1
|
Wang C, Lou Y, Wang T, Li R, Peng M, Gao D, Lei W. Embryonic exposure to water accommodated fraction of crude oil inhibits reproductive capability in adult female marine medaka (Oryzias melastigma). CHEMOSPHERE 2024; 362:142616. [PMID: 38906194 DOI: 10.1016/j.chemosphere.2024.142616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The water accommodated fraction (WAF) of spilled crude oil is a severe threat to the health of marine fish. This study was conducted to investigate the effects of short-term embryonic exposure to the WAF on the ovarian development and reproductive capability of F0 adult female marine medaka (Oryzias melastigma). Following embryonic exposure to the WAF with nominal total petroleum hydrocarbon concentrations of 0.5, 5, 50, and 500 μg/L for 7 days, the number of spawned eggs and gonadosomatic indices of F0 adult females were significantly reduced at 130 days postfertilization. In these F0 adult females, the proportion of mature oocytes was significantly lower, the level of 17β-estradiol was lower, and the level of testosterone was greater than those in control group. The mRNA levels of the follicle-stimulating hormone β subunit, luteinizing hormone β subunit, cytochrome P450 aromatase 19b, estrogen receptor α and β, and androgen receptor α and β genes were upregulated, while the mRNA level of the salmon-type gonadotropin-releasing hormone was downregulated in F0 adult females exposed to the WAF during the embryonic stage. Additionally, the methylation level of vitellogenin (vtg) in F0 adult females was significantly elevated, this might have, in turn, downregulated the mRNA level of vtg. The mortality rate of the unexposed F1 embryos was significantly increased and the hatching success was significantly reduced. These results collectively indicated the necessity of incorporating and evaluating the effects of short-term early-life exposure to crude oil in the assessment of risks to the reproductive health of marine fish.
Collapse
Affiliation(s)
- Chenshi Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China; State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, China
| | - Yingbin Lou
- Dalian Ecological Environment Monitoring Center, Liaoning Province, Dalian, China
| | - Ting Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ruijun Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Mo Peng
- Jiangsu Environmental Monitoring Center, Nanjing, China
| | - Dongxu Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Wei Lei
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, China.
| |
Collapse
|
2
|
Moraes JS, Ballesteros ML, Hued AC, Bonifacio AF, Azambuja TG, Vaz BDS, Martins CDMG. Glyphosate and its formulated product Roundup Transorb R® affect locomotor activity and reproductive and developmental parameters in Jenynsia lineata fish: An intergenerational study. CHEMOSPHERE 2024; 362:142541. [PMID: 38851497 DOI: 10.1016/j.chemosphere.2024.142541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Glyphosate is the most widely utilized herbicide worldwide due to its effectiveness in controlling agricultural weeds. However, its persistence in aquatic ecosystems has raised concerns about the well-being of non-target organisms such as fish. This study aimed to evaluate the effects of chronic exposure (21 days) to glyphosate or its formulated product Roundup Transorb R®, at an environmentally relevant concentration permitted by regulations in certain countries (65 μg/L of glyphosate), on the locomotor activity and reproductive success of the fish Jenynsia lineata, as well as on the morphology/development and locomotor activity of its offspring, as intergenerational effects. Neither the pure nor formulated herbicide altered the distance traveled and velocity of adult fish exposed to the herbicide (F0), but they negatively affected reproductive success, decreasing the percentage of positive response to the presence of the female, reducing the number of gravid females, causing abortions, and lowering offspring survival (F1). In the F1 generation, a decrease in weight and length was noted along with developmental abnormalities in both treatment groups (pure or formulated glyphosate), with the formulation causing more harm. Observed developmental abnormalities included muscle atrophy, ascites, pigmentary disorders, vertebral agenesis, spinal deviation, and exophthalmia. Furthermore, parental exposure to pure glyphosate led to an increase in the distance traveled and velocity of F1 (hyperlocomotion), whereas exposure to the formulated product resulted in a decrease in these behaviors (hypolocomotion) of F1. These findings highlight the toxic effects of glyphosate at very low concentrations, although varying between pure and formulated, and demonstrate the intergenerational consequences of herbicide exposure, underscoring the risk to the survival of fish offspring in glyphosate-contaminated environments.
Collapse
Affiliation(s)
- Jenifer Silveira Moraes
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| | - María Laura Ballesteros
- Instituto de Diversidad y Ecología Animal (IDEA), CONICET (Consejo Nacional de Investigaciones Científicas Y Técnicas), Córdoba, 5000, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Diversidad Biológica IV, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| | - Andrea Cecilia Hued
- Instituto de Diversidad y Ecología Animal (IDEA), CONICET (Consejo Nacional de Investigaciones Científicas Y Técnicas), Córdoba, 5000, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Diversidad Biológica IV, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| | - Alejo Fabian Bonifacio
- Instituto de Diversidad y Ecología Animal (IDEA), CONICET (Consejo Nacional de Investigaciones Científicas Y Técnicas), Córdoba, 5000, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Diversidad Biológica IV, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| | - Thaíz Gonçalves Azambuja
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense, Campus Pelotas. Praça 20 de Setembro, 455, 96015360, Pelotas, RS, Brazil.
| | - Bernardo Dos Santos Vaz
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense, Campus Pelotas. Praça 20 de Setembro, 455, 96015360, Pelotas, RS, Brazil.
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália km 8, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
3
|
Chen Y, Zhang Y, Jiang Q, Tang C, Wang Q, He C, Zuo Z, Yang C. Effects of whole life-cycle exposure to carbaryl on reproduction of female marine medaka (Oryzias melastigma) and their offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174789. [PMID: 39047820 DOI: 10.1016/j.scitotenv.2024.174789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Carbaryl is widely used as a highly effective insecticide which harms the marine environment. This study aimed to assess the reproductive toxicity of chronic carbaryl exposure on female marine medaka and their female offspring. After a 180-day exposure from embryonic period to adulthood, females exhibited reduced attraction to males, decreased ovulation, increased gonadosomatic index and a higher proportion of mature and atretic follicles. These reproductive toxic effects of carbaryl may stem from changes in hormone levels and transcription levels of key genes along the HPG axis. Furthermore, maternal carbaryl exposure had detrimental effects on the offspring. F1 females showed the reproductive disorders similar to those observed in F0 females. The significant changes in the transcription levels of DNA methyltransferase and demethylase genes in the F0 and F1 generations of ovaries indicate changes in their DNA methylation levels. The changes in DNA methylation levels in F1 female marine medaka may lead to changes in the expression of certain reproductive key genes, such as an increase in the transcription level of cyp19a, which may be the reason for F1 reproductive toxicity. These findings indicate that maternal exposure may induce severe generational toxicity through alterations in DNA methylation levels. This study assesses the negative impacts of whole life-cycle carbaryl exposure on the reproductive and developmental processes of female marine medaka and its female offspring, while offering data to support the evaluation of the ecological risk posed by carbaryl in marine ecosystems.
Collapse
Affiliation(s)
- Yuxin Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yuxuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Qun Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Qian Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.
| |
Collapse
|
4
|
Lombó M, Giommi C, Zarantoniello M, Chemello G. A Pretty Kettle of Fish: A Review on the Current Challenges in Mediterranean Teleost Reproduction. Animals (Basel) 2024; 14:1597. [PMID: 38891644 PMCID: PMC11171123 DOI: 10.3390/ani14111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The Mediterranean region is facing several environmental changes and pollution issues. Teleosts are particularly sensitive to these challenges due to their intricate reproductive biology and reliance on specific environmental cues for successful reproduction. Wild populations struggle with the triad of climate change, environmental contamination, and overfishing, which can deeply affect reproductive success and population dynamics. In farmed species, abiotic factors affecting reproduction are easier to control, whereas finding alternatives to conventional diets for farmed teleosts is crucial for enhancing broodstock health, reproductive success, and the sustainability of the aquaculture sector. Addressing these challenges involves ongoing research into formulating specialized diets, optimizing feeding strategies, and developing alternative and sustainable feed ingredients. To achieve a deeper comprehension of these challenges, studies employing model species have emerged as pivotal tools. These models offer advantages in understanding reproductive mechanisms due to their well-defined physiology, genetic tractability, and ease of manipulation. Yet, while providing invaluable insights, their applicability to diverse species remains constrained by inherent variations across taxa and oversimplification of complex environmental interactions, thus limiting the extrapolation of the scientific findings. Bridging these gaps necessitates multidisciplinary approaches, emphasizing conservation efforts for wild species and tailored nutritional strategies for aquaculture, thereby fostering sustainable teleost reproduction in the Mediterranean.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, 24071 León, Spain
| | - Christian Giommi
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
| | - Giulia Chemello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| |
Collapse
|
5
|
Bao Y, Chen Y, Zhou Y, Wang Q, Zuo Z, Yang C. Chronic diflubenzuron exposure causes reproductive toxic effects in female marine medaka (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106511. [PMID: 37011547 DOI: 10.1016/j.aquatox.2023.106511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Diflubenzuron, an insecticide commonly used in marine fish farming, has been detected in various marine environments. However, its potential impact on marine fish remains largely unknown. This study investigated the reproductive toxicity of chronic diflubenzuron exposure in female marine medaka (Oryzias melastigma). Marine medaka were exposed continuously to environmentally relevant concentrations of diflubenzuron (0.1, 1, and 10 μg/L) or a solvent control from the fertilized egg to adulthood. In exposed female marine medaka, the gonadosomatic index (GSI) and the number of laid eggs were significantly reduced. Moreover, diflubenzuron-exposed female marine medaka showed altered ovarian histopathology, with an increased relative proportion of immature oocytes and atretic follicles and a decreased relative proportion of mature oocytes. Maternal exposure to diflubenzuron also inhibited the development of the F1 generation, significantly reducing the hatching rate of F1 embryos and significantly increasing the malformation rate of F1 larvae. Furthermore, changes in hormone levels and expression of genes along the hypothalamus-pituitary-gonad-liver (HPGL) axis were observed, which may be the fundamental reason for all the reproductive toxic effects mentioned above. These results provide new insights into the impact of diflubenzuron on the female marine medaka reproductive system and underscore the importance of investigating the potential environmental risks of diflubenzuron in the marine environment.
Collapse
Affiliation(s)
- Yuanyuan Bao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuxin Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yixi Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qian Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, Fujian 361102, China.
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
6
|
Nam SE, Haque MN, Do SD, Rhee JS. Chronic effects of environmental concentrations of antifoulant diuron on two marine fish: Assessment of hormone levels, immunity, and antioxidant defense system. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109510. [PMID: 36368506 DOI: 10.1016/j.cbpc.2022.109510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
The presence and toxicity of waterborne diuron in aquatic environments pose a severe threat to non-target organisms. However, the chronic impact of diuron in marine fish has been poorly investigated. In this study, we report the chronic effects (30 and 60 days) of environmentally relevant concentrations of diuron (0.1, 1, and 10 μg L-1) on economically important marine fish, red seabream (Pagrus major), and black rockfish (Sebastes schlegelii) by evaluating several parameters, including hormone levels, immunity, hepatic function, and antioxidant defense. Significant decreases in 17β-estradiol and 11-ketotestosterone levels and gonadosomatic index were observed on day 60 in fish exposed to 10 μg L-1 diuron. Parameters of immunity, such as alternative complement activity, lysozyme activity, and total immunoglobulin levels, were significantly lowered by 60-day exposure to 10 μg L-1 diuron in both fish. Significant decreases in the hepatic enzyme activities of alanine transaminase and aspartate transaminase were observed with an induction of cortisol on day 60 in fish exposed to 10 μg L-1 diuron. Intracellular malondialdehyde and glutathione levels were significantly increased by 10 μg L-1 diuron at day 60 with an increase in the enzymatic activities of catalase and superoxide dismutase. Overall, black rockfish were more sensitive to diuron than red seabream. These results suggest that consistent exposure to environmentally relevant concentrations of diuron is detrimental to the reproduction, immunity, and health of marine fish.
Collapse
Affiliation(s)
- Sang-Eun Nam
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Md Niamul Haque
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Seong Duk Do
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon 22012, Republic of Korea.
| |
Collapse
|
7
|
Mo J, Liu X, Huang Y, He R, Zhang Y, Huang H. Developmental origins of adult diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:450-470. [PMID: 37724166 PMCID: PMC10388800 DOI: 10.1515/mr-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 09/20/2023]
Abstract
The occurrence and mechanisms of developmental adult diseases have gradually attracted attention in recent years. Exposure of gametes and embryos to adverse environments, especially during plastic development, can alter the expression of certain tissue-specific genes, leading to increased susceptibility to certain diseases in adulthood, such as diabetes, cardiovascular disease, neuropsychiatric, and reproductive system diseases, etc. The occurrence of chronic disease in adulthood is partly due to genetic factors, and the remaining risk is partly due to environmental-dependent epigenetic information alteration, including DNA methylation, histone modifications, and noncoding RNAs. Changes in this epigenetic information potentially damage our health, which has also been supported by numerous epidemiological and animal studies in recent years. Environmental factors functionally affect embryo development through epimutation, transmitting diseases to offspring and even later generations. This review mainly elaborated on the concept of developmental origins of adult diseases, and revealed the epigenetic mechanisms underlying these events, discussed the theoretical basis for the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Jiaying Mo
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xuanqi Liu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yutong Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Renke He
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hefeng Huang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| |
Collapse
|
8
|
Ünver B, Evingür GA, Çavaş L. Effects of currently used marine antifouling paint biocides on green fluorescent proteins in Anemonia viridis. J Fluoresc 2022; 32:2087-2096. [PMID: 35917050 DOI: 10.1007/s10895-022-02986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/31/2022] [Indexed: 10/16/2022]
Abstract
Some of the antifouling booster biocides affects the marine ecosystem negatively. The booster biocides that are resistant to degradation are accumulated in the sediment of the oceans. One of the sedentary organisms in the Mediterranean Sea is Anemonia viridis. This study aims at showing the toxicities of common biocides such as irgarol, seanine-211, zinc omadine, and acticide on the fluorescence by GFPs of A. viridis. The decreases in the fluorescence intensities of the GFP were measured within different booster biocide concentrations. The results show that fluorescent intensities of GFP proteins decrease more than 50% when they are exposed to different concentrations of irgarol, zinc omadine, acticide. In conclusion, ecosystem health should be prioritized when new antifouling paint compositions are proposed. From the results, it seems that A. viridis can be considered as a vulnerable organism and it is sensitive to booster biocides within self-polishing antifouling paint formulations.
Collapse
Affiliation(s)
- Batuhan Ünver
- Faculty of Engineering, Department of Naval Architecture and Mechanical Engineering, Piri Reis University, Tuzla, İstanbul, Turkey
| | - Gülşen Akın Evingür
- Faculty of Engineering, Department of Industrial Engineering, Piri Reis University, Tuzla, İstanbul, Turkey
| | - Levent Çavaş
- Faculty of Science, Department of Chemistry, Dokuz Eylül University, Kaynaklar Campus, İzmir, Turkey.
| |
Collapse
|