1
|
van der Most MA, Rietjens IMCM, van den Brink NW. Evaluating non-monotonic dose-response relationships in ecotoxicological risk assessment: A case study based on a systematic review of data on fluoxetine. CHEMOSPHERE 2024; 363:142819. [PMID: 38986776 DOI: 10.1016/j.chemosphere.2024.142819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
The environmental presence of pharmaceuticals, including the antidepressant fluoxetine, has become a subject of concern. Numerous studies have revealed effects of fluoxetine at environmental concentrations. Some of these studies have reported non-monotonic dose-response curves (NMDRs), leading to discussion because of the inconsistent detection of subtle effects and lack of mechanistic understanding. Nevertheless, investigating NMDRs in risk assessment is important, because neglecting them could underestimate potential risks of chemicals at low levels of exposure. Identification and quantification of NMDRs in risk assessment remains challenging, particularly given the prevalence of single outliers and the lack of sound statistical analyses. In response, the European Food Safety Authority (Beausoleil et al., 2016) presented a framework delineating six checkpoints for the evaluation of NMDR datasets, offering a systematic method for their assessment. The present study applies this framework to the case study of fluoxetine, aiming to assess the weight-of-evidence for the reported NMDR relationships. Through a systematic literature search, 53 datasets were selected for analysis against the six checkpoints. The results reveal that while a minority of these datasets meet all checkpoints, a significant proportion (27%) fulfilled at least five. Notably, many studies did not meet checkpoint 3, which requires NMDRs to be based on more than a single outlier. Overall, the current study points out a number of studies with considerable evidence supporting the presence of NMDRs for fluoxetine, while the majority of studies lacks strong evidence. The suggested framework proved useful for analysing NMDRs in ecotoxicological studies, but it is still imperative to develop further understanding of their biological plausibility.
Collapse
|
2
|
Shahid N, Siddique A, Liess M. Predicting the Combined Effects of Multiple Stressors and Stress Adaptation in Gammarus pulex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12899-12908. [PMID: 38984974 PMCID: PMC11270985 DOI: 10.1021/acs.est.4c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Global change confronts organisms with multiple stressors causing nonadditive effects. Persistent stress, however, leads to adaptation and related trade-offs. The question arises: How can the resulting effects of these contradictory processes be predicted? Here we show that Gammarus pulex from agricultural streams were more tolerant to clothianidin (mean EC50 148 μg/L) than populations from reference streams (mean EC50 67 μg/L). We assume that this increased tolerance results from a combination of physiological acclimation, epigenetic effects, and genetic evolution, termed as adaptation. Further, joint exposure to pesticide mixture and temperature stress led to synergistic interactions of all three stressors. However, these combined effects were significantly stronger in adapted populations as shown by the model deviation ratio (MDR) of 4, compared to reference populations (MDR = 2.7). The pesticide adaptation reduced the General-Stress capacity of adapted individuals, and the related trade-off process increased vulnerability to combined stress. Overall, synergistic interactions were stronger with increasing total stress and could be well predicted by the stress addition model (SAM). In contrast, traditional models such as concentration addition (CA) and effect addition (EA) substantially underestimated the combined effects. We conclude that several, even very disparate stress factors, including population adaptations to stress, can act synergistically. The strong synergistic potential underscores the critical importance of correctly predicting multiple stresses for risk assessment.
Collapse
Affiliation(s)
- Naeem Shahid
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Department
of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, 60629 Frankfurt am Main, Germany
| | - Ayesha Siddique
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute
for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Matthias Liess
- System-Ecotoxicology, Helmholtz Centre for Environmental Research −
UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Institute
for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
3
|
Conner LM, Goedert D, Fitzpatrick SW, Fearnley A, Gallagher EL, Peterman JD, Forgione ME, Kokosinska S, Hamilton M, Masala LA, Merola N, Rico H, Samma E, Brady SP. Population origin and heritable effects mediate road salt toxicity and thermal stress in an amphibian. CHEMOSPHERE 2024; 357:141978. [PMID: 38608774 DOI: 10.1016/j.chemosphere.2024.141978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Human impacts on wild populations are numerous and extensive, degrading habitats and causing population declines across taxa. Though these impacts are often studied individually, wild populations typically face suites of stressors acting concomitantly, compromising the fitness of individuals and populations in ways poorly understood and not easily predicted by the effects of any single stressor. Developing understanding of the effects of multiple stressors and their potential interactions remains a critical challenge in environmental biology. Here, we focus on assessing the impacts of two prominent stressors associated with anthropogenic activities that affect many organisms across the planet - elevated salinity (e.g., from road de-icing salt) and temperature (e.g. from climate change). We examined a suite of physiological traits and components of fitness across populations of wood frogs originating from ponds that differ in their proximity to roads and thus their legacy of exposure to pollution from road salt. When experimentally exposed to road salt, wood frogs showed reduced survival (especially those from ponds adjacent to roads), divergent developmental rates, and reduced longevity. Family-level effects mediated these outcomes, but high salinity generally eroded family-level variance. When combined, exposure to both temperature and salt resulted in very low survival, and this effect was strongest in roadside populations. Taken together, these results suggest that temperature is an important stressor capable of exacerbating impacts from a prominent contaminant confronting many freshwater organisms in salinized habitats. More broadly, it appears likely that toxicity might often be underestimated in the absence of multi-stressor approaches.
Collapse
Affiliation(s)
- Lauren M Conner
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Debora Goedert
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Sarah W Fitzpatrick
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA; Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Amber Fearnley
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Emma L Gallagher
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Jessica D Peterman
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Mia E Forgione
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Sophia Kokosinska
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Malik Hamilton
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Lydia A Masala
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Neil Merola
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Hennesy Rico
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Eman Samma
- Southern Connecticut State University, Biology Department, New Haven, CT, USA
| | - Steven P Brady
- Southern Connecticut State University, Biology Department, New Haven, CT, USA.
| |
Collapse
|
4
|
Adamo S. The Integrated Defense System: Optimizing Defense against Predators, Pathogens, and Poisons. Integr Comp Biol 2022; 62:1536-1546. [PMID: 35511215 DOI: 10.1093/icb/icac024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
Insects, like other animals, have evolved defense responses to protect against predators, pathogens, and poisons (i.e., toxins). This paper provides evidence that these three defense responses (i.e., fight-or-flight, immune, and detoxification responses) function together as part of an Integrated Defense System (IDS) in insects. The defense responses against predators, pathogens, and poisons are deeply intertwined. They share organs, resources, and signaling molecules. By connecting defense responses into an IDS, animals gain flexibility, and resilience. Resources can be redirected across fight-or-flight, immune, and detoxification defenses to optimize an individual's response to the current challenges facing it. At the same time, the IDS reconfigures defense responses that are losing access to resources, allowing them to maintain as much function as possible despite decreased resource availability. An IDS perspective provides an adaptive explanation for paradoxical phenomena such as stress-induced immunosuppression, and the observation that exposure to a single challenge typically leads to an increase in the expression of genes for all three defense responses. Further exploration of the IDS will require more studies examining how defense responses to a range of stressors are interconnected in a variety of species. Such studies should target pollinators and agricultural pests. These studies will be critical for predicting how insects will respond to multiple stressors, such as simultaneous anthropogenic threats, for example, climate change and pesticides.
Collapse
Affiliation(s)
- Shelley Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
5
|
Siddique A, Shahid N, Liess M. Multiple Stress Reduces the Advantage of Pesticide Adaptation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15100-15109. [PMID: 34730333 DOI: 10.1021/acs.est.1c02669] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Under global change scenarios, multistress conditions may occur regularly and require adaptation. However, the adaptation to one stressor might be associated with the increased sensitivity to another stressor. Here, we investigated the ecological consequences of such trade-off under multiple stress. We compared the pesticide tolerance of the crustacean Gammarus pulex from agricultural streams with populations from reference streams. Under optimum temperature, G. pulex from agricultural streams were considerably more tolerant to pesticides as compared to the reference populations. Here, we assume that the increased tolerance in agricultural populations is the combination of acclimation, epigenetic effect, and genetic evolution. After experimental pre-exposure to very low concentration (LC50/1000), reference populations showed increased pesticide tolerance. In contrast, pre-exposure did not further increase the tolerance of agricultural populations. Moreover, these populations were more sensitive to elevated temperature alone due to the hypothesized fitness cost of genetic adaptation to pesticides. However, both reference and agricultural populations showed a similar tolerance to the combined stress of pesticides and warming due to stronger synergistic effects in adapted populations. As a result, pesticide adaptation loses its advantage. The combined effect was predicted well using the stress addition model, developed for predicting the synergistic interaction of independent stressors. We conclude that under multistress conditions, adaptation to pesticides reduces the general stress capacity of individuals and trade-off processes increase the sensitivity to additional stressors. This causes strong synergistic effects of additional stressors on pesticide-adapted individuals.
Collapse
Affiliation(s)
- Ayesha Siddique
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research─UFZ, Permoserstraße 15, Leipzig 04318, Germany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
| | - Naeem Shahid
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research─UFZ, Permoserstraße 15, Leipzig 04318, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Street 13, Frankfurt am Main 60438, Germany
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Matthias Liess
- Department of System-Ecotoxicology, Helmholtz Centre for Environmental Research─UFZ, Permoserstraße 15, Leipzig 04318, Germany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany
| |
Collapse
|