no statistically significant change for the other genes. These findings suggest that P. acuta can manage the concentrations of Vz found in the environment with no relevant activation of the pathways analyzed, although additional studies are needed for longer exposure times and including other metabolic pathways. The new genes described open the range of processes that can be studied at the molecular level in toxicity tests.
Collapse
Affiliation(s)
- Mónica Aquilino
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| | - Paloma Sánchez-Argüello
- Laboratory for Ecotoxicology, Department of the Environment, INIA, Crta A Coruña km 7, 28040 Madrid, Spain
| | - Marta Novo
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain; Biodiversity, Ecology and Evolution, Biological Sciences, Complutense University of Madrid, José Antonio Nóvais sn, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
14
|
Muñiz-González AB, Martínez-Guitarte JL. Effects of single exposure and binary mixtures of ultraviolet filters octocrylene and 2-ethylhexyl 4-(dimethylamino) benzoate on gene expression in the freshwater insect Chironomus riparius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35501-35514. [PMID: 30350147 DOI: 10.1007/s11356-018-3516-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Ultraviolet filters are used extensively in the production of many personal care and industrial products. These products can inadvertently pollute the environment through recreational activities. They have been associated with endocrine disruption in vertebrates but their effects in invertebrates are poorly understood. Chironomus riparius is a species of the dipteran order, with aquatic larvae that are frequently used in toxicity tests. Previously, we showed that octocrylene (OC) and 2-ethylhexyl 4-(dimethylamino) benzoate (OD-PABA) differentially affected the mRNA levels of the ecdysone receptor and Hsp70 genes. For a better understanding of their mode of action, transcriptional activity by real-time PCR was analyzed in fourth instar larvae exposed to OC, OD-PABA, or a binary mixture of both. We studied 16 genes related to the endocrine system, stress, the immune system, and biotransformation mechanisms to elucidate the putative interactions between these compounds. No response was observed for the genes involved in biotransformation, suggesting that enzymes other than cytochromes P450 and glutathione-S-transferases (GSTs) could get involved in transformation of these compounds. Similarly, no response was observed for endocrine-related genes while the stress gene HYOU1 was inhibited by OD-PABA, suggesting an effect in response to hypoxia. In addition, no significant interactions were observed following exposure to a binary mixture of these compounds. Overall, the results suggest a weak, acute response in different metabolic pathways and a lack of interaction between the compounds. Finally, new genes are identified in this organism, opening the possibility to analyze new cellular pathways as targets of toxicants.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040, Madrid, Spain.
- Facultad de Ciencias, UNED, Paseo de la Senda del Rey 9, 28040, Madrid, Spain.
| |
Collapse
|
15
|
Martínez-Paz P. Response of detoxification system genes on Chironomus riparius aquatic larvae after antibacterial agent triclosan exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1-8. [PMID: 29245033 DOI: 10.1016/j.scitotenv.2017.12.107] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/04/2017] [Accepted: 12/10/2017] [Indexed: 05/24/2023]
Abstract
Triclosan (TCS) is an antimicrobial agent used in a range of personal care and consumer products and is commonly detected in aquatic ecosystems. In the present study, the effects of TCS at the molecular level on the detoxification system of Chironomus riparius aquatic larvae, a test organism widely used for the assessment of aquatic toxicology, were evaluated. The obtained results show that this xenobiotic was able to induce significant changes in transcripts from different cytochrome P450s and glutathione s-transferases genes, involved in phase I and phase II of detoxification system, respectively. In contrast, TCS did not affect the glutathione S-transferase enzyme activity nor the expression pattern of multidrug resistance-associated protein 1, which belongs to phase III of detoxification system. These results provide information about the effects of TCS on the detoxification mechanism of C. riparius and offers different biomarker genes that could be useful in ecotoxicological studies, risk assessment and bioremediation.
Collapse
Affiliation(s)
- Pedro Martínez-Paz
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), C/ Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
16
|
Novo M, Verdú I, Trigo D, Martínez-Guitarte JL. Endocrine disruptors in soil: Effects of bisphenol A on gene expression of the earthworm Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:159-167. [PMID: 29275183 DOI: 10.1016/j.ecoenv.2017.12.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
UNLABELLED Xenobiotics such as bisphenol A (BPA), are present in biosolids, which are applied as organic fertilizers in agricultural fields. Their effects on soil life have been poorly assessed, and this is particularly important in the case of earthworms, which represent the main animal biomass in this medium. In the present work we study the impacts of BPA on gene expression of Eisenia fetida, a widely used ecotoxicological model. Chronic soil tests and acute contact tests were performed, and gene expression was analyzed in total tissue and in masculine reproductive organs of the earthworms. The genes studied in this research played a role in endocrine pathways, detoxification mechanisms, stress response, epigenetics, and genotoxicity. Most of the genes were identified for the first time, providing potentially useful biomarkers for future assessments. For chronic exposures, no changes were detected in whole-body tissue; however, masculine reproductive organs showed changes in the expression of genes related to endocrine function (EcR, MAPR, AdipoR), epigenetic mechanisms (DNMTs), genotoxicity (PARP1), and stress responses (HSC70 4). For acute exposures, the expression of one epigenetic-related gene was altered for both whole-body tissues and male reproductive organs (Piwi2). Further changes were detected for whole-body tissues involved in detoxification (Metallothionein), stress (HSC70 4), and genotoxicity (PARP1) mechanisms. Acute exposure effects were also tested in whole-body tissues of juveniles, showing changes in the expression of Metallothionein and Piwi2. The molecular changes found in the analyzed earthworms indicate that exposure to BPA may have negative implications in their populations. Particularly interesting are the alterations related to epigenetic mechanisms, which suggest that future generations may be impacted. This study is the first to evaluate the molecular effects of BPA on soil organisms, and further assays will be necessary to better characterize the true environmental repercussions. CAPSULE Levels of gene expression in total-body tissues and masculine reproductive organs were analyzed in earthworms after exposure to bisphenol A and we observed associated changes in detoxification, endocrine, epigenetic, genotoxic and stress pathways.
Collapse
Affiliation(s)
- M Novo
- Environmental Toxicology and Biology Group. Departamento de Física Matemática y de Fluídos. Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| | - I Verdú
- Soil Zoology Group, Departamento de Zoología y Antropología Física, Facultad de Biología. Complutense University, Jose Antonio Nováis s/n, 28040 Madrid, Spain
| | - D Trigo
- Soil Zoology Group, Departamento de Zoología y Antropología Física, Facultad de Biología. Complutense University, Jose Antonio Nováis s/n, 28040 Madrid, Spain
| | - J L Martínez-Guitarte
- Environmental Toxicology and Biology Group. Departamento de Física Matemática y de Fluídos. Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
17
|
Herrero Ó, Aquilino M, Sánchez-Argüello P, Planelló R. The BPA-substitute bisphenol S alters the transcription of genes related to endocrine, stress response and biotransformation pathways in the aquatic midge Chironomus riparius (Diptera, Chironomidae). PLoS One 2018; 13:e0193387. [PMID: 29466445 PMCID: PMC5821402 DOI: 10.1371/journal.pone.0193387] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/11/2018] [Indexed: 01/19/2023] Open
Abstract
Bisphenol S (BPS) is an industrial alternative to the endocrine disruptor bisphenol A (BPA), and can be found in many products labeled “BPA-free”. Its use has grown in recent years, and presently it is considered a ubiquitous emerging pollutant. To date there is a lack of information on the effects of BPS on invertebrates, although they represent more than 95% of known species in the animal kingdom and are crucial for the structure and proper function of ecosystems. In this study, real-time RT-PCR was used to determine the early detrimental effects of BPS on the transcriptional rate of genes in the model species Chironomus riparius, specifically those related to the ecdysone pathway (EcR, ERR, E74, Vtg, cyp18a1) crucial for insect development and metamorphosis, stress and biotransformation mechanisms (hsp70, hsp40, cyp4g, GPx, GSTd3) that regulate adaptive responses and determine survival, and ribosome biogenesis (its2, rpL4, rpL13) which is essential for protein synthesis and homeostasis. While 24-hour exposure to 0.5, 5, 50, and 500 μg/L BPS had no effect on larval survival, almost all the studied genes were upregulated following a non-monotonic dose-response curve. Genes with the greatest increases in transcriptional activity (fold change relative to control) were EcR (3.8), ERR (2), E74 (2.4), cyp18a1 (2.5), hsp70 (1.7), hsp40 (2.5), cyp4g (6.4), GPx (1.8), and GST (2.1), while others including Vtg, GAPDH, and selected ribosomal genes remained stable. We also measured the transcriptional activity of these genes 24 hours after BPS withdrawal and a general downregulation compared to controls was observed, though not significant in most cases. Our findings showed that BPS exposure altered the transcriptional profile of these genes, which may have consequences for the hormone system and several metabolic pathways. Although further research is needed to elucidate its mode of action, these results raise new concerns about the safety of BPA alternatives.
Collapse
Affiliation(s)
- Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Madrid, Spain
| | - Mónica Aquilino
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Madrid, Spain
| |
Collapse
|
18
|
Aquilino M, Sánchez-Argüello P, Martínez-Guitarte JL. Genotoxic effects of vinclozolin on the aquatic insect Chironomus riparius (Diptera, Chironomidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:563-570. [PMID: 28987565 DOI: 10.1016/j.envpol.2017.09.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Vinclozolin (Vz) is a pollutant found in aquatic environments whose antiandrogenic effects in reproduction are well known in mammals. Although its reproductive effects have been less studied in invertebrates, other effects, including genotoxicity, have been described. Therefore, in this work, we studied the genotoxic effects of Vz in the freshwater benthic invertebrate Chironomus riparius. DNA damage was evaluated with the comet assay (tail area, olive moment, tail moment and % DNA in tail), and the transcriptional levels of different genes involved in DNA repair (ATM, NLK and XRCC1) and apoptosis (DECAY) were measured by RT-PCR. Fourth instar larvae of C. riparius, were exposed to Vz for 24 h at 20 and 200 μg/L. The Vz exposures affected the DNA integrity in this organism, since a dose-response relationship occurred, with DNA strand breaks significantly increased with increased dose for tail area, olive moment and tail moment parameters. Additionally, the lower concentration of Vz produced a significant induction of the transcripts of three genes under study (ATM, NLK and XRCC1) showing the activation of the cellular repair mechanism. In contrast, the expression of these genes with the highest concentration were downregulated, indicating failure of the cellular repair mechanism, which would explain the higher DNA damage. These data report for the first time the alterations of Vz on gene transcription of an insect and confirm the potential genotoxicity of this compound on freshwater invertebrates.
Collapse
Affiliation(s)
- Mónica Aquilino
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain.
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. La Coruña km 7, 28040 Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
19
|
Wang M, Qian Y, Liu X, Wei P, Deng M, Wang L, Wu H, Zhu G. Multiple spectroscopic analyses reveal the fate and metabolism of sulfamide herbicide triafamone in agricultural environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:107-115. [PMID: 28649038 DOI: 10.1016/j.envpol.2017.06.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/20/2017] [Accepted: 06/08/2017] [Indexed: 05/22/2023]
Abstract
Triafamone, a sulfamide herbicide, has been extensively utilized for weed control in rice paddies in Asia. However, its fate and transformation in the environment have not been established. Through a rice paddy microcosm-based simulation trial combined with multiple spectroscopic analyses, we isolated and identified three novel metabolites of triafamone, including hydroxyl triafamone (HTA), hydroxyl triafamone glycoside (HTAG), and oxazolidinedione triafamone (OTA). When triafamone was applied to rice paddies at a concentration of 34.2 g active ingredient/ha, this was predominantly distributed in the paddy soil and water, and then rapidly dissipated in accordance with the first-order rate model, with half-lives of 4.3-11.0 days. As the main transformation pathway, triafamone was assimilated by the rice plants and was detoxified into HTAG, whereas the rest was reduced into HTA with subsequent formation of OTA. At the senescence stage, brown rice had incurred triafamone at a concentration of 0.0016 mg/kg, but the hazard quotient was <1, suggesting that long-term consumption of the triafamone-containing brown rice is relatively safe. The findings of the present study indicate that triafamone is actively metabolized in the agricultural environment, and elucidation of the link between environmental exposure to these triazine or oxazolidinedione moieties that contain metabolites and their potential impacts is warranted.
Collapse
Affiliation(s)
- Mengcen Wang
- Institute of Pesticide & Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Yuan Qian
- Institute of Pesticide & Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Xiaoyu Liu
- Institute of Pesticide & Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Peng Wei
- Institute of Pesticide & Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Man Deng
- Institute of Pesticide & Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Lei Wang
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, USA
| | - Huiming Wu
- School of Agricultural and Food Science, Zhejiang A&F University, Hangzhou, China
| | - Guonian Zhu
- Institute of Pesticide & Environmental Toxicology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Krosch MN, Bryant LM, Vink S. Differential gene expression of Australian Cricotopus draysoni (Diptera: Chironomidae) populations reveals seasonal association in detoxification gene regulation. Sci Rep 2017; 7:14263. [PMID: 29079848 PMCID: PMC5660232 DOI: 10.1038/s41598-017-14736-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/16/2017] [Indexed: 12/03/2022] Open
Abstract
Understanding the molecular mechanisms of organismal response to human-derived ecosystem change is recognised as a critical tool in monitoring and managing impacts, especially in freshwater systems. Fundamental to this approach is to determine the genes involved in responding to ecosystem change and detect modifications to their expression and activity in natural populations. Potential targets for this approach include well-known detoxification genes that are upregulated in response to stress. Here, we tested whether expression of such genes varied in association with differences in ecosystem health and could be detected in the field. We sampled populations of the freshwater midge, Cricotopus draysoni, from two geographically proximate sites in southeast Queensland, Australia, which differed in their ecosystem health, at multiple time points. We assessed transcriptome-level differential gene expression and predicted greatest differential expression between sites, associated with organismal responses to local physico-chemical factors. In contrast, we observed a clear and dramatic difference in gene expression – including of known detoxification genes – between time points, specifically between periods at the start and end of the austral summer rainfall when in-stream water levels are most different. These data suggest that these waterways experience greatest pollution load when water levels are high following rainfall events.
Collapse
Affiliation(s)
- Matt N Krosch
- Queensland University of Technology, Brisbane, QLD, 4001, Australia. .,University of Queensland, St Lucia, QLD, 4072, Australia.
| | | | - Sue Vink
- University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
21
|
Herrero Ó, Morcillo G, Planelló R. Transcriptional deregulation of genetic biomarkers in Chironomus riparius larvae exposed to ecologically relevant concentrations of di(2-ethylhexyl) phthalate (DEHP). PLoS One 2017; 12:e0171719. [PMID: 28166271 PMCID: PMC5293269 DOI: 10.1371/journal.pone.0171719] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/24/2017] [Indexed: 11/19/2022] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental pollutant used worldwide as a plasticizer and solvent in many formulations. Based on available toxicological data, it has been classified as toxic for reproduction and as an endocrine disruptor. Despite this, ecotoxicological studies in aquatic wildlife organisms are still scarce. In the present work, the toxic molecular alterations caused by DEHP in aquatic larvae of the midge Chironomus riparius have been studied, by analyzing the transcriptional activity of genes related to some vital cellular pathways, such as the ribosomal machinery (rpL4, rpL13), the cell stress response (hsc70, hsp70, hsp40, hsp27), the ecdysone hormone pathway (EcR), the energy metabolism (GAPDH), and detoxication processes (CYP4G). Environmentally relevant concentrations (10-3 to 105 μg/L) and exposure conditions (24 to 96 h) have been tested, as well as the toxic effects after DEHP withdrawal. Although the compound caused no mortality, significant changes were detected in almost all the studied biomarkers: e.g. strong repression of hsp70; general inhibition of EcR; GAPDH activity loss in long exposures; among others. Our data show a general transcriptional downregulation that could be associated with an adaptive response to cell damage. Besides, the activity of the compound as an ecdysone antagonist and its delayed effects over almost all the biomarkers analyzed are described as novel toxic targets in insects.
Collapse
Affiliation(s)
- Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, Madrid, Spain
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, Madrid, Spain
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, Madrid, Spain
| |
Collapse
|