1
|
Kang M, Jeong S, Ko SR, Kim MS, Ahn CY. Biotechnological approaches for suppressing Microcystis blooms: insights and challenges. Appl Microbiol Biotechnol 2024; 108:466. [PMID: 39283515 PMCID: PMC11405451 DOI: 10.1007/s00253-024-13260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 09/22/2024]
Abstract
Cyanobacterial harmful algal blooms, particularly those dominated by Microcystis, pose significant ecological and health risks worldwide. This review provides an overview of the latest advances in biotechnological approaches for mitigating Microcystis blooms, focusing on cyanobactericidal bacteria, fungi, eukaryotic microalgae, zooplankton, aquatic plants, and cyanophages. Recently, promising results have been obtained using cyanobactericidal bacteria: not through the inoculation of cultured bacteria, but rather by nurturing those already present in the periphyton or biofilms of aquatic plants. Fungi and eukaryotic microalgae also exhibit algicidal properties; however, their practical applications still face challenges. Zooplankton grazing on Microcystis can improve water quality, but hurdles exist because of the colonial form and toxin production of Microcystis. Aquatic plants control blooms through allelopathy and nutrient absorption. Although cyanophages hold promise for Microcystis control, their strain-specificity hinders widespread use. Despite successful laboratory validation, field applications of biological methods are limited. Future research should leverage advanced molecular and bioinformatic techniques to understand microbial interactions during blooms and offer insights into innovative control strategies. Despite progress, the efficacy of biological methods under field conditions requires further verification, emphasizing the importance of integrating advanced multi-meta-omics techniques with practical applications to address the challenges posed by Microcystis blooms. KEY POINTS: • A diverse range of biotechnological methods is presented for suppressing Microcystis blooms. • Efficacy in laboratory experiments needs to be proved further in field applications. • Multi-meta-omics techniques offer novel insights into Microcystis dynamics and interactions.
Collapse
Affiliation(s)
- Mingyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Seonah Jeong
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Min-Seong Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Chang J, Wei P, Tian M, Zou Y, Zhang S. The responses and tolerance of photosynthetic system in Chlorella vulgaris to the pharmaceutical pollutant carbamazepine. CHEMOSPHERE 2024; 362:142608. [PMID: 38878981 DOI: 10.1016/j.chemosphere.2024.142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/28/2024] [Accepted: 06/12/2024] [Indexed: 08/09/2024]
Abstract
Screening for sensitive toxicological indicators and understanding algal tolerance to pharmaceutical contaminants (PhCs) are essential for assessing PhCs risk and their removal by microalgae. Carbamazepine (CBZ) showed adverse effects on microalgae, but the specific toxicity mechanisms on the most sensitive algal photosynthetic system (PS) remain limited. This study delved into the impact of CBZ exposure on the growth, cell viability, pigment content, and PS of Chlorella vulgaris. The findings revealed a notable inhibition of C. vulgaris growth by CBZ, with an IC50 value of 27.2 mg/L at 96 h. CBZ exposure induced algal membrane damage and cell viability. Intriguingly, CBZ drastically diminished intracellular pigment levels, notably showing "low promotion and high inhibition" of chlorophyll b (Chl b) by 72 h. Moreover, the study identified a decreased number of active reaction centers (RCs) within algal PSII alongside inhibited electron transport from QA to QB on the PSII receptor side, leading to PSII disruption. As an adaptive response to CBZ stress, C. vulgaris stimulated its Chl b synthesis, increased non-photochemical quenching (NPQ), and adapted its tolerance to bright light. Additionally, the alga attempted to compensate for the CBZ-induced reduction in electron transfer efficiency at the PSII receptor side and light energy utilization by increasing its electron transfer from downstream. Principal component analysis (PCA) further verified that the parameters on non-photochemical dissipation, electron transport, and integrative performance were the most sensitive algal toxicological indicators for CBZ exposure, and algal PS has energy protection capability through negative feedback regulation. However, prolonged exposure to high doses of CBZ will eventually result in permanent damage to the algal PS. Hence, attention should be paid to the concentration of CBZ in the effluent and the exposure time, while methods to mitigate algal photodamage should be appropriately sought for algal treatment of dense effluents.
Collapse
Affiliation(s)
- Jingjing Chang
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Peiling Wei
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Meng Tian
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Ying Zou
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Shenghua Zhang
- College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei, 430074, China.
| |
Collapse
|
3
|
Feng G, Cao J, Chen H, Meng XZ, Duan Z. Potential gap in understanding cyanoHABs: Light-dependent morphological variations in colonial cyanobacterium Microcystis. HARMFUL ALGAE 2024; 134:102622. [PMID: 38705618 DOI: 10.1016/j.hal.2024.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 05/07/2024]
Abstract
Colony formation is a crucial characteristic of Microcystis, a cyanobacterium known for causing cyanobacterial harmful algal blooms (cyanoHABs). It has been observed that as Microcystis colonies grow larger, they often become less densely packed, which correlates with a decrease in light penetration. The objective of this study was to investigate the effects of light limitation on the morphological variations in Microcystis, particularly in relation to the crowded cellular environment. The results indicated that when there was sufficient light (transmittance = 100 %) to support a growth rate of 0.11±0.01 day-1, a significant increase in colony size was found, from 466±15 μm to 1030±111 μm. However, under light limitation (transmittance = 50 % - 1 %) where the growth rate was lower than 0, there was no significant improvement in colony size. Microcystis in the light limitation groups exhibited a loose cell arrangement and even the presence of holes or pores within the colony, confirming the negative correlation between colony size and cell arrangement. This pattern is driven by regional differences in growth within the colony, as internal cells have a significantly lower frequency of division compared to peripheral cells, due to intra-colony self-shading (ICSS). The research demonstrates that Microcystis can adjust its cell arrangement to avoid excessive self-shading, which has implications for predicting and controlling cyanoHABs. These findings also contribute to the understanding of cyanobacterial variations and can potentially inform future research on the diverse phycosphere.
Collapse
Affiliation(s)
- Ganyu Feng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Jun Cao
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| | - Huaimin Chen
- School of Materials Engineering, Changzhou Vocational Institute of Industry Technology, 28 Mingxinzhong Road, Changzhou 213164, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Zhipeng Duan
- College of Environment, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| |
Collapse
|
4
|
Huang T, Lai M, Lin Z, Luo R, Xiang X, Xu H, Pan N, Zuo Z. Identification of algicidal monoterpenoids from four chemotypes of Cinnamomum camphora and their algicidal mechanisms on Microcystis aeruginosa. ENVIRONMENTAL RESEARCH 2024; 241:117714. [PMID: 37989462 DOI: 10.1016/j.envres.2023.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Cyanobacterial blooms cause serious environmental issues, and plant secondary metabolites are considered as new algaecide for controlling them. Cinnamomum camphora produces a wide spectrum of terpenoids and has 4 main chemotypes, including linalool, camphor, eucalyptol and borneol chemotype. To develop the new cyanobacterial algaecide by using suitable chemotype of Cinnamomum camphora and the main terpenoids, we analyzed the terpenoid composition in the 4 chemotype extracts, evaluated the algicidal effects of the extracts and their typical monoterpenoids on Microcystis aeruginosa, and investigated the algicidal mechanism of the stronger algicidal agents. Among the 4 chemotypes, eucalyptol and borneol chemotype extracts exhibited stronger algicidal effects. In the 4 chemotype extracts, monoterpenoids were the main compounds, of which linalool, camphor, eucalyptol and borneol were the typical components. Among the 4 typical monoterpenoids, eucalyptol and borneol showed stronger algicidal effects, which killed 78.8% and 100% M. aeruginosa cells, respectively, at 1.2 mM after 48 h. In 1.2 mM eucalyptol and borneol treatments, the reactive oxygen species levels markedly increased, and the caspase-3-like activity also raised. With prolonging the treatment time, M. aeruginosa cells gradually shrank and wrinkled, and the cell TUNEL fluorescence intensity and DNA degradation gradually enhanced, indicating that the lethal mechanism is causing apoptosis-like programmed cell death (PCD). Therefore, eucalyptol and borneol chemotype extracts and their typical monoterpenoids have the potential for developing as algaecides to control cyanobacteria through triggering apoptosis-like PCD.
Collapse
Affiliation(s)
- Tianyu Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Meng Lai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhenwei Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ruiqi Luo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xuezheng Xiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haozhe Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ning Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
5
|
Cai P, Xu L, Yang J, Tian C, Wu X, Wang C, Xiao B. Differences in survivability and toxic potential among Microcystis colonies of different sizes in sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118916-118927. [PMID: 37919509 DOI: 10.1007/s11356-023-30753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Microcystis colonies have the ability to persist for extended periods in sediment and function as a "seed bank" for the succeeding summer bloom in water column. The colonial morphology and toxin production ability of Microcystis are important for their population maintenance and life history. However, it is unclear about the influence of the colony morphology and toxic potential of Microcystis colonies on their benthic process. To address this question, we classified field Microcystis samples into three groups based on their size (< 150 μm, 150-300 μm, and > 300 μm) and compared their survivability and toxic potential during culturing in sediment. The results showed that Microcystis colonies in sediments disappeared quickly at 25℃ but survived for long periods at 5℃. The survivability of smaller Microcystis colonies (< 300 μm) was significantly higher than that of larger ones (> 300 μm). The activities of catalase (CAT) were significantly increased in large colonies compared to small colonies at 15℃ and 25℃. Real-time PCR indicated that smaller colonies had higher proportion of potential toxic genotype, and Microcystis colonies cultured at 15℃ and 25℃ showed higher percentage of microcystin-producing genotype. These results indicate that Microcystis colonies survived longer at low temperature and that larger Microcystis colonies are more susceptible to oxidative stress in sediments. The difference of toxic potential of Microcystis colonies of different sizes in sediments may be related to their survival ability in sediments.
Collapse
Affiliation(s)
- Pei Cai
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Xu
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaojiao Yang
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming Dianchi & Plateau Lakes Institute, Kunming, 650228, China
| | - Cuicui Tian
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xingqiang Wu
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chunbo Wang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Bangding Xiao
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
6
|
Feng G, Liu J, Li H, Liu JS, Duan Z, Wu L, Gao Y, Meng XZ. Insights from colony formation: The necessity to consider morphotype when assessing the effect of antibiotics on cyanobacteria. WATER RESEARCH 2023; 246:120704. [PMID: 37827036 DOI: 10.1016/j.watres.2023.120704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Colonial cyanobacteria have been identified as the primary contributor to the global occurrence of cyanobacterial harmful algal blooms (cyanoHABs), which are further intensified by the presence of "pseudo-persistent" antibiotics. Nevertheless, the impact of antibiotics on the growth and size of colonial cyanobacteria remains unclear. In this study, the response of cyanobacterium Microcystis to varying doses of antibiotics was assessed (0, 0.1, 0.5, 1, 10, and 50 μg L-1) by comparing the unicellular and colonial morphotypes. Interestingly, the morphological structure of cyanobacteria plays a significant role in their reaction to antibiotics. In comparison to the unicellular morphotype, the colonial morphotype exhibited a greater promotion in growth rate (11 %-22 %) to low doses of antibiotics and was less inhibited (-121 %--62 %) under high doses. Furthermore, antibiotics may affect the size of cyanobacterial colonies by disrupting the secretion of algal organic matter, which also exhibited a two-phase pattern. This work sheds light on the significance of methodology research involving both unicellular and colonial cyanobacteria. Future research and lake management should prioritize studying the morphological traits of cyanobacteria under different levels of antibiotic exposure. This approach may lead to novel strategies for predicting cyanoHABs under antibiotic pollution more effectively.
Collapse
Affiliation(s)
- Ganyu Feng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Jianbin Liu
- Shanghai Qingpu District Environmental Monitoring Station, 15 Xidayinggang Road, Shanghai 201799, China
| | - Hongbo Li
- Beijing ENFI Environmental Protection Co., Ltd., 12 Fuxing Road, Beijing 100038, China
| | - Jin-Song Liu
- College of Advanced Materials Engineering, Jiaxing Nanhu University, 572 South Yuexiu Road, Jiaxing 314001, Zhejiang Province, China
| | - Zhipeng Duan
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, Jiangsu Province, China
| | - Liang Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yunze Gao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing 314051, Zhejiang Province, China.
| |
Collapse
|
7
|
Zheng B, Du Y, Deng Y, Zhao T, Dong P, Shi J, Wu Z. Colonial morphology weakens the response of different inorganic carbon uptake systems to CO 2 levels in Microcystis population. HARMFUL ALGAE 2023; 128:102491. [PMID: 37714577 DOI: 10.1016/j.hal.2023.102491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023]
Abstract
Rising atmospheric CO2 concentration negatively impacts aquatic ecosystems and may induce evolutionary changes in the CO2-concentrating mechanism (CCM) of cyanobacteria. As the most notorious freshwater cyanobacteria, Microcystis strains have high phenotypic plasticity to form colonies and blooms in lakes and reservoirs worldwide. However, phenotypic plasticity of Microcystis responses to elevated CO2 is still a major open question. Here, we studied how Microcystis strains with two genotype of inorganic carbon uptake systems, bicA and sbtA, and different colonial morphology response to 200 ppm, 400 ppm, and 800 ppm CO2 levels. The results revealed that sbtA genotypes showed significantly higher specific growth rates, Chl a concentration, and photosynthetic efficiency at 200 ppm CO2, whereas higher specific growth rates, Chl a concentration, and photosynthetic efficiency were found in bicA genotype at 800 ppm CO2. The highest values of specific growth rates, Chl a concentration, Fv/Fm, and maximal net photosynthesis (Pm) were observed in unicellular morphology, followed by small colony and large colonial morphology at all CO2 levels. The values of K0.5 (DIC), K0.5 (CO2), and K0.5 (HCO3-) in the large colonials increased with rising CO2 levels, but these values significantly decreased in the unicellular and small colonials. ANOSIM analysis indicated that colonial morphology reduced significantly inter-group differences between bicA and sbtA genotypes at all CO2 treatments. These results suggest that colonial morphology of Microcystis can weakens the response of different inorganic carbon uptake systems to CO2 levels. Moreover, phenotypic and genotypic plasticity is likely to broaden strongly the fitness of Microcystis from rising atmospheric CO2.
Collapse
Affiliation(s)
- Baohai Zheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, China
| | - Yuxin Du
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, China
| | - Yuting Deng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, China
| | - Teng Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, China
| | - Peichang Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Yan J, Zou Y, Zhang F, Zhang S, Huang X, Benoit G. Growth, ROS accumulation site, and photosynthesis inhibition mechanism of Chlorella vulgaris by triclosan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12125-12137. [PMID: 36107294 DOI: 10.1007/s11356-022-23009-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Although the addition of triclosan (TCS) in consumer products has been strictly restricted, its continuous applications in hospitals and other medical facilities and its numerous residues still pose a potential risk to aquatic organisms and aquatic ecosystems. In this study, we investigated the growth, biochemical alterations, and physiological responses of Chlorella vulgaris exposed to different concentrations of TCS. The potential toxicity mechanisms associated with excessive production of reactive oxygen species (ROS) and disruption of photosynthetic system II (PSII) were also analyzed. The results indicated that the growth, cellular ultrastructure, and physiology of C. vulgaris were severely affected by TCS in a dose-effect dependent manner. TCS inhibited the growth of C. vulgaris, leading to mitochondria enlargement, the disordering of the arrangement of thylakoids, cell wall rupture, organelles loss, and the cytoplasm lysis. TCS induced severe oxidative damage characterized by ROS accumulation, elevated malondialdehyde (MDA), and up-regulation of antioxidant enzyme activities. Moreover, in TCS-induced algal cells, the main sites of ROS accumulation were chloroplasts, mitochondria, and cell membranes, with ROS accumulating most in the mitochondria. In addition, TCS caused damage to the reaction center (RC inactivation), donor side (OEC damage), and accepted side (electron transport from QA to QB) of PSII in C. vulgaris, leading to inhibition of photosynthetic activity. These results could provide novel insights into the mechanisms of TCS-induced ROS accumulation and photosynthetic inhibition in C. vulgaris, which would contribute to a deep understanding of TCS toxicity on algae.
Collapse
Affiliation(s)
- Jin Yan
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, Hubei, China
| | - Ying Zou
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, Hubei, China
| | - Fengrui Zhang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, Hubei, China
| | - Shenghua Zhang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, Hubei, China.
| | - Xinyue Huang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Gaboury Benoit
- School of Forestry & Environmental Studies, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
9
|
Banerji A, Benesh K. Incorporating Microbial Species Interaction in Management of Freshwater Toxic Cyanobacteria: A Systems Science Challenge. AQUATIC ECOLOGY 2022; 3:570-587. [PMID: 36643215 PMCID: PMC9836389 DOI: 10.3390/ecologies3040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water resources are critically important, but also pose risks of exposure to toxic and pathogenic microbes. Increasingly, a concern is toxic cyanobacteria, which have been linked to the death and disease of humans, domesticated animals, and wildlife in freshwater systems worldwide. Management approaches successful at reducing cyanobacterial abundance and toxin production have tended to be short-term solutions applied on small scales (e.g., algaecide application) or solutions that entail difficult multifaceted investments (e.g., modification of landscape and land use to reduce nutrient inputs). However, implementation of these approaches can be undermined by microbial species interactions that (a) provide toxic cyanobacteria with protection against the method of control or (b) permit toxic cyanobacteria to be replaced by other significant microbial threats. Understanding these interactions is necessary to avoid such scenarios and can provide a framework for novel strategies to enhance freshwater resource management via systems science (e.g., pairing existing physical and chemical approaches against cyanobacteria with ecological strategies such as manipulation of natural enemies, targeting of facilitators, and reduction of benthic occupancy and recruitment). Here, we review pertinent examples of the interactions and highlight potential applications of what is known.
Collapse
Affiliation(s)
- Aabir Banerji
- US Environmental Protection Agency, Office of Research & Development, Duluth, MN 55804, USA
| | - Kasey Benesh
- Oak Ridge Institute for Science & Education, Oak Ridge, TN 37830, USA
| |
Collapse
|
10
|
Wang Z, Xu Y, Yang J, Li Y, Sun Y, Zhang L, Yang Z. Adverse role of colonial morphology and favorable function of microcystins for Microcystis to compete with Scenedesmus. HARMFUL ALGAE 2022; 117:102293. [PMID: 35944955 DOI: 10.1016/j.hal.2022.102293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In eutrophic freshwaters, Microcystis usually becomes dominant in phytoplankton communities due to the synergistic effects of its special eco-physiological traits and environmental factors. Colonial morphology can protect Microcystis from zooplankton grazing, which indirectly favors Microcystis to outcompete other phytoplankton, although the colonial form is not conducive to the absorption of nutrients. Moreover, unicellular Microcystis usually has competitive advantages over other phytoplankton due to its efficient absorption capacity for nutrients and releasing microcystins. However, the consequence of direct competition between toxic colonial Microcystis and green algae without external grazing pressure still remained unknown. In this study, the competition between toxic colonial Microcystis aeruginosa and a common green alga Scenedesmus obliquus was explored. Results showed that: (1) colonial M. aeruginosa had a higher requirement for key macro-nutrient phosphorus than S. obliquus, and thus its population declined and was replaced by S. obliquus eventually; (2) microcystins released by colonial M. aeruginosa inhibited the photosynthetic activity and growth of S. obliquus at early stage of the competition; (3) the photosynthetic potential of colonial M. aeruginosa was stimulated in response to the competitive stress from S. obliquus, although the population of colonial M. aeruginosa declined eventually; (4) microcystin production of colonial M. aeruginosa was enhanced by phosphorus limitation due to S. obliquus competition and was positively related to photosynthetic potential of colonial M. aeruginosa. These results indicated that, in the absence of complex natural environment, colonial Microcystis cannot outcompete Scenedesmus in a pure competition, although microcystins can play a favorable role in the competition, which clarified the opposite role of colonies and microcystins in the competition of colonial Microcystis against other phytoplankton.
Collapse
Affiliation(s)
- Zeshuang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yang Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jiajun Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yapeng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
11
|
Zhao G, Hong Y, Li L, Zhang H, Xu R, Hao Y. Selection and characterization of plant-derived alkaloids with strong antialgal inhibition: growth inhibition selectivity and inhibitory mechanism. HARMFUL ALGAE 2022; 117:102272. [PMID: 35944959 DOI: 10.1016/j.hal.2022.102272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
In recent years, researches on microalgae inhibition with plant-derived active substances have attracted much attention. In this study, the inhibition of six plant-derived alkaloids (neferine, isoliensinine, linensinine, nuciferine, capsaicin, and hordenine) on bloom-forming cyanobacteria Microcystis aeruginosa were investigated. The results showed that neferine and nuciferine had stronger inhibition on the growth of M. aeruginosa compared with the other four alkaloids, and the relative inhibition rate reached 91.27% and 88.70% at the concentration of 4.5 mg/L after 7 d of exposure, respectively. Different from neferine, nuciferine has no inhibition on Chlorella sp. and Tetradesmus obliquus. It also increased the diversity and species homogeneity of phytoplankton in the environmental water samples. Nuciferine decreased the contents of chlorophyll a and β-carotene in M. aeruginosa with the extension of treatment time, which was 59.40% and 31.90% of the control at the concentration of 1.04 mg/L after 48 h, respectively. After 48 h of nuciferine exposure, the values of fluorescence parameters including maximum quantum yield (Fv/Fm), actual quantum yield of PSII (Yield), non-photochemical quenching (qN and NPQ), and electron transport rates (ETR) of M. aeruginosa cells were significantly decreased and photosynthetic capacity was weakened. The superoxide dismutase (SOD), catalase (CAT), ascorbic acid (ASA), and glutathione (GSH) in the cells were significantly reduced, and the hydrogen peroxide (H2O2) and malonaldehyde (MDA) contents continued to accumulate, causing severe oxidative damage. Therefore, the good biological safety and strong specific inhibition of nuciferine makes it have great application prospects in the inhibition of cyanobacteria blooms.
Collapse
Affiliation(s)
- Guangpu Zhao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Lihua Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hongkai Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Rong Xu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yuan Hao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
12
|
Feng G, Zhu W, Duan Z, Zhang Y. The role of morphological changes in Microcystis adaptation to nutrient availability at the colonial level. HARMFUL ALGAE 2022; 115:102235. [PMID: 35623697 DOI: 10.1016/j.hal.2022.102235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Colony formation is a key trait facilitating the formation of Microcystis blooms. However, the role of morphological changes (e.g., colony size and tightness) in the adaptation to nutrient availability is not fully understood. In this study, we analyzed the morphological changes under both nutrient sufficiency and deficiency. Accordant morphological changes were found with both an isolated colonial strain and mixed field colonies. Colonies that were limited by nutrients became bloated and uncompacted structures, and this change was more pronounced under N deficiency. This looser morphology increased the availability of intra-colony light and relieved the size effect. When nutrients were sufficient, small colonies emerged, which helped to maintain rapid growth (0.32 day-1). Our study highlighted probable role of morphological variations in: (1) diminishing intra-colony self-shading when facing nutrient deficiency; and (2) enlarging the population under high trophic levels by generating daughter colonies. These roles were also verified using field data from Lake Taihu, which further indicated that the seasonal succession of morphospecies was probably the result of adaptive morphological changes. Adaptive morphological changes offer advantages against fluctuations in nutrient availability, which should be considered when attempting to restrain bloom formation.
Collapse
Affiliation(s)
- Ganyu Feng
- College of Environment, Hohai University, Nanjing, Jiangsu 210098, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, China
| | - Wei Zhu
- College of Environment, Hohai University, Nanjing, Jiangsu 210098, China.
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yu Zhang
- College of Environment, Hohai University, Nanjing, Jiangsu 210098, China
| |
Collapse
|
13
|
Yan J, Xu P, Zhang F, Huang X, Cao Y, Zhang S. The effects of aqueous extract from watermelon (Citrullus lanatus) peel on the growth and physiological characteristics of Dolichospermum flos-aquae. Sci Rep 2022; 12:8086. [PMID: 35577831 PMCID: PMC9110734 DOI: 10.1038/s41598-022-12124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/06/2022] [Indexed: 11/09/2022] Open
Abstract
Nowadays, the increasing Dolichospermum (Anabaena) blooms pose a major threat to the aquatic environment and public health worldwide. The use of naturally derived chemicals from plants to control cyanobacteria blooms has recently received a tremendous amount of attention. This study investigates the possibility of transforming watermelon peel (WMP) into a biological resource to allelopathically inhibit Dolichospermum flos-aquae blooms. The results demonstrated that the growth of D. flos-aquae was efficiently restricted by the aqueous extract of watermelon peel (WMPAE) in a concentration-dependent manner. Cell viability decreased quickly, intracellular structural damage occurred, chlorophyll a in algal cells degraded, and photosynthesis was clearly inhibited. At the same time, the levels of reactive oxygen species in viable cells increased significantly, as did malondialdehyde levels, indicating that WMPAE elucidated strong oxidative stress and corresponding damage to D. flos-aquae. Capsular polysaccharide (CPS) levels increased in all treatment groups, which represents an adaptive response indicative of the development of resistance to WMPAE stress and oxidative damage. Despite this, WMPAE had clear inhibitory effects on D. flos-aquae. These findings provide fundamental information on an allelopathic system that could be a novel and attractive approach for suppressing D. flos-aquae blooms in small aquatic environments, especially aquaculture ponds.
Collapse
Affiliation(s)
- Jin Yan
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Peiyao Xu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Fengrui Zhang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Xinyue Huang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Yanmin Cao
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, People's Republic of China.
| | - Shenghua Zhang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
14
|
Li X, Pan JF, Lu Z, Wei M, Gao Z, Yan Z. Arsenate toxicity to the marine microalga Chlorella vulgaris increases under phosphorus-limited condition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50908-50918. [PMID: 33973122 DOI: 10.1007/s11356-021-14318-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
To understand the arsenic (As) toxicity to aquatic organisms in the phosphors-polluted aquatic ecosystem, the growth, the physiological response of Chlorella vulgaris exposed to As (V), and the underlying mechanism were investigated under different phosphorus (P) levels (0, 6, 13, 32 μM). Results showed that As toxicity to the marine microalga C. vulgaris was enhanced under P-limited condition. P supply distinctly altered the effect of As on the light-harvesting efficiency of photosystem. Insufficient P supply also resulted in an enhanced level of membrane integrity loss, which probably facilitated As entering cells and led to stronger toxicity to C. vulgaris under low P supply. At high concentrations of As, the relative superoxide dismutase (SOD) activity was significantly enhanced. When phosphorus was limited, the activation of peroxidase (POD) was significantly enhanced after adding As (V). When intracellular SOD activity was at its highest level, the level of membrane peroxidation (MDA) was also at the highest level, and membrane peroxidation level was positively related to the level of membrane integrity loss (Pearson R2=0.8977). These results suggested that alternation of light-harvesting efficiency of photosystem and As-induced oxidative damage, resulting in membrane peroxidation and integrity loss, were the possible mechanism of As toxicity to C. vulgaris. This study provided insight into the understanding of As toxicity to algae in the eutrophication aquatic system and the potential application of algae in As remediation.
Collapse
Affiliation(s)
- Xinya Li
- Key Laboratory of Marine Environment and Ecology (Ministry of Education), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Jin-Fen Pan
- Key Laboratory of Marine Environment and Ecology (Ministry of Education), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Zhiying Lu
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35924, USA.
| | - Ming Wei
- Key Laboratory of Marine Environment and Ecology (Ministry of Education), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Zhongsheng Gao
- Key Laboratory of Marine Environment and Ecology (Ministry of Education), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
| |
Collapse
|
15
|
Tazart Z, Manganelli M, Scardala S, Buratti FM, Nigro Di Gregorio F, Douma M, Mouhri K, Testai E, Loudiki M. Remediation Strategies to Control Toxic Cyanobacterial Blooms: Effects of Macrophyte Aqueous Extracts on Microcystis aeruginosa (Growth, Toxin Production and Oxidative Stress Response) and on Bacterial Ectoenzymatic Activities. Microorganisms 2021; 9:microorganisms9081782. [PMID: 34442861 PMCID: PMC8400474 DOI: 10.3390/microorganisms9081782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing toxic cyanobacterial blooms in freshwater demand environmentally friendly solutions to control their growth and toxicity, especially in arid countries, where most drinking water is produced from surface reservoirs. We tested the effects of macrophyte allelochemicals on Microcystis aeruginosa and on the fundamental role of bacteria in nutrient recycling. The effects of Ranunculus aquatilis aqueous extract, the most bioactive of four Moroccan macrophyte extracts, were tested in batch systems on M. aeruginosa growth, toxin production and oxidative stress response and on the ectoenzymatic activity associated with the bacterial community. M. aeruginosa density was reduced by 82.18%, and a significant increase in oxidative stress markers was evidenced in cyanobacterial cells. Microcystin concentration significantly decreased, and they were detected only intracellularly, an important aspect in managing toxic blooms. R. aquatilis extract had no negative effects on associated bacteria. These results confirm a promising use of macrophyte extracts, but they cannot be generalized. The use of the extract on other toxic strains, such as Planktothrix rubescens, Raphidiopsis raciborskii and Chrysosporum ovalisporum, caused a reduction in growth rate but not in cyanotoxin content, increasing toxicity. The need to assess species-specific cyanobacteria responses to verify the efficacy and safety of the extracts for human health and the environment is highlighted.
Collapse
Affiliation(s)
- Zakaria Tazart
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena, 299, 00161 Rome, Italy; (Z.T.); (S.S.); (F.M.B.); (F.N.D.G.); (E.T.)
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech 40000, Morocco; (K.M.); (M.L.)
| | - Maura Manganelli
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena, 299, 00161 Rome, Italy; (Z.T.); (S.S.); (F.M.B.); (F.N.D.G.); (E.T.)
- Correspondence:
| | - Simona Scardala
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena, 299, 00161 Rome, Italy; (Z.T.); (S.S.); (F.M.B.); (F.N.D.G.); (E.T.)
| | - Franca Maria Buratti
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena, 299, 00161 Rome, Italy; (Z.T.); (S.S.); (F.M.B.); (F.N.D.G.); (E.T.)
| | - Federica Nigro Di Gregorio
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena, 299, 00161 Rome, Italy; (Z.T.); (S.S.); (F.M.B.); (F.N.D.G.); (E.T.)
| | - Mountasser Douma
- Environmental Microbiology and Toxicology Research Unit, Polydisciplinary Faculty of Khouribga (FPK), Sultan Moulay Slimane University, Beni Mellal 23000, Morocco;
| | - Khadija Mouhri
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech 40000, Morocco; (K.M.); (M.L.)
| | - Emanuela Testai
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena, 299, 00161 Rome, Italy; (Z.T.); (S.S.); (F.M.B.); (F.N.D.G.); (E.T.)
| | - Mohammed Loudiki
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech 40000, Morocco; (K.M.); (M.L.)
| |
Collapse
|
16
|
Aragão MC, Dos Reis KC, Rocha MAM, de Oliveira Guedes D, Dos Santos EC, Capelo-Neto J. Removal of Dolichospermum circinale, Microcystis aeruginosa, and their metabolites using hydrogen peroxide and visible light. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105735. [PMID: 33540290 DOI: 10.1016/j.aquatox.2020.105735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Frequent cyanobacterial blooms in reservoirs used for human supply increase the risk of noxious secondary metabolites, endangering human health and ecological balance, and requiring constant monitoring by water companies. Although hydrogen peroxide (H2O2) has been widely reported as an effective agent for the control of cyanobacteria, being Microcystis aeruginosa one of the most studied species, very limited data is available on its effects over Dolichospermum circinale. Therefore, this study aimed to evaluate the impact of H2O2 on D. circinale and comparing it to the effects over the M. aeruginosa. The treatment was performed in cyanobacterial cultures with the application of 2 and 5 mg L-1 of H2O2 under visible light. To measure the impact of the treatment, intact cells were counted and cell re-growth monitored. Geosmin and microcystin, cell pigments, color, and organic matter in water were also analyzed during the treatment. The results showed that even the smallest H2O2 concentration (2 mg L-1) was able to completely remove D. circinale cells. Although M. aeruginosa could only be completely removed using 5 mg L-1, the few cells remaining after the application of 2 mg L-1 were not viable and did not re-grew after 15 days. Total microcystin concentration increased after M. aeruginosa was exposed to H2O2, suggesting that oxidative stress may increase the detection of this metabolite when the cells are lysed. While 2 mg L-1 was able to significantly decrease total geosmin, the addition of 5 mg L-1 did not improve removal. Chlorophyll-a was readily degraded after cell rupture but the same did not happen to phycocyanin, demonstrating its high resilience to this oxidant. Color and organic matter increased for the M. aeruginosa but decreased for the D. circinale suspension, probably because the higher concentration of the M. aeruginosa yielded more extracellular content to the water which was not able to be degraded by the amount of H2O2 applied.
Collapse
Affiliation(s)
- Marianna Correia Aragão
- Federal University of Ceara, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil.
| | - Kelly Cristina Dos Reis
- Federal University of Ceara, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil.
| | - Maria Aparecida Melo Rocha
- Federal University of Ceara, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil.
| | - Dayvson de Oliveira Guedes
- Federal University of Ceara, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil.
| | - Eduardo Costa Dos Santos
- Federal University of Ceara, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil.
| | - Jose Capelo-Neto
- Federal University of Ceara, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil.
| |
Collapse
|