1
|
Park Y, Kang HM, Ra K, Yoo CM, Park JG, Hwang JW, Lee KW. Acute and chronic effects of polymetallic nodule leachate in the marine copepod Tigriopus koreanus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177274. [PMID: 39477112 DOI: 10.1016/j.scitotenv.2024.177274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024]
Abstract
Polymetallic nodules containing manganese, iron, and other metals are found in the seafloor. Leachates of polymetallic nodules can be discharged into seawater during ocean mining, disrupting marine ecosystems and causing adverse effects on marine organisms. Here, we investigate the acute and chronic effects of two polymetallic nodule leachates on the life-history parameters (mortality, development, and fecundity) and transcriptional differences of detoxification, antioxidant, and reproduction-related genes for cytochrome P450, glutathione S-transferase, and vitellogenin in the marine copepod Tigriopus koreanus. We also examine single and combined effects for six metals whose concentrations differ between the two leachates. No significant changes in mortality were observed, but developmental time was significantly shortened and fecundity increased in T. koreanus in response to exposure to the leachates. No adverse effects on physiological parameters were seen, but transcriptional differences by leachates were evident. In addition, manganese and iron in the leachates improved copepod development when they were combined with other metals. The findings of this study elucidate the potential impact of polymetallic nodule leachates on marine copepods.
Collapse
Affiliation(s)
- Yeun Park
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea; Korea National University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Hye-Min Kang
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea; Korea National University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Kongtae Ra
- Marine Environment Research Department, KIOST, Busan 49111, Republic of Korea
| | - Chan Min Yoo
- Ocean Georesources Research Department, KIOST, Busan 49111, Republic of Korea
| | - Jae Gon Park
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea; Korea National University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Ji-Won Hwang
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea; Korea National University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Kyun-Woo Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea; Korea National University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
2
|
Di Y, Li L, Xu J, Liu A, Zhao R, Li S, Li Y, Ding J, Chen S, Qu M. MAPK signaling pathway enhances tolerance of Mytilus galloprovincialis to co-exposure of sulfamethoxazole and polyethylene microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125007. [PMID: 39307337 DOI: 10.1016/j.envpol.2024.125007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Microplastics (MPs) and antibiotics often coexist in complex marine environments, yet their combined detrimental effects on marine organisms remain underexplored. This study evaluated the effects of polyethylene microplastics (PE, 200 μg/L) and sulfamethoxazole (SMX, 50 μg/L), both individually and in combination, on Mytilus galloprovincialis. The exposure lasted 6 days, followed by a 6-day recovery period. Bioaccumulation, DNA damage, pollutants transport/metabolism related responses and responding alterations of mitogen-activated protein kinase (MAPK) signaling pathway were detected in gills and digestive glands. Bioaccumulation of SMX/PE in mussels occurred in a tissue-specific manner, co-exposure altered SMX contents in investigated tissues. Co-exposure did not induce extra DNA damage, elevated DNA damage was alleviated during the recovery period in all treated groups. The exposure of SMX/PE exerted different alterations in pollutants transport/metabolism related responses, characterized by multixenobiotic resistance and relative expression of key genes (cytochrome P450 monooxygenase, glutathione S-transferase, ATP-binding cassette transporters). Key molecules (p38 MAPK, c-jun N-terminal kinase, extracellular regulated protein kinase, nuclear factor-κB and tumor protein p53) in MAPK signaling pathway were activated at transcriptional and translational levels after SMX/PE and co-exposure. Co-regulation between MAPK members and pollutants transport/metabolism related factors was revealed, suggesting MAPK signaling pathway served as a regulating hub in exposed mussels to conquer SMX/PE stress. Overall, this study provides new insights on SMX/PE induced health risks in marine mussels and potential mechanism through MAPK cascades regulation.
Collapse
Affiliation(s)
- Yanan Di
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Liya Li
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Jianzhou Xu
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Ao Liu
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Ruoxuan Zhao
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Shuimei Li
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Yichen Li
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Jiawei Ding
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Siyu Chen
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Mengjie Qu
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
3
|
Kim MS, Yang Z, Lee JS. In silico identification and characterization of microRNAs from rotifers, cladocerans, and copepods. MARINE POLLUTION BULLETIN 2024; 209:117098. [PMID: 39442355 DOI: 10.1016/j.marpolbul.2024.117098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate post-transcription and influence various biological processes across species. Despite various studies of miRNAs in vertebrates, plants, and other organisms, miRNA data in aquatic invertebrates are insufficient. In this study, we identified miRNAs from four aquatic invertebrate species that are widely used in aquatic toxicology: the rotifer Brachionus koreanus, the water flea Daphnia magna, the cyclopoid copepod Paracyclopina nana, and the harpacticoid copepod Tigriopus japonicus, using next-generation sequencing and in silico analysis. We identified total 188, 41, 47, and 100 miRNAs from each species, and target genes were predicted based on 3'-untranslated region information. Target prediction and functional annotation results provided the biological processes of these miRNAs in various development-related mechanisms, signaling transduction, and metabolism-related pathways. Moreover, the network between the miRNAs and their targets concerning defense-related and antioxidant genes suggests the suitability of miRNAs as biomarkers in ecotoxicological studies.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Liao M, Xu M, Hu R, Xu Z, Bonvillain C, Li Y, Li X, Luo X, Wang J, Wang J, Zhao S, Gu Z. The chromosome-level genome assembly of the red swamp crayfish Procambarus clarkii. Sci Data 2024; 11:885. [PMID: 39143139 PMCID: PMC11325019 DOI: 10.1038/s41597-024-03718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Red swamp crayfish, Procambarus clarkii, is the most cultured freshwater crayfish species. It attracts significant research attention due to its considerable economic importance. However, the limited availability of genome information has impeded further genetic studies and breeding programs. By utilizing Illumina, PacBio, and Hi-C sequencing technologies, we present a more comprehensive and continuous chromosome-level assembly for P. clarkii than the published one. The final genome size is 4.03 Gb, consisting of 2,358 scaffolds with a N50 of 42.87 Mb. Notably, 3.68 Gb, corresponding to 91.42% of the genome, was anchored to 94 chromosomes. The assembly comprises 70.64% repetitive sequences, including 5.21% tandem repeats and 65.40% transposable elements. Additionally, a total of 4,456 non-coding RNAs and 28,852 protein-coding genes were predicted in the P. clarkii genome, with 96.26% of the genes were annotated. This high-quality genome assembly not only represents a significant improvement for the genome of P. clarkii and provides insights into the unique genome evolution, but also offers valuable information for developing freshwater aquaculture and accelerating genetic breeding.
Collapse
Affiliation(s)
- Mingcong Liao
- College of Fisheries and Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Meng Xu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Ruixue Hu
- College of Fisheries and Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Zhiwei Xu
- College of Fisheries and Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Christopher Bonvillain
- Department of Biological Sciences, Nicholls State University, P.O. Box 2021, Thibodaux, Louisiana, 70310, USA
| | - Ying Li
- College of Fisheries and Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Xu Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xiaohong Luo
- College of Fisheries and Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Jianghua Wang
- College of Fisheries and Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Wang
- Genetic engineering research center, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shancen Zhao
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Zemao Gu
- College of Fisheries and Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan laboratory, Wuhan, 430070, China.
| |
Collapse
|
5
|
Xie D, Wei H, Huang Y, Qian J, Zhang Y, Wang M. Elevated temperature as a dominant driver to aggravate cadmium toxicity: Investigations through toxicokinetics and omics. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134789. [PMID: 38843636 DOI: 10.1016/j.jhazmat.2024.134789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/26/2024]
Abstract
Despite the great interest in the consequences of global change stressors on marine organisms, their interactive effects on cadmium (Cd) bioaccumulation/biotoxicity are very poorly explored, particularly in combination with the toxicokinetic model and molecular mechanism. According to the projections for 2100, this study investigated the impact of elevated pCO2 and increased temperature (isolated or joint) on Cd uptake dynamics and transcriptomic response in the marine copepod Tigriopus japonicus. Toxicokinetic results showed significantly higher Cd uptake in copepods under increased temperature and its combination with elevated pCO2 relative to the ambient condition, linking to enhanced Cd bioaccumulation. Transcriptome analysis revealed that, under increased temperature and its combination with elevated pCO2, up-regulated expression of Cd uptake-related genes but down-regulation of Cd exclusion-related genes might cause increased cellular Cd level, which not only activated detoxification and stress response but also induced oxidative stress and concomitant apoptosis, demonstrating aggravated Cd biotoxicity. However, these were less pronouncedly affected by elevated pCO2 exposure. Therefore, temperature seems to be a primary factor in increasing Cd accumulation and its toxicity in the future ocean. Our findings suggest that we should refocus the interactive effects between climate change stressors and Cd pollution, especially considering temperature as a dominant driver.
Collapse
Affiliation(s)
- Dongmei Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuehan Huang
- School of International Education, Beijing University of Chemical Technology, Beijing 102200, China
| | - Jing Qian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yunlei Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Niu Y, Wei H, Zhang Y, Su J. Transcriptome response of a marine copepod in response to environmentally-relevant concentrations of saxitoxin. MARINE POLLUTION BULLETIN 2024; 205:116546. [PMID: 38870575 DOI: 10.1016/j.marpolbul.2024.116546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/05/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Paralytic shellfish toxins (PSTs) can pose a serious threat to human health. Among them, saxitoxin (STX) is one of the most potent natural neurotoxins. Here, the copepod Tigriopus japonicus, was exposed to environmentally relevant concentrations (2.5 and 25 μg/L) STX for 48 h. Although no lethal effects were observed at both concentrations, the transcriptome was significantly altered, and displayed a concentration-dependent response. STX exposure decreased the copepod's metabolism and compromised immune defense and detoxification. Additionally, STX disturbed signal transduction, which might affect other cellular processes. STX exposure could inhibit the copepod's chitin metabolism, disrupting its molting process. Also, the processes related to damage repair and protection were up-regulated to fight against high concentration exposure. Collectively, this study has provided an early warning of PSTs for coastal ecosystem not only because of their potent toxicity effect but also their bioaccumulation that can transfer up the food chain after ingestion by copepods.
Collapse
Affiliation(s)
- Yaolu Niu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yunlei Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jie Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, National Research and Development Center for Marine Fish Processing, Xiamen 361013, China.
| |
Collapse
|
7
|
Liu T, Zhang L. Multigenerational effects of arsenate on development and reproduction in marine copepod Tigriopus japonicus. CHEMOSPHERE 2023; 342:140158. [PMID: 37709060 DOI: 10.1016/j.chemosphere.2023.140158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Arsenic (As) is a persistent toxic substance, however, its toxicity to marine zooplankton remains unclear. In this study, copepods were exposed to a series of dissolved arsenate (As(V)) for four generations (F0-F3) and subsequently depurated in clean seawater for two generations (F4-F5) to assess multigenerational toxicity of As(V). As(V) exposure prolonged copepod development. The development time were 1.9, 2.4, and 3.4 days longer than the control in F0 when exposed to 50, 100, and 500 μg/L As(V), respectively, and the toxicity increased with generations. Moreover, As(V) reduced the reproductive capacity of copepods, and this effect become more severe during generation succession. The 10-day fecundities were reduced from 80 to 85 eggs per female in the control to 42 eggs per female, the lowest level, in 500 μg/L As(V) exposure group in F3. Nevertheless, the fecundity was recovered to the control level in the offspring of the 50 and 100 μg/L As(V) exposed groups (F4), suggesting it was an acclimation effect of copepods during As(V) exposure. In addition, the survival rate, development time, and reproductive parameters were significantly correlated with the As accumulation in copepods. Overall, As(V) exposure caused As bioaccumulation which negatively affected copepods' survival, development, and reproductive traits, and this toxic effect was amplified with generations and concentrations. Therefore, the multigenerational toxicity of As should be considered in the environmental risk assessments.
Collapse
Affiliation(s)
- Tianrui Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572025, China.
| |
Collapse
|
8
|
Rotolo F, Roncalli V, Cieslak M, Gallo A, Buttino I, Carotenuto Y. Transcriptomic analysis reveals responses to a polluted sediment in the Mediterranean copepod Acartia clausi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122284. [PMID: 37543074 DOI: 10.1016/j.envpol.2023.122284] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Marine sediments are regarded as sinks for several classes of contaminants. Characterization and effects of sediments on marine biota now require a multidisciplinary approach, which includes chemical and ecotoxicological analyses and molecular biomarkers. Here, a gene expression study was performed to measure the response of adult females of the Mediterranean copepod Acartia clausi to elutriates of polluted sediments (containing high concentrations of polycyclic aromatic hydrocarbons, PAHs, and heavy metals) from an industrial area in the Southern Tyrrhenian Sea (Bagnoli-Coroglio). Functional annotation of the A. clausi transcriptome generated as reference here, showed a good quality of the assembly and great homology with other copepod and crustacean sequences in public databases. This is one of the few available transcriptomic resources for this widespread copepod species of great ecological relevance in temperate coastal areas. Differential expression analysis between females exposed to the elutriate and those in control seawater identified 1000 differentially expressed genes, of which 743 up- and 257 down-regulated. Within the up-regulated genes, the most represented functions were related to proteolysis (lysosomal protease, peptidase, cathepsin), response to stress and detoxification (heat-shock protein, superoxide dismutase, glutathione-S-transferase, cytochrome P450), and cytoskeleton structure (α- and β-tubulin). Down-regulated genes were mostly involved with ribosome structure (ribosomal proteins) and DNA binding (histone proteins, transcription factors). Overall, these results suggest that processes such as transcription, translation, protein degradation, metabolism of biomolecules, reproduction, and xenobiotic detoxification were altered in the copepod in response to polluted elutriates. In conclusion, our results contribute to gaining information on the transcriptomic responses of copepods to polluted sediments. They will also prompt the selection of genes of interest to be used as biomarkers of exposure to PAHs and heavy metals in molecular toxicology studies on copepods, and in general, in comparative functional genomic studies on marine zooplankton.
Collapse
Affiliation(s)
- Flavio Rotolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy
| | - Vittoria Roncalli
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Matthew Cieslak
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, 1993 East-West Rd, Honolulu, HI, 96822, USA
| | - Alessandra Gallo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Isabella Buttino
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy
| | - Ylenia Carotenuto
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| |
Collapse
|
9
|
Park Y, Park JG, Kang HM, Jung JH, Kim M, Lee KW. Toxic effects of the wastewater produced by underwater hull cleaning equipment on the copepod Tigriopus japonicus. MARINE POLLUTION BULLETIN 2023; 191:114991. [PMID: 37146552 DOI: 10.1016/j.marpolbul.2023.114991] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Unmanaged disposal of wastewater produced by underwater hull cleaning equipment (WHCE) is suspected to induce toxic effects to marine organisms because wastewater contains several anti-fouling compounds. To investigate the effects of WHCE on marine copepod, we examined the toxicity on life parameters (e.g. mortality, development, and fecundity) and gene expression changes of Tigriopus japonicus as model organism. Significant mortality and developmental time changes were observed in response to wastewater. No significant differences in fecundity were observed. Transcriptional profiling with differentially expressed genes from WHCE exposed T. japonicus showed WHCE may induce genotoxicity associated genes and pathways. In addition, potentially neurotoxic effects were evident following exposure to WHCE. The findings suggest that wastewater released during hull cleaning should be managed to reduce physiological and molecular deleterious effects in marine organisms.
Collapse
Affiliation(s)
- Yeun Park
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jae Gon Park
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hye-Min Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Moonkoo Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kyun-Woo Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
10
|
Xie D, Zhang H, Wei H, Lin L, Wang D, Wang M. Nanoplastics potentiate mercury toxicity in a marine copepod under multigenerational exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106497. [PMID: 36940520 DOI: 10.1016/j.aquatox.2023.106497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The continuous fragmentation of plastics and release of synthetic nanoplastics from products have been aggravating nanoplastic pollution in the marine ecosystem. The carrier role of nanoplastics may increase the bioavailability and toxicity effects of toxic metals, e.g., mercury (Hg), which is of growing concern. Here, the copepod Tigriopus japonicus was exposed to polystyrene nanoplastics (PS NPs) and Hg (alone or combined) at environmental realistic concentrations for three generations (F0-F2). Then, Hg accumulation, physiological endpoints, and transcriptome were analyzed. The results showed that the copepod's reproduction was significantly inhibited under PS NPs or Hg exposure. The presence of PS NPs caused significantly higher Hg accumulation, lower survival, and lower offspring production in copepods relative to Hg exposure, suggesting an increased threat to the copepod's survivorship and health. From the molecular perspective, combined PS NPs and Hg caused a graver effect on the DNA replication, cell cycle, and reproduction pathways relative to Hg exposure, linking to lower levels of survivorship and reproduction. Taken together, this study provides an early warning of nanoplastic pollution for the marine ecosystem not only because of their adverse effect per se but also their carrier role for increasing Hg bioaccumulation and toxicity in copepods.
Collapse
Affiliation(s)
- Dongmei Xie
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Hongmai Zhang
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
| | - Hui Wei
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lin Lin
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dazhi Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
11
|
Ahmad Dar S, Abd Al Galil FM. Biodegradation, Biosynthesis, Isolation, and Applications of Chitin and Chitosan. HANDBOOK OF BIODEGRADABLE MATERIALS 2023:677-717. [DOI: 10.1007/978-3-031-09710-2_72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Kang HM, Lee J, Lee YJ, Park Y, Lee E, Shin AY, Han J, Lee HS, Lee JS, Lee KW. Transcriptional and toxic responses to saxitoxin exposure in the marine copepod Tigriopus japonicus. CHEMOSPHERE 2022; 309:136464. [PMID: 36122751 DOI: 10.1016/j.chemosphere.2022.136464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Saxitoxin (STX) is a highly toxic marine neurotoxin produced by phytoplankton and a growing threat to ecosystems worldwide due to the spread of toxic algae. Although STX is an established sodium channel blocker, the overall profile of transcriptional levels in STX-exposed organisms has yet to be described. Here, we describe a toxicity assay and transcriptome analysis of the copepod Tigriopus japonicus exposed to STX. The half-maximal lethal concentration of STX was 12.35 μM, and a rapid mortality slope was evident at concentrations between 12 and 13 μM. STX induced changes in swimming behavior among the copepods after 10 min of exposure. In transcriptome analysis, gene ontology revealed that the genes involved in nervous system and gene expression were highly enriched. In addition, the congenital neurological disorder and nuclear factor erythroid 2-related factor 2-mediated oxidative stress pathways were identified to be the most significant in network analysis and toxicity pathway analysis, respectively. This study provides valuable information about the effects of STX and related transcriptional responses in T. japonicus.
Collapse
Affiliation(s)
- Hye-Min Kang
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Jihoon Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Yeon-Ju Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Yeun Park
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Euihyeon Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - A-Young Shin
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Jeonghoon Han
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Hyi-Seung Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Jong Seok Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea
| | - Kyun-Woo Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, South Korea.
| |
Collapse
|
13
|
Kim DH, Jeong H, Kim MS, Kim S, Souissi S, Park HG, Hagiwara A, Lee JS. Identification and characterization of homeobox gene clusters in harpacticoid and calanoid copepods. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:215-224. [PMID: 34855303 DOI: 10.1002/jez.b.23112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/10/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
In this study, we have identified the entire complement of typical homeobox (Hox) genes (Lab, Pb, Dfd, Scr, Antp, Ubx, Abd-A, and Abd-B) in harpacticoid and calanoid copepods and compared them with the cyclopoid copepod Paracyclopina nana. The harpacticoid copepods Tigriopus japonicus and Tigriopus kingsejongensis have seven Hox genes (Lab, Dfd, Scr, Antp, Ubx, Abd-A, and Abd-B) and the Pb and Ftz genes are also present in the cyclopoid copepod P. nana. In the Hox gene cluster of the calanoid copepod Eurytemora affinis, all the Hox genes were present linearly in the genome but the Antp gene was duplicated. Of the three representative copepods, the P. nana Hox gene cluster was the most compact due to its small genome size. The Hox gene expression profile patterns in the three representative copepods were stage-specific. The Lab, Dfd, Scr, Pb, Ftz, and Hox3 genes showed a high expression in early developmental stages but Antp, Ubx, Abd-A, and Abd-B genes were mostly expressed in later developmental stages, implying that these Hox genes may be closely associated with the development of segment identity during early development.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Sami Souissi
- Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, CNRS, UMR 8187 LOG, Université de Lille, Université du Littoral Côte d'Opale, Lille, France
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
14
|
Han J, Park Y, Jeong H, Park JC. Effects of particulate matter (PM 2.5) on life history traits, oxidative stress, and defensome system in the marine copepod Tigriopus japonicus. MARINE POLLUTION BULLETIN 2022; 178:113588. [PMID: 35358891 DOI: 10.1016/j.marpolbul.2022.113588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Particulate matter (PM2.5) generated in large cities creates new problems in marine ecosystems and may adversely affect its inhabitants. However, the mechanisms underlying the same remain unclear; hence, we investigated the effects of PM2.5 on life history traits (e.g., mortality, development, and fecundity), cellular reactive oxygen species (ROS) levels, antioxidant enzyme (e.g., glutathione peroxidase [GPx], superoxide dismutase [SOD], and catalase [CAT]) activities, and the transcript levels of detoxification-related genes (cytochrome P450s [CYPs]) and antioxidant (glutathione S-transferases [GSTs]) in the copepod Tigriopus japonicus. Among the life history traits, developmental time was the only trait to significantly deviate (P < 0.05) in response to PM2.5 (compared to that in the controls). Significant changes in ROS levels and antioxidant enzymatic activities (P < 0.05) in response to PM2.5, suggested that PM2.5 can induce oxidative stress, leading to adverse effects on the T. japonicus life history. In addition, PM2.5 induced a differential regulation of various CYP and GST genes, particularly CYP307E1, GST-kappa, and GST-sigma were significantly upregulated (P < 0.05), suggesting that these genes likely play crucial roles in detoxification mechanisms and could be useful as reliable biomarkers for PM2.5 toxicity. Overall, the results of this study provide new insights into the potential toxicity of PM2.5.
Collapse
Affiliation(s)
- Jeonghoon Han
- Marine Bio-Resources Research Unit, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea.
| | - Yeun Park
- Marine Biotechnology Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea; University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Hyeryeong Jeong
- Marine Environmental Research Center, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| |
Collapse
|
15
|
Bernot JP, Avdeyev P, Zamyatin A, Dreyer N, Alexeev N, Pérez-Losada M, Crandall KA. Chromosome-level genome assembly, annotation, and phylogenomics of the gooseneck barnacle Pollicipes pollicipes. Gigascience 2022; 11:giac021. [PMID: 35277961 PMCID: PMC8917513 DOI: 10.1093/gigascience/giac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/09/2022] [Accepted: 02/11/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The barnacles are a group of >2,000 species that have fascinated biologists, including Darwin, for centuries. Their lifestyles are extremely diverse, from free-swimming larvae to sessile adults, and even root-like endoparasites. Barnacles also cause hundreds of millions of dollars of losses annually due to biofouling. However, genomic resources for crustaceans, and barnacles in particular, are lacking. RESULTS Using 62× Pacific Biosciences coverage, 189× Illumina whole-genome sequencing coverage, 203× HiC coverage, and 69× CHi-C coverage, we produced a chromosome-level genome assembly of the gooseneck barnacle Pollicipes pollicipes. The P. pollicipes genome is 770 Mb long and its assembly is one of the most contiguous and complete crustacean genomes available, with a scaffold N50 of 47 Mb and 90.5% of the BUSCO Arthropoda gene set. Using the genome annotation produced here along with transcriptomes of 13 other barnacle species, we completed phylogenomic analyses on a nearly 2 million amino acid alignment. Contrary to previous studies, our phylogenies suggest that the Pollicipedomorpha is monophyletic and sister to the Balanomorpha, which alters our understanding of barnacle larval evolution and suggests homoplasy in a number of naupliar characters. We also compared transcriptomes of P. pollicipes nauplius larvae and adults and found that nearly one-half of the genes in the genome are differentially expressed, highlighting the vastly different transcriptomes of larvae and adult gooseneck barnacles. Annotation of the genes with KEGG and GO terms reveals that these stages exhibit many differences including cuticle binding, chitin binding, microtubule motor activity, and membrane adhesion. CONCLUSION This study provides high-quality genomic resources for a key group of crustaceans. This is especially valuable given the roles P. pollicipes plays in European fisheries, as a sentinel species for coastal ecosystems, and as a model for studying barnacle adhesion as well as its key position in the barnacle tree of life. A combination of genomic, phylogenetic, and transcriptomic analyses here provides valuable insights into the evolution and development of barnacles.
Collapse
Affiliation(s)
- James P Bernot
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20012, USA
| | - Pavel Avdeyev
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| | - Anton Zamyatin
- Computer Technologies Laboratory, ITMO University, Saint-Petersburg 197101, Russia
| | - Niklas Dreyer
- Department of Life Science, National Taiwan Normal University, Taipei 106, Taiwan
- Biodiversity Program, International Graduate Program, Academia Sinica, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Nikita Alexeev
- Computer Technologies Laboratory, ITMO University, Saint-Petersburg 197101, Russia
| | - Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
- Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20012, USA
- Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
16
|
Kadiene EU, Ouddane B, Gong HY, Hwang JS, Souissi S. Multigenerational study of life history traits, bioaccumulation, and molecular responses of Pseudodiaptomus annandalei to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113171. [PMID: 34999339 DOI: 10.1016/j.ecoenv.2022.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Metal pollution provide a substantial challenge for environmental health. This study investigated the multigeneration effects of cadmium on populations of the copepod species Pseudodiaptomus annandalei, exposed to a sublethal concentration, 40 µg/L of cadmium (Cd), over 10 generations. At the end of each generation, copepod individuals were collected to estimate fecundity, bioaccumulation, and real time qPCR quantification of selected differentially expressed genes to evaluate Cd effects and sex-specific responses of copepods across multiple generations. Our results revealed a sex-specific accumulation of Cd integrating 10 successive generations. The concentration of Cd was significantly higher (p < 0.05) in males than in females. We also observed a generational increase in Cd accumulation. Fecundity increased, with the exception of the first generation, possibly as a compensation for a decrease of copepod population size under Cd exposure. Protein expression of copepods exposed to Cd occurred in a sex-specific manner. Hemerythrin was mostly up-regulated in both copepod sexes exposed to Cd with males having the highest expression levels, while heat shock protein 70 was mostly up-regulated in males and down-regulated in female copepods, both exposed to Cd. Although copepods are known to develop adaptive mechanisms to tolerate toxic chemicals, continuous exposure to metals could lead to the bioaccumulation of metals in their offspring through maternal transfer and direct uptake from the medium over several generations. As a consequence, increased metal concentrations in copepods could result in physiological damage, reducing their fitness, and possibly compromise copepod population structures. This study showed that mortality, life history traits and molecular responses of a copepod species provided important toxicological endpoints and bio-markers for environmental risk assessments. Environmental pressure resulting from continuous exposure to persistent pollutants like Cd, could have evolutionary significance. The tendency for copepods to selectively adapt to a toxic environment through modifications, could increase their chance of survival over a long term.
Collapse
Affiliation(s)
- Esther U Kadiene
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Institute of Marine Biology, National Taiwan Ocean University, 20224 Keelung, Taiwan
| | - Baghdad Ouddane
- Université de Lille, Equipe Physico-Chimie de l'Environnement, Laboratoire LASIR UMR CNRS 8516, 59655 Villeneuve d'Ascq Cedex, France
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, 20224 Keelung, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France.
| |
Collapse
|
17
|
Ahmad Dar S, Abd Al Galil FM. Biodegradation, Biosynthesis, Isolation, and Applications of Chitin and Chitosan. HANDBOOK OF BIODEGRADABLE MATERIALS 2022:1-42. [DOI: 10.1007/978-3-030-83783-9_72-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/13/2022] [Indexed: 09/01/2023]
|
18
|
Glutathione S-Transferases in Marine Copepods. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9091025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The glutathione S-transferase (GST) is a complex family of phase II detoxification enzymes, known for their ability to catalyze the conjugation of the reduced form of glutathione (GSH) to a wide variety of endogenous and exogenous electrophilic compounds for detoxification purposes. In marine environments, copepods are constantly exposed to multiple exogenous stressors, thus their capability of detoxification is key for survival. Full identification of the GST family in copepods has been limited only to few species. As for insects, the GST family includes a wide range of genes that, based on their cellular localization, can be divided in three classes: cytosolic, microsomal, and mitochondrial. The role of GSTs might have class-specific features, thus understanding the nature of the GST family has become crucial. This paper covers information of the GST activity in marine copepods based on studies investigating gene expression, protein content, and enzymatic activity. Using published literature and mining new publicly available transcriptomes, we characterized the multiplicity of the GST family in copepods from different orders and families, highlighting the possible role of these genes as biomarker for ocean health status monitoring.
Collapse
|
19
|
Skern-Mauritzen R, Malde K, Eichner C, Dondrup M, Furmanek T, Besnier F, Komisarczuk AZ, Nuhn M, Dalvin S, Edvardsen RB, Klages S, Huettel B, Stueber K, Grotmol S, Karlsbakk E, Kersey P, Leong JS, Glover KA, Reinhardt R, Lien S, Jonassen I, Koop BF, Nilsen F. The salmon louse genome: Copepod features and parasitic adaptations. Genomics 2021; 113:3666-3680. [PMID: 34403763 DOI: 10.1016/j.ygeno.2021.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Copepods encompass numerous ecological roles including parasites, detrivores and phytoplankton grazers. Nonetheless, copepod genome assemblies remain scarce. Lepeophtheirus salmonis is an economically and ecologically important ectoparasitic copepod found on salmonid fish. We present the 695.4 Mbp L. salmonis genome assembly containing ≈60% repetitive regions and 13,081 annotated protein-coding genes. The genome comprises 14 autosomes and a ZZ-ZW sex chromosome system. Assembly assessment identified 92.4% of the expected arthropod genes. Transcriptomics supported annotation and indicated a marked shift in gene expression after host attachment, including apparent downregulation of genes related to circadian rhythm coinciding with abandoning diurnal migration. The genome shows evolutionary signatures including loss of genes needed for peroxisome biogenesis, presence of numerous FNII domains, and an incomplete heme homeostasis pathway suggesting heme proteins to be obtained from the host. Despite repeated development of resistance against chemical treatments L. salmonis exhibits low numbers of many genes involved in detoxification.
Collapse
Affiliation(s)
| | - Ketil Malde
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway; Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Christiane Eichner
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Michael Dondrup
- Computational Biology Unit, Department of Informatics, University of Bergen, Thormøhlens Gate 55, 5008 Bergen, Norway
| | - Tomasz Furmanek
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Francois Besnier
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Anna Zofia Komisarczuk
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Michael Nuhn
- EMBL-The European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Sussie Dalvin
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway
| | - Sven Klages
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Carl von Linné Weg 10, D-50829 Köln, Germany
| | - Kurt Stueber
- Max Planck Genome Centre Cologne, Carl von Linné Weg 10, D-50829 Köln, Germany
| | - Sindre Grotmol
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Egil Karlsbakk
- Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Paul Kersey
- EMBL-The European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK; Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Jong S Leong
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Kevin A Glover
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway; Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway
| | - Richard Reinhardt
- Max Planck Genome Centre Cologne, Carl von Linné Weg 10, D-50829 Köln, Germany
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Oluf Thesens vei 6, 1433 Ås, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, Thormøhlens Gate 55, 5008 Bergen, Norway
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Frank Nilsen
- Institute of Marine Research, Postboks 1870 Nordnes, 5817 Bergen, Norway; Sea Lice Research Centre. Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53, 5006 Bergen, Norway.
| |
Collapse
|
20
|
Park JC, Lee JS. Genome-wide identification of heat shock proteins in harpacticoid, cyclopoid, and calanoid copepods: Potential application in marine ecotoxicology. MARINE POLLUTION BULLETIN 2021; 169:112545. [PMID: 34111604 DOI: 10.1016/j.marpolbul.2021.112545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Constant evolution of omics-technologies has provided access to identification of various important gene families. Recently, genome assemblies on widely used ecotoxicological model species, including rotifers and copepods have been completed and representative detoxification-related gene families have been discovered for biomarker genes. However, despite ubiquitous presence of stress-response proteins, limited information on full genome-wide report on heat shock proteins (Hsps) is available. Various studies have demonstrated multiple cellular functions of Hsps in living organisms as an important biomarker in response to abiotic and biotic stressors, however, full genome-wide identification of Hsps, particularly in aquatic invertebrates, has not been reported. This is the first study to report the entire Hsps and basal gene expression levels in three regional-specific copepods: Tigriopus japonicus and kingsejongensis, Paracyclopina nana, and Eurytemora affnis, and how each Hsp family gene is regulated at a basal level.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
21
|
Choi BS, Kim DH, Kim MS, Park JC, Lee YH, Kim HJ, Jeong CB, Hagiwara A, Souissi S, Lee JS. The genome of the European estuarine calanoid copepod Eurytemora affinis: Potential use in molecular ecotoxicology. MARINE POLLUTION BULLETIN 2021; 166:112190. [PMID: 33711609 DOI: 10.1016/j.marpolbul.2021.112190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
In this study, we sequenced and assembled the genome of a European estuarine calanoid copepod using Oxford Nanopore PromethION and Illumina HiSeq 2500 platforms. The length of the assembled genome was 776.1 Mb with N50 = 474.9 kb (BUSCO 85.9%), and the genome consisted of 2473 contigs. A total of 18,014 genes were annotated and orthologous gene clusters were analyzed in comparison to other copepods. In addition, genome-wide identification of cytochrome P450s, glutathione S-transferases, and ATP-binding cassette transporters in E. affinis was performed to determine gene repertoire of these detoxification-related gene families. Results revealed the presence of species-specific gene inventories, indicating that these gene families have evolved through species-specific gene loss/expansion processes, possibly due to adaptation to different environmental stressors. Our study provides a new inventory of the European estuarine calanoid copepod E. affinis genome with emphasis on phase I, II, and III detoxification systems.
Collapse
Affiliation(s)
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Chang-Bum Jeong
- Department of Marine Science, College of Nature Science, Incheon National University, Incheon 22012, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Sami Souissi
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, UMR 8187 LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
22
|
Tran Van P, Anselmetti Y, Bast J, Dumas Z, Galtier N, Jaron KS, Martens K, Parker DJ, Robinson-Rechavi M, Schwander T, Simion P, Schön I. First annotated draft genomes of nonmarine ostracods (Ostracoda, Crustacea) with different reproductive modes. G3 (BETHESDA, MD.) 2021; 11:jkab043. [PMID: 33591306 PMCID: PMC8049415 DOI: 10.1093/g3journal/jkab043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 11/14/2022]
Abstract
Ostracods are one of the oldest crustacean groups with an excellent fossil record and high importance for phylogenetic analyses but genome resources for this class are still lacking. We have successfully assembled and annotated the first reference genomes for three species of nonmarine ostracods; two with obligate sexual reproduction (Cyprideis torosa and Notodromas monacha) and the putative ancient asexual Darwinula stevensoni. This kind of genomic research has so far been impeded by the small size of most ostracods and the absence of genetic resources such as linkage maps or BAC libraries that were available for other crustaceans. For genome assembly, we used an Illumina-based sequencing technology, resulting in assemblies of similar sizes for the three species (335-382 Mb) and with scaffold numbers and their N50 (19-56 kb) in the same orders of magnitude. Gene annotations were guided by transcriptome data from each species. The three assemblies are relatively complete with BUSCO scores of 92-96. The number of predicted genes (13,771-17,776) is in the same range as Branchiopoda genomes but lower than in most malacostracan genomes. These three reference genomes from nonmarine ostracods provide the urgently needed basis to further develop ostracods as models for evolutionary and ecological research.
Collapse
Affiliation(s)
- Patrick Tran Van
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Yoann Anselmetti
- ISEM—Institut des Sciences de l’Evolution, Montpellier 34090, France
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Zoé Dumas
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Galtier
- ISEM—Institut des Sciences de l’Evolution, Montpellier 34090, France
| | - Kamil S Jaron
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Koen Martens
- Royal Belgian Institute of Natural Sciences, OD Nature, Freshwater Biology, Brussels 1000, Belgium
- Department of Biology, University of Ghent, Ghent 9000, Belgium
| | - Darren J Parker
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Paul Simion
- ISEM—Institut des Sciences de l’Evolution, Montpellier 34090, France
- Université de Namur, LEGE, URBE, Namur 5000, Belgium
| | - Isa Schön
- Royal Belgian Institute of Natural Sciences, OD Nature, Freshwater Biology, Brussels 1000, Belgium
- University of Hasselt, Research Group Zoology, Diepenbeek 3590, Belgium
| |
Collapse
|
23
|
Chitin Synthesis and Degradation in Crustaceans: A Genomic View and Application. Mar Drugs 2021; 19:md19030153. [PMID: 33804177 PMCID: PMC8002005 DOI: 10.3390/md19030153] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
Chitin is among the most important components of the crustacean cuticular exoskeleton and intestinal peritrophic matrix. With the progress of genomics and sequencing technology, a large number of gene sequences related to chitin metabolism have been deposited in the GenBank database in recent years. Here, we summarized the genes and pathways associated with the biosynthesis and degradation of chitins in crustaceans based on genomic analyses. We found that chitin biosynthesis genes typically occur in single or two copies, whereas chitin degradation genes are all multiple copies. Moreover, the chitinase genes are significantly expanded in most crustacean genomes. The gene structure and expression pattern of these genes are similar to those of insects, albeit with some specific characteristics. Additionally, the potential applications of the chitin metabolism genes in molting regulation and immune defense, as well as industrial chitin degradation and production, are also summarized in this review.
Collapse
|
24
|
Gallardo-Escárate C, Valenzuela-Muñoz V, Nuñez-Acuña G, Valenzuela-Miranda D, Gonçalves AT, Escobar-Sepulveda H, Liachko I, Nelson B, Roberts S, Warren W. Chromosome-scale genome assembly of the sea louse Caligus rogercresseyi by SMRT sequencing and Hi-C analysis. Sci Data 2021; 8:60. [PMID: 33574331 PMCID: PMC7878743 DOI: 10.1038/s41597-021-00842-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Caligus rogercresseyi, commonly known as sea louse, is an ectoparasite copepod that impacts the salmon aquaculture in Chile, causing losses of hundreds of million dollars per year. In this study, we report a chromosome-scale assembly of the sea louse (C. rogercresseyi) genome based on single-molecule real-time sequencing (SMRT) and proximity ligation (Hi-C) analysis. Coding RNAs and non-coding RNAs, and specifically long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) were identified through whole transcriptome sequencing from different life stages. A total of 23,686 protein-coding genes and 12,558 non-coding RNAs were annotated. In addition, 6,308 lncRNAs and 5,774 miRNAs were found to be transcriptionally active from larvae to adult stages. Taken together, this genomic resource for C. rogercresseyi represents a valuable tool to develop sustainable control strategies in the salmon aquaculture industry.
Collapse
Affiliation(s)
- Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research, University of Concepción, Concepción, Chile.
- Laboratory of Biotechnology and Aquatic Genomics, Center of Biotechnology, University of Concepción, Concepción, Chile.
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research, University of Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Center of Biotechnology, University of Concepción, Concepción, Chile
| | - Gustavo Nuñez-Acuña
- Interdisciplinary Center for Aquaculture Research, University of Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Center of Biotechnology, University of Concepción, Concepción, Chile
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research, University of Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Center of Biotechnology, University of Concepción, Concepción, Chile
| | - Ana Teresa Gonçalves
- Interdisciplinary Center for Aquaculture Research, University of Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Center of Biotechnology, University of Concepción, Concepción, Chile
| | - Hugo Escobar-Sepulveda
- Interdisciplinary Center for Aquaculture Research, University of Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Center of Biotechnology, University of Concepción, Concepción, Chile
| | | | | | - Steven Roberts
- School of Aquatic and Fishery Sciences (SAFS), University of Washington, Seattle, USA
| | - Wesley Warren
- Bond Life Sciences Center, University of Missouri, Columbia, USA
| |
Collapse
|
25
|
Kim DH, Choi BS, Kang HM, Park JC, Kim MS, Hagiwara A, Lee JS. The genome of the marine water flea Diaphanosoma celebensis: Identification of phase I, II, and III detoxification genes and potential applications in marine molecular ecotoxicology. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 37:100787. [PMID: 33454556 DOI: 10.1016/j.cbd.2020.100787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/19/2022]
Abstract
To assemble the genome of the marine water flea Diaphanosoma celebensis, a sentinel model for marine environmental monitoring, we constructed a high-quality genome using PromethION and HiSeq 2500 platforms. The total length of the assembled genome was 100.08 Mb, with N50 = 2.56 Mb (benchmarking universal single-copy orthologs, 96.9%) and consisted of 179 scaffolds. A total of 15,427 genes were annotated, and orthologous gene clusters in D. celebensis were analyzed and compared with those of the cladocerans Daphnia magna and Daphnia pulex. In addition, phase I, II, and III detoxification gene families of cytochrome P450s, glutathione S-transferases, and ATP-binding cassette were fully identified and revealed lineage-specific gene loss and/or expansion, suggesting that the evolution of detoxification gene families likely modulates fitness and susceptibility in response to environmental stressors. The study improves our understanding of the detoxification-related gene system and should contribute to future studies of molecular ecotoxicology in cladoceran species and their responses to emerging pollutants.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Hye-Min Kang
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
26
|
Lee MC, Choi BS, Kim MS, Yoon DS, Park JC, Kim S, Lee JS. An improved genome assembly and annotation of the Antarctic copepod Tigriopus kingsejongensis and comparison of fatty acid metabolism between T. kingsejongensis and the temperate copepod T. japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100703. [PMID: 32563028 DOI: 10.1016/j.cbd.2020.100703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Copepods in the genus Tigriopus are widely distributed in the intertidal zone worldwide. To assess differences in fatty acid (FA) metabolism among congeneric species in this genus inhabiting polar and temperate environments, we analyzed and compared FA profiles of the Antarctic copepod Tigriopus kingsejongensis and the temperate copepod T. japonicus. Higher amounts of total FAs were found in the Antarctic copepod T. kingsejongensis than the temperate copepod T. japonicus under administration of the identical amount of Tetraselmis suecica. To determine the genomic basis for this, we identified fatty acid metabolism-related genes in an improved genome of T. kingsejongensis. The total length of the assembled genome was approximately 338 Mb with N50 = 1.473 Mb, 938 scaffolds, and a complete Benchmarking Universal Single-Copy Orthologs value of 95.8%. A total of 25,470 genes were annotated using newly established pipeline. We identified eight elongation of very long-chain fatty acid protein (Elovl) genes and nine fatty acid desaturase (Fad) genes in the genome of T. kingsejongensis. In addition, fatty acid profiling suggested that the duplicated Δ5/6 desaturase gene in T. kingsejongensis is likely to play an essential role in synthesis of different FAs in T. kingsejongensis to those in T. japonicus. However, further experimental research is required to validate our in silico findings. This study provides a better understanding of fatty acid metabolism in the Antarctic copepod T. kingsejongensis.
Collapse
Affiliation(s)
- Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|