1
|
Morais F, Pires V, Almeida M, Martins MA, Oliveira M, Lopes I. Influence of polystyrene nanoplastics on the toxicity of haloperidol to amphibians: An in vivo and in vitro approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175375. [PMID: 39137847 DOI: 10.1016/j.scitotenv.2024.175375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Chemical pollution is a major driver for the current worldwide crisis of amphibian decline. The present study aimed to assess the influence of polystyrene nanoplastics (PS-NPLs) on the toxicity of haloperidol to aquatic life stages of amphibians, by using in vivo (tadpoles of Xenopus laevis and Pelophylax perezi) and in vitro (A6 and XTC-2 cell lines of X. laevis) biological models. Tadpoles of both species were exposed, for 96 h, to haloperidol: 0.404 to 2.05 mg l-1 (X. laevis) or 0.404 to 3.07 mg L-1 (P. perezi). The most sensitive species to haloperidol (X. laevis) was exposed to haloperidol's LC50,96h combined with two PS-NPLs concentrations (0.01 mg L-1 or 10 mg L-1); the following endpoints were monitored: mortality, malformations, body lengths and weight. In vitro cytotoxicity was assessed by exposing the two cell lines, for 72 h, to: haloperidol (0.195 to 100 mg L-1) alone and combined with 0.01 mg L-1 or 10 mg L-1 of PS-NPLs. Xenopus laevis tadpoles revealed a higher lethal and sublethal sensitivity to haloperidol than those of P. perezi, with LC50,96h of 1.45 and 2.20 mg L-1. In vitro assays revealed that A6 cell line is more sensitive haloperidol than XTC-2: LC50,72h of 13.2 mg L-1 and 5.92 mg L-1, respectively. Results also suggested a higher sensitivity of in vivo models when compared to in vitro biological. Overall, PS-NPLs did not influence haloperidol's toxicity for in vivo and in vitro biological models, except for a reduction on the incidence of malformations while increasing the lethal toxicity (at the lowest concentration) in tadpoles. These opposite interaction patterns highlight the need for a deeper comprehension of NPLs and pharmaceuticals interactions. Results suggest a low risk of haloperidol for anuran tadpoles, though in the presence of PS-NPLs the risk may be increased.
Collapse
Affiliation(s)
- Filipa Morais
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Valérie Pires
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Mónica Almeida
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel A Martins
- PCI - Creative Science Park Aveiro Region, 3830-352 Ílhavo, Portugal
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Fogliano C, Carotenuto R, Agnisola C, Motta CM, Avallone B. Impact of Benzodiazepine Delorazepam on Growth and Behaviour of Artemia salina Nauplii. BIOLOGY 2024; 13:808. [PMID: 39452117 PMCID: PMC11505015 DOI: 10.3390/biology13100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Benzodiazepines, a significant group of newly recognised water contaminants, are psychotropic medications prescribed for common anxiety symptoms and sleep disorders. They resist efficient degradation during sewage treatment and endure in aquatic environments. Their presence in aquatic matrices is increasing, particularly after the recent pandemic period, which has led many people to systematically use benzodiazepines to manage anxiety. In previous studies, an important interference of this class of drugs on both the larval and adult stages of some aquatic species has been demonstrated, with effects on behaviour and embryonic development. This study examined the influence of delorazepam, a diazepam metabolite, on Artemia salina development to gain insight into responses in naupliar larvae. Results demonstrated that treatments (1, 5, and 10 µg/L) increase the hatching percentage and induce a desynchronisation in growth. Mortality was only slightly increased (close to 10% at six days post-hatching), but lipid reserve consumption was modified, with the persistence of lipid globules at the advanced naupliar stages. Locomotory activity significantly decreased only at 10 µg/L treatment. No teratogenic effects were observed, though modest damages were noticed in the posterior trunk and eyes, two targets of environmental toxicity. The negative impact of delorazepam on Artemia salina adds to those already reported in other species of invertebrates and vertebrates, which are not yet considered targets of these drugs. This study underscores the need for further research and immediate attention to this class of contaminants and the importance of monitoring their presence during environmental risk assessments.
Collapse
Affiliation(s)
| | | | | | - Chiara Maria Motta
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (B.A.)
| | | |
Collapse
|
3
|
Robinson RFA, Mills GA, Grabic R, Bořík A, Fones GR. Quantification and risk assessment of polar organic contaminants in two chalk streams in Hampshire, UK using the Chemcatcher passive sampler. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173316. [PMID: 38782290 DOI: 10.1016/j.scitotenv.2024.173316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Freshwater systems are facing a number of pressures due to the inputs of polar organic contaminants from a range of sources including agriculture, domestic and industry. The River Itchen and River Test are two sensitive chalk streams in Southern England that are experiencing a decline in invertebrate communities. We used Chemcatcher passive samplers to measure time-weighted average concentrations (14 days) of polar pollutants at nine sites on the River Itchen and eight sites on the River Test over a 12-month period. Sampler extracts were analysed using a targeted LC/MS method. In total, 121 plant protection products and pharmaceutical and personal care products were quantified (range of log Kow from - 1.5 to 7). Concentrations (sub ng L-1 to >500 ng L-1) in both rivers showed spatial and temporal variations. A greater number of compounds and higher concentrations were found in the River Test. The chemical profile was dominated by inputs from wastewater treatment plants and legacy plant protection products. On the River Itchen, high concentrations (∼100 ng L-1) of caffeine were observed directly downstream of a fish farm. Using the NORMAN database, the predicted no effect concentration (PNEC) freshwater values were exceeded by only five contaminants (2-hydroxy-terbuthylazine, alprazolam, azithromycin, diclofenac and imidacloprid). In addition, venlafaxine was detected above its EU Watch List concentration. These exceedances were mainly downstream of direct inputs from treatment plants. These compounds are known to have ecotoxicological effects on a range of aquatic biota including macroinvertebrates. Of concern is the ubiquitous presence of the ectoparasiticide imidacloprid, highlighting the need to control its use. The impact of the cocktail of pollutants found in this study on the long-term effects on chalk stream ecosystems remains unknown and needs further investigation.
Collapse
Affiliation(s)
- Rosamund F A Robinson
- School of the Environment, Geography and Geosciences, University of Portsmouth, Burnaby Road, Portsmouth PO1 3QL, UK
| | - Graham A Mills
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Adam Bořík
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Gary R Fones
- School of the Environment, Geography and Geosciences, University of Portsmouth, Burnaby Road, Portsmouth PO1 3QL, UK.
| |
Collapse
|
4
|
Martin C, Capilla-Lasheras P, Monaghan P, Burraco P. The impact of chemical pollution across major life transitions: a meta-analysis on oxidative stress in amphibians. Proc Biol Sci 2024; 291:20241536. [PMID: 39191283 PMCID: PMC11349447 DOI: 10.1098/rspb.2024.1536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Among human actions threatening biodiversity, the release of anthropogenic chemical pollutants which have become ubiquitous in the environment, is a major concern. Chemical pollution can induce damage to macromolecules by causing the overproduction of reactive oxygen species, affecting the redox balance of animals. In species undergoing metamorphosis (i.e. the vast majority of the extant animal species), antioxidant responses to chemical pollution may differ between pre- and post-metamorphic stages. Here, we meta-analysed (N = 104 studies, k = 2283 estimates) the impact of chemical pollution on redox balance across the three major amphibian life stages (embryo, tadpole, adult). Before metamorphosis, embryos did not experience any redox change while tadpoles activate their antioxidant pathways and do not show increased oxidative damage from pollutants. Tadpoles may have evolved stronger defences against pollutants to reach post-metamorphic life stages. In contrast, post-metamorphic individuals show only weak antioxidant responses and marked oxidative damage in lipids. The type of pollutant (i.e. organic versus inorganic) has contrasting effects across amphibian life stages. Our findings show a divergent evolution of the redox balance in response to pollutants across life transitions of metamorphosing amphibians, most probably a consequence of differences in the ecological and developmental processes of each life stage.
Collapse
Affiliation(s)
- Colette Martin
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, Braunschweig38106, Germany
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Swiss Ornithological Institute, Bird Migration Unit, Seerose 1, Sempach6204, Switzerland
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - Pablo Burraco
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
| |
Collapse
|
5
|
Salla RF, Oliveira FN, Jacintho JC, Cirqueira F, Tsukada E, Vieira LG, Rocha TL. Microplastics and TiO 2 nanoparticles mixture as an emerging threat to amphibians: A case study on bullfrog embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123624. [PMID: 38387544 DOI: 10.1016/j.envpol.2024.123624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/06/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Emerging contaminants can act as contributing factors to the decline of amphibian populations worldwide. Recently, scientists have drawn attention to the potential ecotoxicity of microplastics and nanomaterials in amphibians, however, their possible effects on embryonic developmental stages are still absent. Thus, the present study analyzed the developmental toxicity of environmentally relevant concentrations of polyethylene microplastics (PE MPs; 60 mg/L) and titanium dioxide nanoparticles (TiO2 NPs; 10 μg/L), isolated or in combination (Mix group) on bullfrog embryos, Aquarana catesbeiana, adapting the Frog Embryo Teratogenesis Assay (FETAX, 96h). Allied to the FETAX protocol, we also analyzed the heart rate and morphometric data. The exposure reduced the survival and hatching rates in groups exposed to TiO2 NPs, and to a lesser extent, also affected the Mix group. TiO2 NPs possibly interacted with the hatching enzymes of the embryos, preventing hatching, and reducing their survival. The reduced effects in the Mix group are due to the agglomeration of both toxicants, making the NPs less available for the embryos. PE MPs got attached to the gelatinous capsule of the chorion (confirmed by fluorescence microscopy), which protected the embryos from eventual direct effects of the microplastics on the hatching and survival rates. Although there were no cardiotoxic effects nor morphometric alterations, there was a significant increase in abdominal edemas in the hatched embryos of the PE MPs group, which indicates that osmoregulation might have been affected by the attachment of the microplastics on the embryos' gelatinous capsule. This study presents the first evidence of developmental toxicity of environmental mixtures of microplastics and nanoparticles on amphibians and reinforces the need for more studies with other amphibian species, especially neotropical specimens that could present bigger sensibility. Our study also highlighted several features of the FETAX protocol as useful tools to evaluate the embryotoxicity of several pollutants on amphibians.
Collapse
Affiliation(s)
- Raquel Fernanda Salla
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil; Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Fagner Neves Oliveira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil; Laboratory for Research in Morphology and Ontogeny, Institute for Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Jaqueline C Jacintho
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Felipe Cirqueira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Elisabete Tsukada
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Lucélia Gonçalves Vieira
- Laboratory for Research in Morphology and Ontogeny, Institute for Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil.
| |
Collapse
|
6
|
Fogliano C, Carotenuto R, Cirino P, Panzuto R, Ciaravolo M, Simoniello P, Sgariglia I, Motta CM, Avallone B. Benzodiazepine Interference with Fertility and Embryo Development: A Preliminary Survey in the Sea Urchin Paracentrotus lividus. Int J Mol Sci 2024; 25:1969. [PMID: 38396658 PMCID: PMC10888474 DOI: 10.3390/ijms25041969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Psychotropic drugs and benzodiazepines are nowadays among the primary substances of abuse. This results in a large and constant release into aquatic environments where they have potentially harmful effects on non-target organisms and, eventually, human health. In the last decades, evidence has been collected on the possible interference of benzodiazepines with reproductive processes, but data are few and incomplete. In this study, the possible negative influence of delorazepam on fertilization and embryo development has been tested in Paracentrotus lividus, a key model organism in studies of reproduction and embryonic development. Sperm, eggs, or fertilized eggs have been exposed to delorazepam at three concentrations: 1 μg/L (environmentally realistic), 5 μg/L, and 10 μg/L. Results indicate that delorazepam reduces the fertilizing capacity of male and female gametes and interferes with fertilization and embryo development. Exposure causes anatomical anomalies in plutei, accelerates/delays development, and alters the presence and distribution of glycoconjugates such as N-Acetyl-glucosamine, α-linked fucose, and α-linked mannose in both morulae and plutei. These results should attract attention to the reproductive fitness of aquatic species exposed to benzodiazepines and pave the way for further investigation of the effects they may exert on human fertility. The presence of benzodiazepines in the aquatic environment raises concerns about the reproductive well-being of aquatic species. Additionally, it prompts worries regarding potential impacts on human fertility due to the excessive use of anxiolytics.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| | - Paola Cirino
- Department of Conservation of Marine Animals and Public Engagement, Anton Dohrn Zoological Station, 80122 Naples, Italy; (P.C.); (R.P.)
| | - Raffaele Panzuto
- Department of Conservation of Marine Animals and Public Engagement, Anton Dohrn Zoological Station, 80122 Naples, Italy; (P.C.); (R.P.)
| | - Martina Ciaravolo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, 80133 Naples, Italy;
| | - Ilaria Sgariglia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| | - Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (M.C.); (I.S.); (B.A.)
| |
Collapse
|
7
|
Güngördü A, Turhan DO. Biochemical Studies to Understand Teratogenicity and Lethality Outcomes in Modified-FETAX. Methods Mol Biol 2024; 2753:351-364. [PMID: 38285350 DOI: 10.1007/978-1-0716-3625-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The frog embryo teratogenesis assay-Xenopus (FETAX) is a standardized test used to assess the toxic and teratogenic effects of xenobiotics. With this test, toxic and/or teratogenic concentrations of xenobiotic substances can be determined using morphological parameters such as lethality, length, and malformations in stage 8-11 Xenopus laevis embryos after 96 h exposure. These parameters enable the determination of the median lethal and effective concentrations (LC50 and EC50), minimum concentration to inhibit growth (MCIG), and teratogenic index of the tested chemical to reveal the short-term effects of relatively high concentrations. On the other hand, although FETAX provides quantitative and qualitative data on teratogenicity and toxicity, the biochemical and molecular mechanisms of these effects cannot be explained. Recent studies have tried to elucidate the mechanisms causing malformations and to explain the underlying causes of toxicity and teratogenicity by biochemical marker analysis. This chapter describes methods to analyze modified-FETAX and some detoxification and oxidative stress-related biomarkers during the early embryonic development of X. laevis.
Collapse
Affiliation(s)
- Abbas Güngördü
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, Malatya, Turkey.
| | - Duygu Ozhan Turhan
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, Malatya, Turkey
| |
Collapse
|
8
|
Fogliano C, Carotenuto R, Agnisola C, Simoniello P, Karam M, Manfredonia C, Avallone B, Motta CM. Benzodiazepine Delorazepam Induces Locomotory Hyperactivity and Alterations in Pedal Mucus Texture in the Freshwater Gastropod Planorbarius corneus. Int J Mol Sci 2023; 24:17070. [PMID: 38069390 PMCID: PMC10706940 DOI: 10.3390/ijms242317070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Benzodiazepines, psychotropic drugs, are ubiquitous in the aquatic environment due to over-consumption and inefficient removal by sewage treatment plants. Bioaccumulation with consequent behavioral and physiological effects has been reported in many aquatic species. However, the responses are species-specific and still poorly understood. To improve the knowledge, we exposed the freshwater snail Planorbarius corneus to 1, 5, or 10 µg/L of delorazepam, the most widely consumed benzodiazepine in Italy. Conventional behavioral tests were used to assess the effects on locomotor and feeding behavior. Histological and biochemical analyses were also performed to detect possible changes in the structure and composition of the foot mucus and glands. The results show a paradoxical response with reduced feeding activity and locomotor hyperactivity. Pedal mucus was altered in texture but not in composition, becoming particularly rich in fibrous collagen-like material, and a significant change in the protein composition was highlighted in the foot. In conclusion, exposure to delorazepam induces disinhibited behavior in Planorbarius corneus, potentially increasing the risk of predation, and an increase in mucus protein production, which, together with reduced feeding activity, would severely compromise energy resources.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, 80143 Naples, Italy;
| | - Myriam Karam
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Claudia Manfredonia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| | - Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (M.K.); (C.M.); (C.M.M.)
| |
Collapse
|
9
|
Fogliano C, Motta CM, Acloque H, Avallone B, Carotenuto R. Water contamination by delorazepam induces epigenetic defects in the embryos of the clawed frog Xenopus laevis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165300. [PMID: 37414173 DOI: 10.1016/j.scitotenv.2023.165300] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Delorazepam, a derivative of diazepam, is a psychotropic drug belonging to the benzodiazepine class. Used as a nervous-system inhibitor, it treats anxiety, insomnia, and epilepsy, but is also associated with misuse and abuse. Nowadays benzodiazepines are considered emerging pollutants: conventional wastewater treatment plants indeed are unable to eliminate these compounds. Consequently, they persist in the environment and bioaccumulate in non-target aquatic organisms with consequences still not fully clear. To collect more information, we investigated the possible epigenetic activity of delorazepam, at three concentrations (1, 5 and 10 μg/L) using Xenopus laevis embryos as a model. Analyses demonstrated a significant increase in genomic DNA methylation and differential methylation of the promoters of some early developmental genes (otx2, sox3, sox9, pax6, rax1, foxf1, and myod1). Moreover, studies on gene expression highlighted an unbalancing in apoptosis/proliferation pathways and an aberrant expression of DNA-repair genes. Results are alarming considering the growing trend of benzodiazepine concentrations in superficial waters, especially after the peak occurred as a consequence of the pandemic COVID-19, and the fact that benzodiazepine GABA-A receptors are highly conserved and present in all aquatic organisms.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Chiara Maria Motta
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Hervé Acloque
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Bice Avallone
- Department of Biology, University of Naples "Federico II", Naples, Italy.
| | - Rosa Carotenuto
- Department of Biology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
10
|
Carotenuto R, Tussellino M, Fusco S, Benvenuto G, Formiggini F, Avallone B, Motta CM, Fogliano C, Netti PA. Adverse Effect of Metallic Gold and Silver Nanoparticles on Xenopus laevis Embryogenesis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2488. [PMID: 37686995 PMCID: PMC10489621 DOI: 10.3390/nano13172488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Exposure to metal nanoparticles is potentially harmful, particularly when occurring during embryogenesis. In this study, we tested the effects of commercial AuNPs and AgNPs, widely used in many fields for their features, on the early development of Xenopus laevis, an anuran amphibian key model species in toxicity testing. Through the Frog Embryo Teratogenesis Assay-Xenopus test (FETAX), we ascertained that both nanoparticles did not influence the survival rate but induced morphological anomalies like modifications of head and branchial arch cartilages, depigmentation of the dorsal area, damage to the intestinal brush border, and heart rate alteration. The expression of genes involved in the early pathways of embryo development was also modified. This study suggests that both types of nanoparticles are toxic though nonlethal, thus indicating that their use requires attention and further study to better clarify their activity in animals and, more importantly, in humans.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | - Sabato Fusco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy
| | | | - Fabio Formiggini
- Center for Advanced Biomaterials for Health Care (IIT@CRIB), Italian Institute of Technology, 80125 Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, 80125 Naples, Italy
| |
Collapse
|
11
|
Fogliano C, Carotenuto R, Rusciano G, Sasso A, Motta CM, Agnisola C, Avallone B. Structural and functional damage to the retina and skeletal muscle in Xenopus laevis embryos exposed to the commonly used psychotropic benzodiazepine delorazepam. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104235. [PMID: 37481049 DOI: 10.1016/j.etap.2023.104235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Benzodiazepines, psychotropic drugs, are among the most frequently found pharmaceuticals in aquatic matrices. An increasing number of studies are reporting their harmful effects on adults' behaviour and physiology, while little information is available regarding developing organisms exposed since early stages. Improper activation of GABA receptors during embryonic development is likely to induce relevant consequences on the morphogenesis and, at later stages, on behaviour. This study investigated the negative effects of three increasing concentrations of delorazepam on Xenopus laevis retinal and skeletal muscle morphogenesis. Morphological and ultrastructural investigations were correlated with gene expression, while Raman spectroscopy highlighted the main biochemical components affected. Conventional phototactic response and orientation in the magnetic field were assessed as indicators of proper interaction between sensory organs and the nervous system. Results confirm the profound impact of delorazepam on development and return an alarming picture of the amphibians' survival potentialities in a benzodiazepine-contaminated environment.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giulia Rusciano
- Department of Physics, University of Naples Federico II, Naples, Italy
| | - Antonio Sasso
- Department of Physics, University of Naples Federico II, Naples, Italy
| | | | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Carotenuto R, Pallotta MM, Tussellino M, Fogliano C. Xenopus laevis (Daudin, 1802) as a Model Organism for Bioscience: A Historic Review and Perspective. BIOLOGY 2023; 12:890. [PMID: 37372174 DOI: 10.3390/biology12060890] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
In vitro systems have been mainly promoted by authorities to sustain research by following the 3Rs principle, but continuously increasing amounts of evidence point out that in vivo experimentation is also of extreme relevance. Xenopus laevis, an anuran amphibian, is a significant model organism in the study of evolutionary developmental biology, toxicology, ethology, neurobiology, endocrinology, immunology and tumor biology; thanks to the recent development of genome editing, it has also acquired a relevant position in the field of genetics. For these reasons, X. laevis appears to be a powerful and alternative model to the zebrafish for environmental and biomedical studies. Its life cycle, as well as the possibility to obtain gametes from adults during the whole year and embryos by in vitro fertilization, allows experimental studies of several biological endpoints, such as gametogenesis, embryogenesis, larval growth, metamorphosis and, of course, the young and adult stages. Moreover, with respect to alternative invertebrate and even vertebrate animal models, the X. laevis genome displays a higher degree of similarity with that of mammals. Here, we have reviewed the main available literature on the use of X. laevis in the biosciences and, inspired by Feymann's revised view, "Plenty of room for biology at the bottom", suggest that X. laevis is a very useful model for all possible studies.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | | | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
13
|
Menegola E, Battistoni M, Metruccio F, Di Renzo F. Advantages and disadvantages of the use of Xenopus laevis embryos and Zebra fish as alternative methods to assess teratogens. CURRENT OPINION IN TOXICOLOGY 2023. [DOI: 10.1016/j.cotox.2023.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
14
|
Fogliano C, Carotenuto R, Panzuto R, Spennato V, De Bonis S, Simoniello P, Raggio A, Avallone B, Agnisola C, Motta CM. Behavioral alterations and gills damage in Mytilus galloprovincialis exposed to an environmental concentration of delorazepam. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104030. [PMID: 36455838 DOI: 10.1016/j.etap.2022.104030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Psychoactive compounds, and benzodiazepines (BZPs) in particular, represent an important class of emerging pollutants due to their large (ab)use and high resistance to degradation. Nowadays it is known that sewage treatment does not completely eliminate these substances and, therefore, BZPs and their metabolites reach concern levels in most aquatic environments all over Europe, ranging from µg/L to ng/L. In this study, we investigated the effects of delorazepam on Mytilus galloprovincialis, a model organism in toxicity testing and a key species in coastal marine ecosystems. Given its psychoactive activity, the study primarily addressed discovering the effects on behavior, by conventional valve opening and closure tests. Possible cytotoxic activity was also investigated by analyzing valve abductor muscles, gills histology, and correlated oxygen consumption. Results demonstrate negative effects on mussel behavior, interference with metabolism, and alteration of gill morphology and protein content. In conclusion, delorazepam confirms its toxicity to aquatic environments, highlighting the possibility that BZDs can ultimately affect the structure of the food web and the functions of the coastal ecosystems.
Collapse
Affiliation(s)
- Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Raffaele Panzuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Valentina Spennato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Salvatore De Bonis
- Regional Agency for Environmental Protection of Latium (Arpa Lazio), Via Saredo, 00173 Rome, Italy
| | - Palma Simoniello
- Department of Science and Technology, University of Naples Parthenope, 80133 Naples, Italy
| | - Anja Raggio
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Claudio Agnisola
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|