1
|
Wang T, Li X, He F, Wang H, Guo S, Wang Y, Qi Y, Tian G, Liu R. New mechanistic insights into soil ecological risk assessment of arsenite (III) and arsenate (V):Cellular and molecular toxicity responses in Eisenia fetida. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136324. [PMID: 39515138 DOI: 10.1016/j.jhazmat.2024.136324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/30/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Inorganic arsenic (iAs) is a persistent bioaccumulation carcinogen that is most abundant in soils in the form of arsenite-As (III) and arsenate-As (V). However, there is currently very little explicit evidence about cytotoxicity of As on soil organisms. Moreover, toxicological data for iAs and proteotoxicity is shortage. The purpose of the present work is to elucidate the cytotoxicity mechanism of As (III) and As (V) to earthworms, a soil ecological sentinel species, and the molecular mechanisms by which As (III)/As (V) directly bind to antioxidative enzyme Cu/Zn-superoxide dismutase (Cu/Zn-SOD). Results indicate that iAs triggered cell membrane injury and genotoxicity. As (V) (56.15 %) induced lower cell viability than As (III) (61.88 %). Higher ROS and lipid peroxidation level in As (V) support greater cytotoxicity. Differences in cellular uptake due to valence induced diverse levels of oxidative stress and cytotoxicity. At the molecular level, As (III) (129.33 %) induced higher Cu/Zn-SOD activity than As (V) (110.75 %). Changes in backbone, secondary structure, amino acid microenvironment and particle size of Cu/Zn-SOD further revealed the mechanisms of differential molecular toxicity of As (III) and As (V). Binding reactions with Cu/Zn-SOD explain differences in molecular toxicity. Collective research showed that iAs-induced oxidative stress and binding reactions determine the difference of SOD activity between As (III) and As (V) at the cellular level. This work offers new insights into the health risk assessment of As.
Collapse
Affiliation(s)
- Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Hao Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yaoyue Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
2
|
Rosales-Pérez KE, SanJuan-Reyes N, Gómez-Oliván LM, Orozco-Hernández JM, Elizalde-Velázquez GA, García-Medina S, Galar-Martínez M, Santillán-Benítez JG. Molecular insights: zebrafish embryo damage linked to hospital effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64913-64930. [PMID: 39557764 DOI: 10.1007/s11356-024-35533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
This study addresses the pressing issue of pollutants, particularly heavy metals and pharmaceuticals, infiltrating aquatic ecosystems due to untreated hospital effluents. These contaminants, known for their toxicity and bioaccumulative potential, adversely affect water quality and ecosystem health. The research focuses on the intricate relationship between oxidative stress and embryonic damage in Danio rerio exposed to hospital effluent, offering a detailed understanding of the underlying mechanisms. Concentrations of pharmaceutical residues (ng L-1) such as NSAIDs, corticosteroids, proton pump inhibitors, H2-receptor antagonists, and heavy metals (mg L-1) like Cd, As, Cu, Cr, Hg, Ni, Pb, and Zn were meticulously quantified. The effluent exhibited a significant embryolethal potential with an LC50 of 2.328% and an EC50 for malformation at 2.607%. Notable embryonic malformations included yolk sac edema, tail abnormalities, pericardial edema, scoliosis, craniofacial deformities, eye hypopigmentation, developmental delays, and body malformations. Zebrafish embryos were exposed to varying concentrations of the effluent (0.5% to 4.0%) and assessed for lethality and malformations at specific intervals (12, 24, 48, 72, and 96 h post-fertilization). The study also scrutinized oxidative damage and monitored the expression of genes central to antioxidant processes, detoxification, and apoptosis (sod, cat, nrf2, cyp1a1, bax, casp3, casp6, casp7, and casp9) at 48-, 72-, and 96-h post-fertilization across all concentrations. Findings consistently revealed lipid and protein damage, heightened antioxidant activity, and altered gene expression at all time points and effluent concentrations. These results highlight the environmental threat posed by untreated hospital effluent, emphasizing the need for comprehensive effluent treatment measures to protect aquatic ecosystems from the detrimental impacts of pharmaceuticals and heavy metals. The study underscores the critical role of oxidative stress in embryonic damage and advocates for improved environmental stewardship and regulatory measures.
Collapse
Affiliation(s)
- Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México.
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/N y Cerrada Manuel Stampa, Col. Industrial Vallejo, CP 07700, Ciudad de Mexico, México
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/N y Cerrada Manuel Stampa, Col. Industrial Vallejo, CP 07700, Ciudad de Mexico, México
| | - Jonnathan Guadalupe Santillán-Benítez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| |
Collapse
|
3
|
Mao N, Yu Y, Cui J, He J, Yang Y, Wang D. Effect of Matrine on growth performance, gut health, and gut microbiota in chickens infected with avian pathogenic Escherichia coli. Poult Sci 2024; 104:104520. [PMID: 39546922 DOI: 10.1016/j.psj.2024.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major cause of avian colibacillosis. Matrine, a natural component derived from Sophora flavescens, exhibits various pharmacological effects, including anti-inflammatory and antioxidant activities. However, its role in mitigating APEC-induced intestinal damage in chickens remains insufficiently understood. This study aimed to explore the protective effects and potential mechanisms of matrine against APEC-induced intestinal damage. Chickens were administered matrine (10 or 20 mg/kg) from 6 days old for 5 days, followed by an APEC intraperitoneal injection on day 10. After 72 h of APEC infection, tissues were collected for analysis. Results indicated that pretreatment with matrine alleviated the symptoms of APEC infection in chickens, improving survival rates and promoting weight gain. Additionally, pretreatment with matrine reduced the secretion and gene expression of IL-1β, IL-6, and TNF-α in intestinal tissues, while enhancing serum SOD, GSH, and CAT activity, as well as gene expression levels in the intestine. Pretreatment with matrine reduced the levels of TLR4, MyD88, and NF-κB in intestinal tissues. Moreover, pretreatment with matrine ameliorated intestinal inflammation and pathological damage, restoring the expression of ZO-1, Occludin, and MUC2 in the intestine during APEC infection. Furthermore, pretreatment with matrine alleviated gut microbiota dysbiosis by lowering the abundance of harmful bacteria. In summary, matrine alleviated APEC-induced intestinal inflammation and damage, potentially by inhibiting NF-κB signaling pathway and reshaping the gut microbiota. These findings provide promising insights into the prevention and treatment of avian colibacillosis.
Collapse
Affiliation(s)
- Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaming Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiqin Cui
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
4
|
Nakano T, Yoshida E, Sasaki Y, Kazama S, Katami F, Aoki K, Fujie T, Du K, Hara T, Yamamoto C, Takahashi T, Fujiwara Y, Eto K, Iwakura Y, Shinoda Y, Kaji T. Mechanisms Underlying Sensory Nerve-Predominant Damage by Methylmercury in the Peripheral Nervous System. Int J Mol Sci 2024; 25:11672. [PMID: 39519224 PMCID: PMC11545846 DOI: 10.3390/ijms252111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Sensory disturbances and central nervous system symptoms are important in patients with Minamata disease. In the peripheral nervous system of these patients, motor nerves are not strongly injured, whereas sensory nerves are predominantly affected. In this study, we investigated the mechanisms underlying the sensory-predominant impairment of the peripheral nervous system caused by methylmercury. We found that the types of cell death in rat dorsal root ganglion (DRG) neurons caused by methylmercury included apoptosis, necrosis, and necroptosis. Methylmercury induced apoptosis in cultured rat DRG neurons but not in anterior horn neurons or Schwann cells. Additionally, methylmercury activated both caspase 8 and caspase 3 in DRG neurons. It increased the expression of tumor necrosis factor (TNF) receptor-1 and the phosphorylation of receptor-interacting protein kinase 3 (RIP3) and mixed-lineage kinase domain-like pseudokinase (MLKL). The expression of TNF-α was increased in macrophage-like RAW264.7 cells by methylmercury. The increase was suggested to be mediated by the NF-κB pathway. Moreover, methylmercury induced neurological symptoms, evaluated by a hindlimb extension response, were significantly less severe in TNF-α knockout mice. Based on these results and our previous studies, we propose the following hypothesis regarding the pathogenesis of sensory nerve-predominant damage by methylmercury: First, methylmercury accumulates within sensory nerve neurons and initiates cell death mechanisms, such as apoptosis, on a small scale. Second, cell death triggers the infiltration of macrophages into the sensory fibers. Third, the macrophages are stimulated by methylmercury and secrete TNF-α through the NF-κB pathway. Fourth, TNF-α induces cell death mechanisms, including necrosis, apoptosis through the caspase 8/3 pathway, and necroptosis through the TNFR1-RIP1-RIP3-MLKL pathway, activated by methylmercury in sensory neurons. Consequently, methylmercury exhibits potent cytotoxicity specific to the DRG/sensory nerve cells in the peripheral nervous system. This chain of events caused by methylmercury may contribute to sensory disturbances in patients with Minamata disease.
Collapse
Affiliation(s)
- Tsuyoshi Nakano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan; (T.H.); (C.Y.)
| | - Eiko Yoshida
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko 270-1194, Chiba, Japan
| | - Yu Sasaki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| | - Shigekatsu Kazama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| | - Fumika Katami
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| | - Kazuhiro Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| | - Tomoya Fujie
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| | - Ke Du
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
| | - Takato Hara
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan; (T.H.); (C.Y.)
| | - Chika Yamamoto
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan; (T.H.); (C.Y.)
| | - Tsutomu Takahashi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (T.T.); (Y.F.)
| | - Yasuyuki Fujiwara
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (T.T.); (Y.F.)
| | - Komyo Eto
- Health and Nursing Facilities for the Aged, Jushindai, Shinwakai, 272 Ikurakitakata, Tamana 865-0041, Kumamoto, Japan;
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan;
| | - Yo Shinoda
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Tokyo, Japan; (T.T.); (Y.F.)
| | - Toshiyuki Kaji
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan; (T.N.); (E.Y.); (T.F.)
| |
Collapse
|
5
|
Machuca C, Angulo M, Monreal-Escalante E, Méndez-Martínez Y, Magallón-Servín P, Vázquez-Juárez R, Silva-Jara JM, Angulo C. Effect of diets containing probiotic yeast Cystobasidium benthicum and fruit Cyrtocarpa edulis on growth and immune parameters of Nile tilapia (Oreochromisniloticus). Microb Pathog 2024; 194:106817. [PMID: 39033935 DOI: 10.1016/j.micpath.2024.106817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
This study investigates Cystobasidium benthicum (Cb) probiotic yeast and Cyrtocarpa edulis (Ce) fruit dietary effects, single (0.5 %) or combined (Cb:Ce, 0.25:0.25 %), on growth performance, humoral immunity in serum and skin mucus, and intestinal morphology of Nile tilapia (Oreochromis niloticus) after 14 and 28 days. The Cb group presented the highest (P < 0.05) specific growth rate, weight gain, and absolute growth rate with respect to the control group. Immunological assays indicated that Cb, Ce and Cb:Ce groups increased serum nitric oxide concentration compared to the control group (P < 0.05). Cb and Cb:Ce groups showed the highest serum myeloperoxidase enzyme activity at day 14 and 28, respectively (P < 0.05); whereas, Cb:Ce group had the highest (P < 0.05) myeloperoxidase activity in skin mucus. The superoxide dismutase enzyme activity was unaffected. On day 28, Cb, Ce, and Cb:Ce groups showed higher and lower (P < 0.05) catalase enzyme activity in serum and skin mucus, respectively, compared with the control group. Only the Cb group had higher (P < 0.05) total protein concentration in serum (day 14) and skin mucus (day 14 and 28) with respect to the control group. The lysozyme activity in serum (day 28) and skin mucus (day 14) was higher (P < 0.05) in the Cb group compared to the control group. Only the skin mucus of Ce group showed bactericidal activity against Aeromonas dhakensis (P < 0.05). Histological studies indicated that Cb and Cb:Ce groups increased microvilli height, and Cb, Ce and Cb:Ce augmented goblet cell area at day 14 compared to the control group (P < 0.05). At day 28, microvilli height was higher in all groups and the number of intraepithelial leukocytes increased in Cb and Ce groups with respect to the control group (P < 0.05). The ex vivo assay revealed that A. dhakensis in leukocytes decreased cell viability similar to the control group (P < 0.05). A principal component analysis (PCA) confirmed the results. In conclusion, C. benthicum in the diet was the best supplement to improve the growth and immunity of Nile tilapia.
Collapse
Affiliation(s)
- Cristian Machuca
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico
| | - Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico; CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico
| | - Yuniel Méndez-Martínez
- Experimental Laboratory Aquaculture, Facultad de Ciencias Pecuarias y Biológicas, Universidad Técnica Estatal de Quevedo (UTEQ), Av. Quito Km. 11/2 vía Santo Domingo de los Tsáchilas, Quevedo, 120301, Ecuador
| | - Paola Magallón-Servín
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico
| | - Ricardo Vázquez-Juárez
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico
| | - Jorge Manuel Silva-Jara
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara, 44430, Jalisco, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, 23096, Mexico.
| |
Collapse
|
6
|
Gomes P, Valente T. Seasonal impact of acid mine drainage on water quality and potential ecological risk in an old sulfide exploitation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21124-21135. [PMID: 38388972 PMCID: PMC10948584 DOI: 10.1007/s11356-024-32367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
Sulfides are usually associated with deposits of metals and coal. The reactive wastes from their exploitation, typically stored in piles and tailings dams, are often the mining sector's primary source of environmental problems. The surrounding river waters can present signs of acid mine drainage, responsible for aquatic ecosystem degradation. So, the main target of the present study is to investigate the impact of this process on the water's environmental quality and potential ecological risk. The study area is located at the Iberian Pyrite Belt, in an old sulfide exploitation, closed without environmental rehabilitation measures. The results exhibit high sulfate concentrations (410,601 mg/L) and potentially toxic elements, with prominence of Fe (134,000 mg/L), overcoming many other extreme cases of AMD pollution. The Ficklin diagram exposes that most samples are classified as "high-acid, high-metal." Two of them have extreme classifications (high-acid, extreme-metal). The pH value is well below the acceptable range for the environmental quality of superficial waters (5-7), measuring at a minimum of 0.84. Regarding seasonal variability, the study showed a higher degree of contamination in dry conditions (e.g., 4,420 mg/L of Cu), while the rainy month had lower concentrations of PTE (186.8 mg/L of Cu for the same sampling point). In addition, the water does not accomplish the environmental objectives established by the EU Water Framework Directive. According to the new approach developed based on a scale adjustment, the potential ecological risk index studied indicates that most sampled sites present strong, very strong, and even extremely potential ecological risk. With a typical Mediterranean climate, the region suffers from water scarcity, predicting increasingly in the future more degrading scenarios for water environmental quality. Consequently, urgent mitigation and remediation measures are necessary to improve and preserve water quality and fulfill the objectives of the United Nations Sustainability Development Goals.
Collapse
Affiliation(s)
- Patrícia Gomes
- Institute of Earth Sciences, Pole of University of Minho, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Teresa Valente
- Institute of Earth Sciences, Pole of University of Minho, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
7
|
Sevak P, Pushkar B. Arsenic pollution cycle, toxicity and sustainable remediation technologies: A comprehensive review and bibliometric analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119504. [PMID: 37956515 DOI: 10.1016/j.jenvman.2023.119504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Arsenic pollution and its allied impacts on health are widely reported and have gained global attention in the last few decades. Although the natural distribution of arsenic is limited, anthropogenic activities have increased its mobility to distant locations, thereby increasing the number of people affected by arsenic pollution. Arsenic has a complex biogeochemical cycle which has a significant role in pollution. Therefore, this review paper has comprehensively analysed the biogeochemical cycle of arsenic which can dictate the occurrence of arsenic pollution. Considering the toxicity and nature of arsenic, the present work has also analysed the current status of arsenic pollution around the world. It is noted that the south of Asia, West-central Africa, west of Europe and Latin America are major hot spots of arsenic pollution. Bibliometric analysis was performed by using scopus database with specific search for keywords such as arsenic pollution, health hazards to obtain the relevant data. Scopus database was searched for the period of 20 years from year 2003-2023 and total of 1839 articles were finally selected for further analysis using VOS viewer. Bibliometric analysis of arsenic pollution and its health hazards has revealed that arsenic pollution is primarily caused by anthropogenic sources and the key sources of arsenic exposure are drinking water, sea food and agricultural produces. Arsenic pollution was found to be associated with severe health hazards such as cancer and other health issues. Thus considering the severity of the issue, few sustainable remediation technologies such as adsorption using microbes, biological waste material, nanomaterial, constructed wetland, phytoremediation and microorganism bioremediation are proposed for treating arsenic pollution. These approaches are environmentally friendly and highly sustainable, thus making them suitable for the current scenario of environmental crisis.
Collapse
Affiliation(s)
- Pooja Sevak
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India
| | - Bhupendra Pushkar
- Department of Biotechnology, University of Mumbai, Kalina, Santacruz (E), Mumbai, 400098, Maharashtra, India.
| |
Collapse
|
8
|
Cui J, Liu Y, Hao Z, Liu Y, Qiu M, Kang L, Teng X, Tang Y. Cadmium induced time-dependent kidney injury in common carp via mitochondrial pathway: Impaired mitochondrial energy metabolism and mitochondrion-dependent apoptosis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023:106570. [PMID: 37202229 DOI: 10.1016/j.aquatox.2023.106570] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/16/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Toxic effect of heavy metal cadmium (Cd) on fish kidneys had been reported. Mitochondrion is an important organelle for maintaining kidney function, while its role in Cd-induced kidney injury in common carp remained unclarified. In this experiment, we established a poisoning model of common carp with Cd exposure (0.26 mg/L) for 15, 30, and 45 days. Serum biochemistry determination, histological observation, TUNEL assay, qRT-PCR, Western blot, and integrated biomarker response (IBR) were applied to assess the nephrotoxicity of Cd to common carp. Our results displayed that Cd exposure increased the levels of serum biochemical indexes (UREA, CRE, and UA), indicating kidney injury. We further revealed via histological observation that Cd damaged structural integrity of kidneys, as evidenced by renal glomerulus and renal tubular injury, hallmark phenotypes of apoptosis, and mitochondrial damage, suggesting that mitochondria damage and apoptosis were involved in Cd-induced kidney injury. Moreover, Cd exposure decreased ATPase (Na+/K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, and Ca2+Mg2+-ATPase) activities as well as PGC-1a and Mfn2 levels, while increased Drp1 and PINK1 levels as well as LC3-II/LC3-I ratio, which indicated that Cd-impaired renal energy metabolism was related to mitochondrial dysfunction. Additionally, we found that Cd induced oxidative stress (abnormal levels of SOD, CAT, GPX, MDA, and H2O2) in kidneys, which was involved in triggering mitochondrial dysfunction and further impairing mitochondrial energy metabolism. Moreover, the occurrence of mitochondria-dependent apoptosis was found after Cd-exposure in common carp kidneys, as indicated by enhanced levels of Bax, CytC, APAF1, Caspase-9, and Caspase-3, while declined level of Bcl-2. Subsequently, we confirmed a time-dependent nephrotoxicity of Cd to common carp via IBR assessment. In conclusion, Cd induced time-dependent nephrotoxicity in common carp via mitochondrial pathway. This mitochondria-oriented study shed light on underlying mechanisms of Cd-induced renal pathologies and provided a theoretical basis for evaluating Cd toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China
| | - Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China
| | - Zhiyu Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China
| | - Yuhang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China
| | - Minna Qiu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China
| | - Lu Kang
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR. China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China.
| | - You Tang
- Digital Agriculture key discipline of Jilin Province, JiLin Agricultural Science and Technology University, Jilin 132101, PR. China.
| |
Collapse
|
9
|
Sasaki S, Negishi T, Tsuzuki T, Yukawa K. Methylmercury-induced reactive oxygen species-dependent and independent dysregulation of MAP kinase-related signaling pathway in cultured normal rat cerebellar astrocytes. Toxicology 2023; 487:153463. [PMID: 36813253 DOI: 10.1016/j.tox.2023.153463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Methylmercury (MeHg), a global environmental pollutant, could seriously damage the central nervous system (CNS) and cause neurological disorders such as cerebellar symptoms. Although numerous studies have revealed detailed toxicity mechanisms of MeHg in neurons, toxicity in astrocytes is barely known. Here, we tried to shed light on the toxicity mechanisms of MeHg exposure in cultured normal rat cerebellar astrocytes (NRA), focusing on the involvement of reactive oxygen species (ROS) in MeHg toxicity by assessing the effects of major antioxidants Trolox, a free-radical scavenger, N-acetyl-L-cysteine (NAC), a potent thiol-containing antioxidant, and glutathione (GSH), an endogenous thiol-containing antioxidant. Exposure to MeHg at just approximately 2 µM for 96 h increased cell viability, which was accompanied by the increase in intracellular ROS level and at ≥ 5 µM induced significant cell death and lowered ROS level. Trolox and NAC suppressed 2 µM MeHg-induced increases in cell viability and ROS level corresponding to control, although GSH with 2 µM MeHg induced significant cell death and ROS increase. On the contrary, against 4 µM MeHg-induced cell loss and ROS decrease, NAC inhibited both cell loss and ROS decrease, Trolox inhibited cell loss and further enhanced ROS decrease, and GSH moderately inhibited cell loss and increased ROS level above the control level. MeHg-induced oxidative stress was suggested by increases in the protein expression levels of heme oxygenase-1 (HO-1), Hsp70, and Nrf2, except for the decrease in SOD-1 and no change in catalase. Furthermore, MeHg exposure dose-dependently induced increases in the phosphorylation of MAP kinases (ERK1/2, p38MAPK, and SAPK/JNK) and phosphorylation and/or expression levels of transcription factors (CREB, c-Jun, and c-Fos) in NRA. NAC successfully suppressed 2 µM MeHg-induced alterations in all of the above-mentioned MeHg-responsive factors, whereas Trolox suppressed some MeHg-responsive factors but failed to suppress MeHg-induced increases in the protein expression levels of HO-1 and Hsp70 and increase in p38MAPK phosphorylation. Protein expression analyses in NRA exposed to 2 µM MeHg and GSH were excluded because of devastating cell death. These results suggested that MeHg could induce aberrant NRA activation, and ROS must be substantially involved in the toxicity mechanism of MeHg in NRA; however, other factors should be assumed.
Collapse
Affiliation(s)
- Shoto Sasaki
- Department of Physiology, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan
| | - Takayuki Negishi
- Department of Physiology, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan; Department of Physiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan.
| | - Takamasa Tsuzuki
- Department of Physiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan
| | - Kazunori Yukawa
- Department of Physiology, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan; Department of Physiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan
| |
Collapse
|
10
|
Gao H, Zhu N, Deng S, Du C, Tang Y, Tang P, Xu S, Liu W, Shen M, Xiao X, Yang F. Combination Effect of Microcystins and Arsenic Exposures on CKD: A Case-Control Study in China. Toxins (Basel) 2023; 15:144. [PMID: 36828458 PMCID: PMC9964595 DOI: 10.3390/toxins15020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Evidence has shown that exposure to environmental pollutants such as microcystins (MCs), arsenic (As), and cadmium (Cd) can lead to the occurrence and development of chronic kidney disease (CKD). There is a synergistic effect between MCs and Cd. However, the combined effect of MCs and As exposures on CKD remains unclear. In Hunan province, China, 135 controls and 135 CKD cases were enrolled in a case-control study. Serum MCs, plasma As and Cd concentrations were measured for all participants. We investigated the association between MCs/As and CKD risk using conditional logistic regression. The additive model explored the interaction effect, and the Bayesian kernel machine regression (BKMR) models investigated the combined effects of MCs, As, and Cd on CKD. The results showed that MCs and As were significantly associated with CKD risk. Participants in the highest MCs concentration had a 4,81-fold increased risk of CKD compared to those in the lowest quartile (95% confidence interval [CI]: 1,96 to 11,81). The highest quartile of As concentrations corresponded to an adjusted odds ratio of 3.40 (95% CI: 1.51, 7.65) relative to the lowest quartile. MCs/As and CKD risk exhibited significant dose-response correlations (all p for trend < 0.01). In addition, a positive interaction effect of MCs and As on CKD was also reported. The CKD risk due to interaction was 2.34 times (95% CI: 0.14, 4.54) relative to the CKD risk without interaction, and the attributable proportion of CKD due to interaction among individuals with both exposures was 56% (95% CI: 0.22, 0.91). In the BKMR, the combined effect of MCs, As, and Cd was positively associated with CKD. In conclusion, both MCs and As are independent risk factors for CKD, exerting a synergistic effect between them. Combined exposure to MCs, As, and Cd can increase the risk of CKD.
Collapse
Affiliation(s)
- Hong Gao
- Nursing Department, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
- School of Nursing, University of South China, Hengyang 421001, China
| | - Na Zhu
- Nursing Department, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
- School of Nursing, University of South China, Hengyang 421001, China
| | - Shuxiang Deng
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Can Du
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410000, China
| | - Yan Tang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuaishuai Xu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410000, China
| | - Wenya Liu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410000, China
| | - Minxue Shen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410000, China
| | - Xinhua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fei Yang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
11
|
Liu Y, Chen Q, Li Y, Bi L, Jin L, Peng R. Toxic Effects of Cadmium on Fish. TOXICS 2022; 10:622. [PMID: 36287901 PMCID: PMC9608472 DOI: 10.3390/toxics10100622] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Large amounts of enriched cadmium (Cd) in the environment seriously threatens the healthy and sustainable development of the aquaculture industry and greatly restricts the development of the food processing industry. Studying the distribution and toxic effects of Cd in fish, as well as the possible toxic effects of Cd on the human body, is very significant. A large number of studies have shown that the accumulation and distribution of Cd in fish are biologically specific, cause tissue differences, and seriously damage the integrity of tissue structure and function, the antioxidant defense system, the reproductive regulation system, and the immune system. The physiological, biochemical, enzyme, molecular, and gene expression levels change with different concentrations and times of Cd exposure, and these changes are closely related to the target sites of Cd action and tissues in fish. Therefore, the toxic effects of Cd on fish occur with multiple tissues, systems, and levels.
Collapse
|
12
|
Gao PC, Chen XW, Chu JH, Li LX, Wang ZY, Fan RF. Antagonistic effect of selenium on mercuric chloride in the central immune organs of chickens: The role of microRNA-183/135b-FOXO1/TXNIP/NLRP3 inflammasome axis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1047-1057. [PMID: 34995020 DOI: 10.1002/tox.23463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a persistent environmental and industrial pollutant that accumulated in the body and induces oxidative stress and inflammation damage. Selenium (Se) has been reported to antagonize immune organs damage caused by heavy metals. Here, we aimed to investigate the prevent effect of Se on mercuric chloride (HgCl2 )-induced thymus and bursa of Fabricius (BF) damage in chickens. The results showed that HgCl2 caused immunosuppression by reducing the relative weight, cortical area of the thymus and BF, and the number of peripheral blood lymphocytes. Meanwhile, HgCl2 induced oxidative stress and imbalance in cytokines expression in the thymus and BF. Further, we found that thioredoxin-interacting protein (TXNIP) and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome mediated HgCl2 -induced oxidative stress and inflammation. Mechanically, the targeting and inhibitory effect of microRNA (miR)-135b/183 on forkhead box O1 (FOXO1) were an upstream event for HgCl2 -activated TXNIP/NLRP3 inflammasome pathway. Most importantly, Se effectively attenuated the aforementioned damage in the thymus and BF caused by HgCl2 and inhibited the TXNIP/NLRP3 inflammasome pathway by reversing the expression of FOXO1 through inhibiting miR-135b/183. In conclusion, the miR-135b/183-FOXO1/TXNIP/NLRP3 inflammasome axis might be a novel mechanism for Se to antagonize HgCl2 -induced oxidative stress and inflammation in the central immune organs of chickens.
Collapse
Affiliation(s)
- Pei-Chao Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Jia-Hong Chu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Lan-Xin Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| |
Collapse
|
13
|
Liao ZH, Chuang HC, Huang HT, Wang PH, Chen BY, Lee PT, Wu YS, Nan FH. Bioaccumulation of arsenic and immunotoxic effect in white shrimp (Penaeus vannamei) exposed to trivalent arsenic. FISH & SHELLFISH IMMUNOLOGY 2022; 122:376-385. [PMID: 35181445 DOI: 10.1016/j.fsi.2022.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Trivalent arsenic (As (III)) contamination in the marine environment can produce adverse effects in crustaceans. The present study investigated the chronic toxicity of As (III) in white shrimp (Penaeus vannamei) by analyzing the tissue bioaccumulation and non-specific immune responses. Shrimps were exposed to 0 (control), 50, 500, and 2500 μg/L of As (III) for 21 days. The results showed that the hepatopancreas was the main tissue of arsenic accumulation in white shrimp. The cumulative concentration of total arsenic and inorganic arsenic but not arsenobetaine was positively correlated with the exposure concentration. In vitro As (III) treatment (0-2500 μg/L) with haemocytes isolated from healthy shrimp did not cause the cytotoxicity, but this arsenic treatments inhibited the phagocytic rate and O2- production. Moreover, the decrease of total haemocyte count and the inhibition of phagocytic rate, phagocytic index, O2- production and phenoloxidase activity were observed in white shrimp under the exposure of As (III) over a period of 21 days. This study revealed that chronic As (III) stress could disturb arsenic metabolism and immune responses in P. vannamei.
Collapse
Affiliation(s)
- Zhen-Hao Liao
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Hsiang-Chieh Chuang
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, No.142, Haijhuan Road., Nanzih District, Kaohsiung City, 81157, Taiwan
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Pei-Hsuan Wang
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Bo-Ying Chen
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, No. 1, Xue-Fu Road, Neipu Township, Pingtung, 912301, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan.
| |
Collapse
|
14
|
Ma S, Zhang J, Xu C, Da M, Xu Y, Chen Y, Mo X. Increased serum levels of cadmium are associated with an elevated risk of cardiovascular disease in adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1836-1844. [PMID: 34363163 DOI: 10.1007/s11356-021-15732-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Previous studies have determined the effects of exposure to certain heavy metals on cardiovascular disease (CVD); however, the association between cadmium exposure and CVD in adults remains unclear. The relationship between serum levels of cadmium and the risk of CVD was studied by analyzing available data from 38,223 different participants of the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2016. After adjusting for all covariates, we found that higher serum cadmium concentrations were positively related to both the overall risk of CVD (odds ratio (OR): 1.45; 95% confidence interval (CI): 1.22, 1.72; p for trend <0.001) and the risks of its subtypes, including congestive heart failure, coronary heart disease, heart attack, and stroke. Elevated cadmium levels were associated with increased levels of lipids and inflammatory factors, including blood triglycerides, total cholesterol, white blood cells (WBCs), and C-reactive protein (CRP). Our study provided epidemiological evidence that cadmium may increase the risk of CVD by elevating blood lipids and inflammation.
Collapse
Affiliation(s)
- Siyu Ma
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Jie Zhang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Min Da
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yang Xu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yong Chen
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
15
|
Cheng X, Cao Z, Luo J, Hu R, Cao H, Guo X, Xing C, Yang F, Zhuang Y, Hu G. Baicalin ameliorates APEC-induced intestinal injury in chicks by inhibiting the PI3K/AKT-mediated NF-κB signaling pathway. Poult Sci 2021; 101:101572. [PMID: 34844111 PMCID: PMC8633683 DOI: 10.1016/j.psj.2021.101572] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is the causative agent of avian colibacillosis. Baicalin (BA) possesses multiple pharmacological effects, but the mechanism underlying its activity in APEC-induced intestinal injury remains unknown. This study aims to investigate the protective effects and possible mechanism of BA against APEC-induced intestinal injury. Sixty 1-day-old chicks were randomly divided into 4 groups: the control group (basal diet), E. coli group (basal diet), BAI10 group (10 mg/kg BA), and BAI20 group (20 mg/kg BA). After pretreatment with BA for 15 d and subsequent induction of APEC infection by pectoralis injection, the ileum was collected and analyzed. The results showed that BA-pretreatment demonstrated an alleviation of chicks in diarrhea rate, mortality, and histopathological changes in intestinal tissues after APEC infection. Additionally, following APEC infection, BA improved the intestinal barrier by elevating zona occludens (ZO)s (ZO-1, 2, 3), Claudins (Claudin1, 2, 3), Occludin, avian β-defensin (AvBD)s (AvBD1, 2, 4), lysozyme (Lyz) mRNA levels and ZO-1, Claudin1, and Occludin protein levels. Besides, the activities of total superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and the SOD-1 and CAT mRNA levels and SOD-1 protein level were elevated by BA pretreatment. BA pretreatment also decreased the malondialdehyde (MDA) content, heme oxygenase-1 (HO-1) and NADH quinone oxidoreductase 1 (NQO1) mRNA levels, and HO-1 protein level after APEC infection. BA alleviated the APEC-induced inflammatory response, including downregulating the mRNA levels of proinflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin [IL]-1β, IL-6, IL-8) and upregulating the mRNA levels of anti-inflammatory cytokines (IL-4, IL-10, IL-13, transforming growth factor-β [TGF-β]). Furthermore, BA decreased the mRNA and protein levels of phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), and nuclear factor kappa-B (NF-κB) as well as the expression of the phosphorylated forms of these proteins after APEC infection. Collectively, our findings indicate that BA exerts a protective effect against APEC-induced intestinal injury in chicks by inhibiting the PI3K/AKT-mediated NF-κB pathway, suggesting that BA may be a potential therapeutic approach for avian colibacillosis.
Collapse
Affiliation(s)
- Xinyi Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Zhanyou Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China.
| |
Collapse
|
16
|
Network Pharmacology Integrated with Molecular Docking Explores the Mechanisms of Naringin against Osteoporotic Fracture by Regulating Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6421122. [PMID: 34589132 PMCID: PMC8476256 DOI: 10.1155/2021/6421122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Naringin (NG), as the most abundant component of Drynariae Rhizoma (Chinese name: Gusuibu), has been proved to be an antioxidant flavonoid on promoting osteoporotic fracture (OF) healing, but relevant research is scanty on the underlying mechanisms. We adopted target prediction, protein-protein interaction (PPI) analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and molecular docking to establish a system pharmacology database of NG against OF. Totally 105 targets of naringin were obtained, including 26 common targets with OF. A total of 415 entries were obtained through GO Biological Process enrichment analysis (P < 0.05), and 37 entries were obtained through KEGG pathway enrichment analysis with seven signaling pathways included (P < 0.05), which were primarily concerned with p53, IL-17, TNF, estrogen, and PPAR signaling pathways. According to the results of molecular docking, naringin is all bound in the active pockets of the core targets with 3-9 hydrogen bonds through some connections such as hydrophobic interactions, Pi-Pi stacked interactions, and salt bridge, demonstrating that naringin binds tightly to the core targets. In general, naringin may treat OF through multiple targets and multiple pathways via regulating oxidative stress, etc. Notably, it is first reported that NG may regulate osteoclast differentiation and oxidative stress through the expression of the core targets so as to treat OF.
Collapse
|
17
|
Wei Y, Ni L, Pan J, Li X, Xu B, Deng Y, Yang T, Liu W. The Roles of Oxidative Stress in Regulating Autophagy in Methylmercury-induced Neurotoxicity. Neuroscience 2021; 469:175-190. [PMID: 34174372 DOI: 10.1016/j.neuroscience.2021.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022]
Abstract
Methylmercury (MeHg) is a potential neurotoxin that is highly toxic to the human central nervous system. Although MeHg neurotoxicity has been widely studied, the mechanism of MeHg neurotoxicity has not yet been fully elucidated. Some research evidence suggests that oxidative stress and autophagy are important molecular mechanisms of MeHg-induced neurotoxicity. Researchers have widely accepted that oxidative stress regulates the autophagy pathway. The current study reviews the activation of Nuclear factor-erythroid-2-related factor (Nrf2)-related oxidative stress pathways and autophagy signaling pathways in the case of MeHg neurotoxicity. In addition, autophagy mainly plays a role in the neurotoxicity of MeHg through mTOR-dependent and mTOR-independent autophagy signaling pathways. Finally, the regulation of autophagy by reactive oxygen species (ROS) and Nrf2 in MeHg neurotoxicity was explored in this review, providing a new concept for the study of the neurotoxicity mechanism of MeHg.
Collapse
Affiliation(s)
- Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, China.
| |
Collapse
|
18
|
Abdel-Megeed RM. Probiotics: a Promising Generation of Heavy Metal Detoxification. Biol Trace Elem Res 2021; 199:2406-2413. [PMID: 32821997 DOI: 10.1007/s12011-020-02350-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Different environmental toxins especially heavy metals exist in soil, water, and air recording toxic effect on human, animal, and plant. These toxicant elements are widespread in environment causing various disturbances in biological systems. Numerous strategies have been applied recently to alleviate heavy metal contamination; however, most of these strategies were costly and seemed unfriendly to our environment. Probiotics are living cell bacteria with beneficial characteristics for human health. Lactobacillus and Bifidobacterium are the major probiotic groups; however, Pediococcus, Lactococcus, Bacillus, and yeasts are recorded as probiotic. The vital role of the probiotics on maintenance of body health was previously investigated. Probiotics were previously recorded to its powerful capacity to bind numerous targets and eliminate them with feces. These targets may be aluminum, cadmium, lead, or arsenic. The current review discusses the history of probiotics, detoxification role of probiotics caused by heavy metals, and mechanism of their action that modulate different signaling pathway disturbance associated with heavy metal accumulation in biological system.
Collapse
Affiliation(s)
- Rehab M Abdel-Megeed
- Therapeutic Chemistry Department, National Research Centre, El-Buhouth St, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
19
|
Liao Y, Zheng H, Wu L, He L, Wang Y, Ou Y, Yang H, Peng S, Chen F, Wang X, Zhao J. Cadmium cytotoxicity and possible mechanisms in human trophoblast HTR-8/SVneo cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:1111-1124. [PMID: 33559965 DOI: 10.1002/tox.23110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The accumulation of cadmium (Cd) in the human body through food chain can lead to adverse pregnancy outcomes. In this study, Cd cytotoxicity and its mechanisms in HTR-8/SVneo cells were investigated. Cd disrupted the cellular submicrostructure and inhibited the cell viability in a time- and dose-dependent manner. The levels of reactive oxygen species, malondialdehyde content, and the activities of glutathione peroxidase (GSH-Px) and total superoxode dismutase (T-SOD) were concentration-dependently increased by Cd. In addition, Cd dose-dependently inducedcell apoptosis and decreased cell migration and invasion capacities. Finally, Cd significantly upregulated all the genes related to oxidative stress (SOD1, ROS1, and HSPA6), inflammatory response, cell cycle, apoptosis, and migration and invasion. This study will provide insights into the prevention and treatment of pregnancy-related diseases caused by Cd intoxication.
Collapse
Affiliation(s)
- Ying Liao
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Hong Zheng
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Langbo Wu
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Lei He
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yu Wang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yangsong Ou
- Department of Orthopedics and Traumatology of Traditional Chinese Medicine, Sichuan 2nd Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Hongjun Yang
- Department of Rehabilitation Medicine, Sichuan 2nd Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Shiqin Peng
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Fengwang Chen
- Department of Internal Medicine, Wuwei Traditional Chinese Medicine Hospital, Wuwei, China
| | - Xiaoyan Wang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Jiayuan Zhao
- College of Life Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
20
|
Espinosa-Ruiz C, Manuguerra S, Morghese M, García-Beltrán JM, Esteban MÁ, Giuga M, Messina CM, Santulli A. Immunity and inflammatory responses in gilthead sea bream (Sparus aurata L.) exposed to sub-lethal mixture of carbamazepine, cadmium chloride and polybrominated diphenyl ether. FISH & SHELLFISH IMMUNOLOGY 2021; 111:25-35. [PMID: 33359412 DOI: 10.1016/j.fsi.2020.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Chemical contaminants such as industrial and urban by-products, pharmaceuticals, drugs metabolites and, plastics, are continuously found in the oceans, affecting its quality and organism's welfare. Although these compounds are found at concentrations ranged ng L-1, there is an increasing concern about the potential adverse effects of the interactions among those substances present, simultaneously, in a mixture. In the present study, specimens of sea bream (Sparus aurata) were exposed, by food, to rising concentrations of a mixture of carbamazepine, polybrominated diphenyl ether-47 and cadmium chloride, for 15 days and then, maintained, with the same control diet, without contaminants, for other 15 days. Samples of skin mucus, serum, head-kidney, liver and intestine were sampled at 0, 15 and 30 days. Cellular immune parameters were evaluated on head-kidney, as well as humoral parameters were determined on skin mucus and serum. In addition, the expression of some genes, related to immunity, was analysed on liver and intestine. Both cellular and humoral response were affected at 15 days, showing slightly signs of recovery at 30 days. Besides, the expression of immune-related genes was highly affected, suggesting the development of inflammatory processes, as well as a reduction of immune parameters. Overall, the mixture of compounds severally affected the immune system of sea bream, suggesting a lower degree of recovery. The prolonged exposure to a mixture of these compounds could entail serious change on population immunity and, eventually, promote changes on marine biota.
Collapse
Affiliation(s)
- Cristóbal Espinosa-Ruiz
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Simona Manuguerra
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Maria Morghese
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - José María García-Beltrán
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Marta Giuga
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy; Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS), Consiglio Nazionale delle Ricerche, Capo Granitola, Trapani, Italy; University of Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Scienze della Terra, Corso 57, 95129, Catania, Italy
| | - Concetta M Messina
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy; Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS), Consiglio Nazionale delle Ricerche, Capo Granitola, Trapani, Italy.
| | - Andrea Santulli
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy; Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS), Consiglio Nazionale delle Ricerche, Capo Granitola, Trapani, Italy; Consorzio Universitario della Provincia di Trapani, Marine Biology Institute, Via Barlotta 4, 91100, Trapani, Italy
| |
Collapse
|
21
|
Xu X, Song Z, Li Z, Liu X, Feng Y, Wang W, Sun G, Yang J. Establishment and characterization of a gill cell line from pearl gentian grouper (Epinephelus lanceolatus♂×Epinephelus fuscoguttatus♀) and its application in cadmium toxicology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111614. [PMID: 33396134 DOI: 10.1016/j.ecoenv.2020.111614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
A novel gill cell line from pearl gentian grouper (Epinephelus lanceolatus♂×Epinephelus fuscoguttatus♀, PGGG cell line) was established, its application in cadmium (Cd) toxicology was demonstrated in this study. Primary cultures and PGGG subcultures were carried out at 25 °C in Dulbecco's Modified Eagle medium/F12 medium (1:1; pH 7.2) supplemented with 15% fetal bovine serum (FBS). Primary PGGG cells were spindle-shaped, proliferated into a confluent monolayer within two weeks and were continuously subcultured over passage 60. The growth of cells at passages 20, 40, and 60 was examined. Chromosome analysis revealed that the chromosomal number of normal PGGG cells was 48, but the number of cells with the normal chromosomes number decreased during the passaging process. Cadmium is one of the most toxic metals in aquatic systems and has been associated with multiple animal and human health problems. To interpret the cytotoxicity and related mechanisms of cadmium, PGGG cells were used as an in vitro model. After treatment with cadmium at concentrations ranging from 1 µM to 500 µM, PGGG cells demonstrated dose- and time-dependent cytotoxicity, manifested as morphological abnormalities and a viability decline. Further, it was found that the reactive oxygen species (ROS) and malondialdehyde (MDA) levels were elevated following cadmium exposure, and related genes involved in the antioxidant system, including those encoding catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and Kelch-like- ECH-associated protein 1 (Keap1), were regulated differently. In addition, PGGG cells treated with cadmium had the typical features associated with apoptosis, including phosphatidylserine (PS) externalization; upregulated expression of caspase-3, -8, and -9; and apoptotic body formation. In general, the PGGG cell line may serve as a useful tool for studying the toxic mechanisms of cadmium or other toxicants or for toxicity testing and environment monitoring.
Collapse
Affiliation(s)
- Xiaohui Xu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zhan Song
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China.
| |
Collapse
|
22
|
Liao Y, Peng S, He L, Wang Y, Li Y, Ma D, Wang Y, Sun L, Zheng H, Yang W, Dai F, Zhao J. Methylmercury cytotoxicity and possible mechanisms in human trophoblastic HTR-8/SVneo cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111520. [PMID: 33254395 DOI: 10.1016/j.ecoenv.2020.111520] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/22/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Methylmercury (MeHg) exposure during pregnancy can lead to adverse outcomes, including miscarriage and intrauterine growth retardation. In this study, MeHg cytotoxicity and its mechanisms in HTR-8/SVneo cells were investigated. MeHg inhibited HTR-8/SVneo cell viability and severely disrupted the cellular submicrostructure, showing a time-dose effect relationship. After MeHg treatment, the reactive oxygen species levels, malondialdehyde content, and superoxide dismutase (SOD) and catalase activities in the HTR-8/SVneo cells increased significantly with increased MeHg concentration (P<0.05). Similarly, MeHg also induced HTR-8/SVneo cell apoptosis in a dose-dependent manner. The proportion of cells in G1 phase decreased with increasing MeHg concentration, while that in the S and G2/M phases gradually increased. Moreover, cell migration and invasion capacities gradually decreased with increasing MeHg concentration, showing a significant difference between the MeHg-treated and control groups. Genes related to oxidative stress (HSPA6, HSPA1A, Nrf2, SOD1, HO-1, NQO1, OSGIN1, and gPX1), cell cycle (P21 and CDC25A), apoptosis (CYCS and AIFM2), and migration and invasion (CXCL8, CXCL3, CLU, IL24, COL3A1, MAPT, and ITGA7) were differentially expressed in the MeHg-treated group, indicating MeHg toxicity and mechanism of action. This study will provide insights into the prevention and treatment of pregnancy-related diseases caused by MeHg.
Collapse
Affiliation(s)
- Ying Liao
- College of Life Science, Sichuan Normal University, Chengdu, 610101 Sichuan, PR China
| | - Shiqin Peng
- College of Life Science, Sichuan Normal University, Chengdu, 610101 Sichuan, PR China
| | - Lei He
- College of Life Science, Sichuan Normal University, Chengdu, 610101 Sichuan, PR China
| | - Yu Wang
- College of Life Science, Sichuan Normal University, Chengdu, 610101 Sichuan, PR China
| | - Yang Li
- College of Life Science, Sichuan Normal University, Chengdu, 610101 Sichuan, PR China
| | - Danwei Ma
- College of Life Science, Sichuan Normal University, Chengdu, 610101 Sichuan, PR China
| | - Yanan Wang
- College of Life Science, Sichuan Normal University, Chengdu, 610101 Sichuan, PR China
| | - Liang Sun
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Hong Zheng
- College of Life Science, Sichuan Normal University, Chengdu, 610101 Sichuan, PR China
| | - Wenke Yang
- College of Life Science, Sichuan Normal University, Chengdu, 610101 Sichuan, PR China
| | - Fengyan Dai
- College of Life Science, Sichuan Normal University, Chengdu, 610101 Sichuan, PR China
| | - Jiayuan Zhao
- College of Life Science, Sichuan Normal University, Chengdu, 610101 Sichuan, PR China.
| |
Collapse
|
23
|
Moreno González R, Cánovas CR, Olías M, Macías F. Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113829. [PMID: 31884218 DOI: 10.1016/j.envpol.2019.113829] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
The Tharsis mine is presently abandoned, but the past intense exploitation has left large dumps and other sulphide-rich mining wastes in the area generating acid mine drainages (AMD). The main goal of this work is to study the effect of hydrogeochemical processes, hydrological regime and the waste typology on the physicochemical parameters and dissolved concentrations of pollutants in a deeply AMD-affected zone. Extreme leachates are produced in the area, reaching even negative pH and concentrations of up to 2.2 g/L of As and 194 g/L of Fe. The results of the comparison of ore grades of sulphide deposits with dissolved concentrations in waters shows that Pb is the least mobile element in dissolution probably due to the precipitation of Pb secondary minerals and/or its coprecipitation on Fe oxyhydroxysulphates. Arsenic, Cr, and V are also coprecipitated with Fe minerals. Seasonal patterns in metal contents were identified: elements coming from the host rocks, such as Al, Mn and Ni, show their maximum values in the dry period, when dilution with freshwater is lower and the interaction of water-rock processes and evaporation is higher. On the other hand, As, Cr, Fe, Pb and V show minimum concentrations in the dry period due to intense Fe oxyhydroxysulphate precipitation. In this sense, large sulphide rich waste heaps would be a temporal sink of these elements (i.e. Pb, As, Cr and V) in the dry period, and a significant source upon intense rainfalls.
Collapse
Affiliation(s)
- Raúl Moreno González
- Department of Earth Sciences, Faculty of Experimental Sciences, University of Huelva, Campus 'El Carmen' s/n, 21071, Huelva, Spain; Research Center on Natural Resources, Health and the Environment (RENSMA), University of Huelva, 21071, Huelva, Spain
| | - Carlos Ruiz Cánovas
- Department of Earth Sciences, Faculty of Experimental Sciences, University of Huelva, Campus 'El Carmen' s/n, 21071, Huelva, Spain; Research Center on Natural Resources, Health and the Environment (RENSMA), University of Huelva, 21071, Huelva, Spain.
| | - Manuel Olías
- Department of Earth Sciences, Faculty of Experimental Sciences, University of Huelva, Campus 'El Carmen' s/n, 21071, Huelva, Spain; Research Center on Natural Resources, Health and the Environment (RENSMA), University of Huelva, 21071, Huelva, Spain
| | - Francisco Macías
- Department of Earth Sciences, Faculty of Experimental Sciences, University of Huelva, Campus 'El Carmen' s/n, 21071, Huelva, Spain; Research Center on Natural Resources, Health and the Environment (RENSMA), University of Huelva, 21071, Huelva, Spain; Institute of Environmental Assessment and Water Research, (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|