1
|
da Silveira VEFV, Veneno GAF, da Silva LLR, Bazzoli N, Paschoalini AL. Effects of glyphosate-based herbicide on target organs of Astyanax altiparanae in different treatments. J Mol Histol 2024; 56:2. [PMID: 39601994 DOI: 10.1007/s10735-024-10299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Glyphosate-based herbicides are extensively utilized in Neotropical agriculture for weed control. Despite their widespread application, concerns regarding water contamination and its consequential impacts on aquatic organisms persist. Notably, there remains a dearth of studies investigating the effects of glyphosate on Neotropical fish species. This study aimed to address this gap by investigating the morphophysiological effects of this herbicide on the liver, gills, and ovaries of Astyanax altiparanae, an ecological and economically important neotropical fish species. Forty individuals were acclimated for 15 days before being exposed to different concentrations of glyphosate (65, 280, and 1000 µg/L) for 28 days. Histological and histometric analyses were conducted on liver, gill, and ovary samples. The findings revealed significant alterations in fish physiology following exposure to glyphosate. The hepatosomatic index increased markedly across all concentration levels, accompanied by dilation of hepatic sinusoidal capillaries, particularly pronounced at higher concentrations. Gill samples exhibited congestion in the central venous sinus, lamellar fusion, and cell death. Additionally, the exposed fish showed a decrease in gonadosomatic index, and the mature females an increase in pre-vitellogenic follicles and a decrease in vitellogenic follicles. This study detected adverse morphophysiological impacts of glyphosate-based herbicides on A. altiparanae, even at permitted concentrations. These findings emphasize the necessity for further research and improved management strategies to mitigate environmental risks associated with herbicide use in aquatic ecosystems.
Collapse
Affiliation(s)
| | - Gabriel Aurélio Ferraz Veneno
- Postgraduate Program in Biodiversity and Environment, Pontifical Catholic University of Minas Gerais, Av. Dom José Gaspar, 500, Belo Horizonte, MG, 30535-610, Brazil
| | - Lívia Lorrayne Ribeiro da Silva
- Postgraduate Program in Biodiversity and Environment, Pontifical Catholic University of Minas Gerais, Av. Dom José Gaspar, 500, Belo Horizonte, MG, 30535-610, Brazil
| | - Nilo Bazzoli
- Postgraduate Program in Biodiversity and Environment, Pontifical Catholic University of Minas Gerais, Av. Dom José Gaspar, 500, Belo Horizonte, MG, 30535-610, Brazil
| | - Alessandro Loureiro Paschoalini
- Postgraduate Program in Biodiversity and Environment, Pontifical Catholic University of Minas Gerais, Av. Dom José Gaspar, 500, Belo Horizonte, MG, 30535-610, Brazil.
| |
Collapse
|
2
|
AbuQamar SF, El-Saadony MT, Alkafaas SS, Elsalahaty MI, Elkafas SS, Mathew BT, Aljasmi AN, Alhammadi HS, Salem HM, Abd El-Mageed TA, Zaghloul RA, Mosa WFA, Ahmed AE, Elrys AS, Saad AM, Alsaeed FA, El-Tarabily KA. Ecological impacts and management strategies of pesticide pollution on aquatic life and human beings. MARINE POLLUTION BULLETIN 2024; 206:116613. [PMID: 39053258 DOI: 10.1016/j.marpolbul.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024]
Abstract
Pesticide contamination has become a global concern. Pesticides can sorb onto suspended particles and deposit into the sedimentary layers of aquatic environments, resulting in ecosystem degradation, pollution, and diseases. Pesticides impact the behavior of aquatic environments by contaminating organic matter in water, which serves as the primary food source for aquatic food webs. Pesticide residues can increase ammonium, nitrite, nitrate, and sulfate in aquatic systems; thus, threatening ecological environment and human health. Several physical, chemical, and biological methodologies have been implemented to effectively remove pesticide traces from aquatic environments. The present review highlights the potential consequences of pesticide exposure on fish and humans, focusing on the (epi)genetic alterations affecting growth, behavior, and immune system. Mitigation strategies (e.g., bioremediation) to prevent/minimize the detrimental impacts of pesticides are also discussed. This review aims to shed light on the awareness in reducing the risk of water pollution for safe and sustainable pesticide management.
Collapse
Affiliation(s)
- Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar S Alkafaas
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara S Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menoufia University, Shebin El Kom, Menofia, 32511, Egypt; Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Betty T Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Amal N Aljasmi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Hajar S Alhammadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Taia A Abd El-Mageed
- Department of Soil and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Rashed A Zaghloul
- Department Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Fatimah A Alsaeed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
3
|
Pagano AD, Blödorn EB, Domingues WB, de Souza LP, da Silveira TLR, Kütter MT, Gonçalves NM, Volcan MV, Costa PG, Bianchini A, Remião MH, Campos VF. Validation of qPCR reference genes in the endangered annual killifish Austrolebias charrua considering different tissues, gender and environmental conditions. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1-12. [PMID: 38602608 DOI: 10.1007/s10646-024-02752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
The annual killifish Austrolebias charrua is an endangered species, endemic to the southern region of South America, which inhabits temporary ponds that emerges in the rainy season. The main anthropogenic threat driving the extinction of A. charrua stems from extensive agriculture, primarily due to the widrespread use of glyphosate-based herbicides near their habitats. Annual killifishes have been used as models for ecotoxicological studies but, up to now, there are no studies about reference genes in any Austrolebias species. This represents an obstacle to the use of qPCR-based technologies, the standard method for gene expression quantification. The present study aimed to select and validate potential reference genes for qPCR normalization in the annual killifish Austrolebias charrua considering different tissues, gender and environmental conditions. The candidate reference genes 18 s, actb, gapdh, ef1a, shox, eif3g, and the control gene atp1a1 were evaluated in male and female individuals in three different tissues (brain, liver, and gills) under two experimental conditions (control and acute exposition to Roundup Transorb®). The collected tissues were submitted to RNA extraction, followed by cDNA synthesis, cloning, sequencing, and qPCR. Overall, 18 s was the most stable reference gene, and 18 s and ef1a were the most stable combination. Otherwise, considering all variables, gapdh and shox were the least stable candidate genes. Foremost, suitable reference genes were validated in A. charrua, facilitating accurate mRNA quantification in this species, which might be useful for developing molecular tools of ecotoxicological assessment based on gene expression analysis for environmental monitoring of annual killifish.
Collapse
Affiliation(s)
- Antônio Duarte Pagano
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Eduardo Bieharls Blödorn
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Lucas Petitemberte de Souza
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Tony Leandro Rezende da Silveira
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Mateus Tavares Kütter
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Natiéli Machado Gonçalves
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | | | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Mariana Härter Remião
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brasil.
| |
Collapse
|
4
|
de Andrade CO, da Silva JRR, Barbieri PA, Borin-Carvalho LA, Portela-Castro ALDB, Fernandes CA. The effect of acute exposure of yellowtail tetra fish Astyanax lacustris (Lütken, 1875) to the glyphosate-based herbicide Templo®. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503771. [PMID: 39054002 DOI: 10.1016/j.mrgentox.2024.503771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
The herbicide glyphosate (N-(phosphonomethyl)glycine) efficiently eliminates weeds, is frequently present in surface waters, and may damage the health of various non-target organisms. The main objective of this study was to investigate cytotoxic and genotoxic effects in erythrocytes, DNA, and chromosomes of native South American fish Astyanax lacustris exposed to a glyphosate-based commercial herbicide Templo®. The presenty study evaluated the presence of micronuclei (MN), chromosomal aberrations (CA), DNA damage revealed by comet assay, and cellular morphological changes (CMC) as biomarkers. The A. lacustris specimens were exposed to Templo® for 96 h at concentrations below the permitted Brazilian legislation for freshwater environments. The glyphosate-based herbicide caused MN formation, an increased incidence of CA, DNA damage, and several types of CMC in all tested concentrations on A. lacustris. Notably, analyses were significant (p<0.05) for all concentrations, except in the frequency mean of MN at 3.7 µg/L. Thus, considering the intensive use of commercial glyphosate formulations in crops, the herbicide Templo® represents a potential risk of genotoxicity and cytotoxicity for aquatic organisms. Therefore, environmental protection agencies must review regulations for glyphosate-based herbicides in freshwater environments.
Collapse
Affiliation(s)
- Camila Oliveira de Andrade
- Graduate Program of Environmental Biotechnology, Department of Biotechnology, Genetics, and Cell Biology of the State University of Maringá, Maringá, Paraná 87020-900, Brazil.
| | - Josiane Rodrigues Rocha da Silva
- Graduate Program of Environmental Biotechnology, Department of Biotechnology, Genetics, and Cell Biology of the State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Pablo Americo Barbieri
- Genetic and Breeding Graduate Program, Department of Agronomy of the State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Luciana Andrea Borin-Carvalho
- Graduate Program of Environmental Biotechnology, Department of Biotechnology, Genetics, and Cell Biology of the State University of Maringá, Maringá, Paraná 87020-900, Brazil; Genetic and Breeding Graduate Program, Department of Agronomy of the State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Ana Luiza de Brito Portela-Castro
- Graduate Program of Environmental Biotechnology, Department of Biotechnology, Genetics, and Cell Biology of the State University of Maringá, Maringá, Paraná 87020-900, Brazil; NUPELIA - Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura - State University of Maringá, Maringá, Paraná 87020-900, Brazil
| | - Carlos Alexandre Fernandes
- Graduate Program of Environmental Biotechnology, Department of Biotechnology, Genetics, and Cell Biology of the State University of Maringá, Maringá, Paraná 87020-900, Brazil; Graduate Program of Comparative Biology, Center for Biological Sciences of the State University of Maringá, Maringá, Paraná 87020-900, Brazil; NUPELIA - Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura - State University of Maringá, Maringá, Paraná 87020-900, Brazil
| |
Collapse
|
5
|
Caurio AC, Boldori JR, Gonçalves LM, Rodrigues CC, Rodrigues NR, Somacal S, Emanuelli T, Roehrs R, Denardin CC, Denardin ELG. Protective effect of Bougainvillea glabra Choisy bract in toxicity induced by Paraquat in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109873. [PMID: 38423200 DOI: 10.1016/j.cbpc.2024.109873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Paraquat (PQ) is a herbicide widely used in agriculture to control weeds. The damage caused to health through intoxication requires studies to combating its damage to health. Bougainvillea glabra Choisy is a plant native to South America and its bracts contain a variety of compounds, including betalains and phenolic compounds, which have been underexplored about their potential applications and benefits for biological studies to neutralize toxicity. In this study, we evaluated the antioxidant and protective potential of the B. glabra bracts (BBGCE) hydroalcoholic extract against Paraquat-induced toxicity in Drosophila melanogaster. BBGCE demonstrated high antioxidant capacity in vitro through the assays of ferric-reducing antioxidant power (FRAP), radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), free radical ABTS and quantification of phenolic compounds, confirmed through identifying the main compounds. Wild males of D. melanogaster were exposed to Paraquat (1.75 mM) and B. glabra Choisy (1, 10, 50 and 100 μg/mL) in agar medium for 4 days. Flies exposed to Paraquat showed a reduction in survival rate and a significant decrease in climbing capacity and balance test when compared to the control group. Exposure of the flies to Paraquat caused a reduction in acetylcholinesterase activity, an increase in lipid peroxidation and production of reactive species, and a change in the activity of the antioxidant enzymes. Co-exposure with BBGCE was able to block toxicity induced by PQ exposure. Our results demonstrate that bract extract has a protective effect against PQ on the head and body of flies, attenuating behavioral deficit, exerting antioxidant effects and blocking oxidative damage in D. melanogaster.
Collapse
Affiliation(s)
- Aline Castro Caurio
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil; Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Jean Ramos Boldori
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Leonardo Martha Gonçalves
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Camille Cadore Rodrigues
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Nathane Rosa Rodrigues
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Sabrina Somacal
- Department of Food Technology and Food Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Food Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rafael Roehrs
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Cristiane Casagrande Denardin
- Research Group of Biochemistry and Toxicology of Bioactive Compounds (GBToxBio), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil
| | - Elton Luis Gasparotto Denardin
- Laboratory of Physical Chemical Studies and Natural Products (LEFQPN), Federal University of Pampa, Campus Uruguaiana, Uruguaiana, RS, Brazil.
| |
Collapse
|
6
|
Islam MA, Lopes I, Domingues I, Silva DCVR, Blasco J, Pereira JL, Araújo CVM. Behavioural, developmental and biochemical effects in zebrafish caused by ibuprofen, irgarol and terbuthylazine. CHEMOSPHERE 2023; 344:140373. [PMID: 37806324 DOI: 10.1016/j.chemosphere.2023.140373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
The increasing use of chemicals and their release into aquatic ecosystems are harming aquatic biota. Despite extensive ecotoxicological research, many environmental pollutants' ecological effects are still unknown. This study examined the spatial avoidance, behavioural and biochemical impacts of ibuprofen, irgarol, and terbuthylazine on the early life stages of zebrafish (Danio rerio) under a range of ecologically relevant concentrations (0-500 μg/L). Embryos were exposed following the OECD guideline "fish embryo toxicity test" complemented with biochemical assessment of AChE activity and behavioural analyses (swimming activity) using the video tracking system Zebrabox. Moreover, spatial avoidance was assessed by exposing 120 hpf-old larvae of D. rerio to a gradient of each chemical, by using the heterogeneous multi-habitat assay system (HeMHAS). The results obtained revealed that the 3 compounds delayed hatching at concentrations of 50 and 500 μg/L for both ibuprofen and irgarol and 500 μg/L for terbuthylazine. Moreover, all chemicals elicited a dose-dependent depression of movement (swimming distance) with LOEC values of 5, 500 and 50 μg/L for ibuprofen, irgarol and terbuthylazine, respectively. Zebrafish larvae avoided the three chemicals studied, with 4 h-AC50 values for ibuprofen, irgarol, and terbuthylazine of 64.32, 79.86, and 131.04 μg/L, respectively. The results of the HeMHAS assay suggest that larvae may early on avoid (just after 4 h of exposure) concentrations of the three chemicals that may later induce, apical and biochemical effects. Findings from this study make clear some advantages of using HeMHAS in ecotoxicology as it is: ecologically relevant (by simulating a chemically heterogeneous environmental scenario), sensitive (the perception of chemicals and the avoidance can occur at concentrations lower than those producing lethal or sublethal effects) and more humane and refined approach (organisms are not mandatorily exposed to concentrations that can produce individual toxicity).
Collapse
Affiliation(s)
- Mohammed Ariful Islam
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain; Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Management and Conservation of the Sea, University of Cadiz, 11510, Puerto Real, Spain.
| | - Isabel Lopes
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Inês Domingues
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Daniel C V R Silva
- Institute of Exact Sciences, Federal University of Southern and Southeastern Pará, Marabá, 68507-590, Pará, Brazil; Institute of Natural Resources, Federal University of Itajubá (UNIFEI), Laboratory of Limnology and Ecotoxicolo Gy, Itajubá, 37500-903, Minas Gerais, Brazil.
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain.
| | - Joana Luísa Pereira
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Cristiano V M Araújo
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain.
| |
Collapse
|
7
|
Ma Y, Li Y. COF-300-AR@CRL as a two-in-one nanocatalyst for one-step chemiluminescent detection of diphenyl ether herbicide residues in vegetable and fruit samples. Mikrochim Acta 2023; 190:492. [PMID: 38032482 DOI: 10.1007/s00604-023-06077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
A sensitive and accurate chemiluminescence (CL) method was developed for one-step determination of diphenyl ether herbicides at trace level with nitrofen (2,4-dichlorophenyl-p-nitrophenyl ether) as a model analyte. Candida rugosa lipase (CRL) was immobilized on a nanocarrier of amine-linked covalent organic framework (named as COF-300-AR) through a self-assembly strategy. The formed nanocomposite of COF-300-AR@CRL owns dual enzymatic catalytic activities. It can directly catalyze luminol-dissolved oxygen reaction to produce an intense CL emission by virtue of oxidase mimic activity of COF-300-AR but also effectively decompose nitrofen to release phenolic compounds by the immobilized CRL. The released phenolic compounds own strong reducing capacity and in turn decrease the CL signal sharply. Under the optimal conditions, the decreased CL intensity presents a good linear response to nitrofen concentration in the 0.02-50.0 μM range. The limit of detection (LOD, 3sb/S) is 11 nM and the precision is 2.0% for replicate measurements of 50.0 nM nitrofen solution (n = 11). This method has the advantages of rapid analytical efficiency, good selectivity, satisfactory stability, and recyclability. Recovery experiments were conducted on spiked vegetable and fruit samples with the recoveries falling in the range 90.0-107.0%.
Collapse
Affiliation(s)
- Yuyu Ma
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yinhuan Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
8
|
Wang W, Man Y, Xie J, Zhang Z, Wang P, Liu X. Occurrence and risk assessment of three chloroamide herbicides in water and soil environment in northeastern, eastern and southern China. ENVIRONMENTAL RESEARCH 2023; 219:115104. [PMID: 36565672 DOI: 10.1016/j.envres.2022.115104] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Chloroamide herbicides can cause adverse effects on nontarget organisms, but there is limited information about their occurrence in the environment of major cropland growing regions. In this study, a total of 1012 soil samples, 617 surface water samples and 737 groundwater samples were collected from 2020 to 2021 in three regions of China to evaluate the occurrence and risk of three important chloroamide herbicides alachlor, acetochlor and butachlor using the improved QuEChERS extraction method and high performance liquid chromatography-mass spectrometry. The results showed that residues of the three chloroamide compounds in surface water and groundwater ranged from 0.1 to 176.0 μg L-1, of which acetochlor was frequently detected from surface water (17.5%). As for the soil, mass fraction was varied between 1.0 and 1540.3 μg kg-1, similarly acetochlor had the highest detection frequency (49.6%). Timewise, the median mass fraction of selected chloroamide herbicides in soil in 2021 (7.8 μg kg-1) was significantly lower than that in 2020 (10.9 μg kg-1). Spatially, there were regional differences in the content of environmental residues, and the overall level of residues in the northeast was relatively high. The environmental risk assessment based on the improved Risk Quotient (RQ) method indicated that the selected herbicides were currently within an acceptable range for human health risks in the soil and water environment in various regions, but acetochlor and butachlor had contributed to the RQ values of fish and earthworms (0.01<RQ<0.1) in recent years, respectively, which might pose a certain risk of oral exposure to aquatic and terrestrial organisms. This study provides valuable data and ideas for the rational application, pollution control and environmental safety evaluation of chloroamide herbicides in China.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanli Man
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun Xie
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Zhi Zhang
- Beijing Plant Protection Station, Beijing, 100029, China
| | - Pingping Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|