1
|
Reiter EB, Escher BI, Rojo-Nieto E, Nolte H, Siebert U, Jahnke A. Characterizing the marine mammal exposome by iceberg modeling, linking chemical analysis and in vitro bioassays. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1802-1816. [PMID: 37132588 PMCID: PMC10647987 DOI: 10.1039/d3em00033h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/02/2023] [Indexed: 05/04/2023]
Abstract
The present study complements work on mixture effects measured with in vitro bioassays of passive equilibrium sampling extracts using the silicone polydimethylsiloxane (PDMS) in organs from marine mammals with chemical profiling. Blubber, liver, kidney and brain tissues of harbor porpoise (Phocoena phocoena), harbor seal (Phoca vitulina), ringed seal (Phoca hispida) and orca (Orcinus orca) from the North and Baltic Seas were investigated. We analyzed 117 chemicals including legacy and emerging contaminants using gas chromatography-high resolution mass spectrometry and quantified 70 of those chemicals in at least one sample. No systematic differences between the organs were found. Only for single compounds a clear distribution pattern was observed. For example, 4,4'-dichlorodiphenyltrichloroethane, enzacamene and etofenprox were mainly detected in blubber, whereas tonalide and the hexachlorocyclohexanes were more often found in liver. Furthermore, we compared the chemical profiling with the bioanalytical results using an iceberg mixture model, evaluating how much of the biological effect could be explained by the analyzed chemicals. The mixture effect predicted from the quantified chemical concentrations explained 0.014-83% of the aryl hydrocarbon receptor activating effect (AhR-CALUX), but less than 0.13% for the activation of the oxidative stress response (AREc32) and peroxisome-proliferator activated receptor (PPARγ). The quantified chemicals also explained between 0.044-45% of the cytotoxic effect measured with the AhR-CALUX. The largest fraction of the observed effect was explained for the orca, which was the individuum with the highest chemical burden. This study underlines that chemical analysis and bioassays are complementary to comprehensively characterize the mixture exposome of marine mammals.
Collapse
Affiliation(s)
- Eva B Reiter
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, 72076, Tübingen, Germany
| | - Elisa Rojo-Nieto
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| | - Hannah Nolte
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
- Institute for Environmental Research, RWTH Aachen University, Aachen, 52074, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761, Büsum, Germany
| | - Annika Jahnke
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
- Institute for Environmental Research, RWTH Aachen University, Aachen, 52074, Germany
| |
Collapse
|
2
|
Reiter EB, Escher BI, Siebert U, Jahnke A. Activation of the xenobiotic metabolism and oxidative stress response by mixtures of organic pollutants extracted with in-tissue passive sampling from liver, kidney, brain and blubber of marine mammals. ENVIRONMENT INTERNATIONAL 2022; 165:107337. [PMID: 35696845 DOI: 10.1016/j.envint.2022.107337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
We used in-tissue passive equilibrium sampling using the silicone polydimethylsiloxane (PDMS) to transfer chemical mixtures present in organs from marine mammals with lipid contents between 2.3 and 99%into in vitro bioassays. Tissues from five harbor porpoises (Phocoena phocoena), one harbor seal (Phoca vitulina) and one orca (Orcinus orca) from the North and Baltic Seas were sampled until thermodynamic equilibrium was reached. Mixture effects were quantified with cellular reporter gene bioassays targeting the activation of the aryl hydrocarbon receptor (AhR-CALUX), the peroxisome proliferator-activated receptor gamma (PPARγ-bla) and the oxidative stress response (AREc32), with parallel cytotoxicity measurements in all assays. After removing co-extracted lipids and other matrix residues with a non-destructive cleanup method (freeze-out of acetonitrile extract followed by a primary secondary amine sorbent extraction), the activation of the PPARγ and AREc32 were reduced by factors of on average 4.3 ± 0.15 (n = 22) and 2.5 ± 0.23 (n = 18), respectively, whereas the activation of the AhR remained largely unaltered: 1.1 ± 0.075 (n = 6). The liver extracts showed the highest activation, followed by the corresponding kidney and brain extracts, and the blubber extracts of the animals were the least active ones. The activation of the PPARγ by the liver extracts was reduced after cleanup by a factor of 11 ± 0.26 (n = 7) and the AREc32 activity by a factor of 1.9 ± 0.32 (n = 4). The blubber extracts did not activate the AhR up to concentrations where cytotoxicity occurred or up to an acceptable lipid volume fraction of 0.27% as derived from earlier work, whereas all liver extracts that had undergone cleanup activated the AhR. The developed in-tissue passive sampling approach allows a direct comparison of the bioassay responses between different tissues without further normalization and serves as a quantitative method suitable for biomonitoring of environmental biota samples.
Collapse
Affiliation(s)
- Eva B Reiter
- Department Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Beate I Escher
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany
| | - Annika Jahnke
- Department Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
3
|
Šrédlová K, Cajthaml T. Recent advances in PCB removal from historically contaminated environmental matrices. CHEMOSPHERE 2022; 287:132096. [PMID: 34523439 DOI: 10.1016/j.chemosphere.2021.132096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Despite being drastically restricted in the 1970s, polychlorinated biphenyls (PCBs) still belong among the most hazardous contaminants. The chemical stability and dielectric properties of PCBs made them suitable for a number of applications, which then lead to their ubiquitous presence in the environment. PCBs are highly bioaccumulative and persistent, and their teratogenic, carcinogenic, and endocrine-disrupting features have been widely reported in the literature. This review discusses recent advances in different techniques and approaches to remediate historically contaminated matrices, which are one of the most problematic in regard to decontamination feasibility and efficiency. The current knowledge published in the literature shows that PCBs are not sufficiently removed from the environment by natural processes, and thus, the suitability of some approaches (e.g., natural attenuation) is limited. Physicochemical processes are still the most effective; however, their extensive use is constrained by their high cost and often their destructiveness toward the matrices. Despite their limited reliability, biological methods and their application in combinations with other techniques could be promising. The literature reviewed in this paper documents that a combination of techniques differing in their principles should be a future research direction. Other aspects discussed in this work include the incompleteness of some studies. More attention should be given to the evaluation of toxicity during these processes, particularly in terms of monitoring different modes of toxic action. In addition, decomposition mechanisms and products need to be sufficiently clarified before combined, tailor-made approaches can be employed.
Collapse
Affiliation(s)
- Kamila Šrédlová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
4
|
Wang MY, Zhang LF, Wu D, Cai YQ, Huang DM, Tian LL, Fang CL, Shi YF. Simulation experiment on OH-PCB being ingested through daily diet: Accumulation, transformation and distribution of hydroxylated-2, 2', 4, 5, 5'-pentachlorobiphenyl (OH-PCB101) in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149891. [PMID: 34474296 DOI: 10.1016/j.scitotenv.2021.149891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 05/16/2023]
Abstract
Animals exposure to polychlorinated biphenyls (PCBs) may result in retention of hydroxylated PCBs (OH-PCBs). OH-PCBs can be accumulated in animals, including humans, through the transmission of food chain. However, there are few studies on the accumulation and metabolism of OH-PCBs exposed to the body through daily diet. Therefore, this study was conducted to investigate the fate of OH-PCBs after being ingested through dietary intake. By adding 3-OH-PCB101 and 4-OH-PCB101 to the edible tissue of crucian carp, which were used as raw materials to prepare mouse feed, with an exposure concentration of 2.5 μg/kg ww. The exposure experiment lasted for a total of 80 days. The blood, feces and 11 tissues of mice at different times were analyzed qualitatively and quantitatively. It was found that major OH-PCB101 were accumulated in intestine or excreted with feces. A small part was accumulated in heart, lung and spleen. For the first time that the conversion from OH-PCB101 to PCB101 in mice was discovered, which shows from another perspective that persistent organic pollutants are difficult to be completely degraded in the environment. 4-MeO-PCB101, 3-MeSO2-PCB101, and 4-MeSO2-PCB101 were also found in various tissues. The results of this study show that after OH-PCBs accumulated in animals re-enter the organism through the food chain, they can be metabolized again and may be reversely transformed into the parent compounds. The present research shed new light on simulating the metabolic transformation process of OH-PCBs exposed to mammals through ingestion of fish. Available data show that second-generation persistent organic pollutants in the environment still need to be continuously concerned.
Collapse
Affiliation(s)
- Meng-Yuan Wang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Long-Fei Zhang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Di Wu
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - You-Qiong Cai
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Dong-Mei Huang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Liang-Liang Tian
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Chang-Ling Fang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Yong-Fu Shi
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China.
| |
Collapse
|
5
|
Xie Q, Yu RQ, Yu R, Wang Z, Zhang X, Wu Y. Historic changes of polychlorinated biphenyls (PCBs) in juvenile and adult cetaceans from the Pearl River estuary from 2003 to 2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149512. [PMID: 34391148 DOI: 10.1016/j.scitotenv.2021.149512] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs), as a type of legacy persistent organic pollutants, pose significant health threats to wildlife. However, long-term residue changes and profiles of PCBs in cetaceans have not been extensively studied in the Pearl River Estuary (PRE), an important marine mammal area in China. Here, the body burdens, spatiotemporal trends, and health risks of 21 chlorobiphenyl congeners (∑21CBs) were analyzed in blubber samples collected from twelve cetacean species (n = 172) in the PRE from 2003 to 2020. Our results revealed medium levels of PCBs (316-96,233 ng g-1 lipid) compared to those reported for cetaceans elsewhere (70-370,000 ng g-1 lipid). Clear differences in PCB distribution patterns between inshore and offshore cetaceans and between odontocetes and mysticetes were also found. Both the coastal Indo-Pacific humpback dolphins (Sousa chinensis) and Indo-Pacific finless porpoises (Neophocaena phocaenoides) displayed similarly fine-scale spatial distribution patterns of PCBs, suggesting that the two cetaceans could serve as bioindicators of PCB pollution in the PRE. Additionally, both cetaceans exhibited decreasing trends in their blubber PCB concentrations over the past 20 years, likely reflecting the effective regulation of PCBs in the PRE Delta. Nevertheless, the relatively high and stable PCB-toxic equivalent (TEQ) levels detected in calf humpback dolphins during the sampling period suggested that the calves are still under the stresses of high PCB-related health risks. Our results highlight the need for more efforts to eliminate PCB contamination to prevent these cetaceans from continuous population decline and further extinction.
Collapse
Affiliation(s)
- Qiang Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China
| | - Ri-Qing Yu
- Department of Biology, Center for Environment, Biodiversity and Conservation, The University of Texas at Tyler, Tyler, TX, USA
| | - Ronglan Yu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China
| | - Zhenhua Wang
- The Engineering Technology Research Center of Characteristic Medicinal Plants of Fujian, College of Life Sciences, Ningde Normal University, Ningde 352100, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China.
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China.
| |
Collapse
|
6
|
Andvik C, Jourdain E, Lyche JL, Karoliussen R, Borgå K. High Levels of Legacy and Emerging Contaminants in Killer Whales (Orcinus orca) from Norway, 2015 to 2017. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1850-1860. [PMID: 34008231 DOI: 10.1002/etc.5064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/22/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Little is known of the movement or presence of unregulated, emerging contaminants in top predators. The aim of the present study was to conduct the first screening of legacy and emerging contaminants in multiple tissues of killer whales (Orcinus orca) from Norway and investigate tissue partitioning and maternal transfer. Blubber was collected from 8 killer whales in 2015 to 2017, in addition to muscle from 5 of the individuals, and kidney, liver, heart, and spleen from a neonate. We screened for 4 unregulated brominated flame retardants and found pentabromotoluene (PBT) and hexabromobenzene (HBB) at low levels in the blubber of all individuals (median PBT 0.091 ng/g lipid wt, median HBB 1.4 ng/g lipid wt). Levels of PBT and HBB (wet wt) were twice as high in the blubber than the muscle for each individual, confirming preferential accumulation in lipid-rich tissues. Perfluoroalkyl substances and total mercury levels were lower in the neonate than adults, suggesting less efficient maternal transfer of these substances. Polychlorinated biphenyl levels in blubber exceeded the threshold for onset of physiological effects (9 µg/g lipid wt) in 7 of the 8 whales, including the neonate. The presence of PBT and HBB in the neonate is the first evidence of maternal transfer of these unregulated contaminants in marine mammals. Our results are relevant for the continued environmental monitoring of contaminants in the Arctic. Environ Toxicol Chem 2021;40:1850-1860. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Clare Andvik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Jan L Lyche
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Ås, Norway
| | | | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Troisi GM, Barton SJ, Liori O, Nyman M. Polychlorinated Biphenyls (PCBs) and Sex Hormone Concentrations in Ringed and Grey Seals: A Possible Link to Endocrine Disruption? ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:513-524. [PMID: 32107597 PMCID: PMC7136188 DOI: 10.1007/s00244-020-00716-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/31/2020] [Indexed: 05/28/2023]
Abstract
Polychlorinated biphenyls (PCBs) are recognised reproductive and immune system toxicants in marine mammals mediated by endocrine-disrupting mechanisms. As with other predators, seals are exposed to elevated bioaccumulated concentrations of PCBs and other persistent organic pollutants (POPs). Cryopreserved plasma samples from adult ringed (Phoca hispida; n = 39) and grey (Halichoerus grypus; n = 38) seals, sampled between 1998 and 2002 from Baltic Sea, Svalbard, and Sable Island (Canada) were used to investigate relationships between PCB exposure and sex hormone concentrations (progesterone; P4, 17α-hydroxy progesterone; 17α-OH-P4, testosterone; T4, 17β-estradiol; E2, estrone; E3). Immunoassay methods were used for quantification of analytes due to the limited sample volumes available. PCB concentrations were found to be significantly higher in Baltic seals than other sampling locations and were classed as "Exposed" seals while Svalbard and Sable Is seal were classed "Reference" seals (sexes and species separate). Mean hormone concentrations in Exposed seal were lower than Reference seals, and this was statistically significantly for 17α-OH-P4 (both sexes and both species), E2 (ringed and grey seal females), and E3 (grey seal females). Regression analyses (PCB v hormone concentrations) for each sex and species revealed significant correlations for P4 (Sable Is. female grey seals and female ringed seals), 17α-OH-P4 (Sable Is. male grey seals and Svalbard male ringed seals), T4 (Svalbard male ringed seals), E2 (female ringed seals), and E3 (female ringed seals and Baltic female grey seals). Although significant correlations are not evidence of cause and effect, the potential impact of hormone changes on endocrine homeostasis and reproductive health for seal populations warrants further investigation given that PCB concentrations found here are in the same range as those currently reported in seals from these populations.
Collapse
Affiliation(s)
- G M Troisi
- Department of Mechanical & Aerospace Engineering and Institute for Environment, Health & Societies, College of Engineering, Design and Physical Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| | - S J Barton
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | - O Liori
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | - M Nyman
- Finnish Game and Fisheries Research Institute, Metsähallitus, Kirjaamo, P.O. Box 94, Vantaainland, 01301, Finland
| |
Collapse
|