1
|
Miruka AC, Gao X, Cai L, Zhang Y, Luo P, Otieno G, Zhang H, Song Z, Liu Y. Effects of solution chemistry on dielectric barrier atmospheric non-thermal plasma for operative degradation of antiretroviral drug nevirapine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171369. [PMID: 38432368 DOI: 10.1016/j.scitotenv.2024.171369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The global prevalence of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) has been an environmental menace. Tons of drug wastes from antiretroviral therapy are released into the environment annually. We, for the first time, employed the novel dielectric barrier atmospheric non-thermal plasma (DBANP) discharge, to mitigate the inadvertent pollution arising from the antiretroviral therapy. A 40-min treatment of nevirapine achieved >94 % (0.075 min-1) removal efficiency at discharge power of 63.5 W and plasma working gas of atmospheric air. Chemical probes confirmed •OH, ONOO- and eaq- as the dominant reactive species whilst further revealing the reaction acceleration role of NaNO3 and CCl4 which are known reaction terminators. The commonly coexisting inorganic anions potentiated nevirapine removal with over 98 % efficiency, achieving the highest rate constant of 0.148 min-1 in this study. Moreover, the initial solution pH (1.5-11.1) was no limiting factor either. The insensitivity of the DBANP discharge to actual water matrices was an eminent inference of its potential applicability in practical conditions. With reference to data obtained from the liquid chromatography-mass spectrometer analysis, nevirapine degradation pathway was proposed. A nucleophilic attack by ONOO- at the cyclopropyl group and •OH attack at the carbonyl carbon of the amide group, respectively, initiated nevirapine degradation process. It is anticipated that the findings herein, will provide new insights into antiretroviral drug waste management in environmental waters using the innovative and green non-thermal plasma process.
Collapse
Affiliation(s)
- Andere Clement Miruka
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; School of Chemistry and Material Science, Technical University of Kenya, Nairobi 52428-00200, Kenya
| | - Xiaoting Gao
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Li Cai
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yinyin Zhang
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Pengcheng Luo
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Geoffrey Otieno
- School of Chemistry and Material Science, Technical University of Kenya, Nairobi 52428-00200, Kenya
| | - Han Zhang
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiqi Song
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Allabakshi SM, Srikar PSNSR, Gomosta S, Gangwar RK, Maliyekkal SM. UV-C photon integrated surface dielectric barrier discharge hybrid reactor: A novel and energy-efficient route for rapid mineralisation of aqueous azo dyes. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130639. [PMID: 36586337 DOI: 10.1016/j.jhazmat.2022.130639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The study describes developing an energy-efficient and scalable alternative to conventional non-thermal plasma systems by integrating surface dielectric barrier discharge (SDBD) and UV-C radiation sources. The unprecedented enhancement in the mineralisation rate of an azo dye (brilliant red 5B) by the hybrid reactor (photo-SDBD) is demonstrated thoroughly as a function of dye concentrations, pH, and background salts. The photo-SDBD is 1.25 - 4.9 times more energy efficient than SDBD under similar experimental conditions. The photo-SDBD could overcome the problems such as the recombination of hydroxyl radicals and scavenging of radicals by salts (NaCl, Na2SO4, Na2CO3) observed in conventional non-thermal plasma systems. The TOC and HR-MS analysis establish the complete mineralisation potential and chemical mineralisation pathway. Besides, the phytotoxicity of the treated water is tested and demonstrated its utility as a liquid fertiliser for enhanced germination of mung bean seeds. The optical emission spectroscopy measurements were performed to estimate the plasma's electron temperature (1.6 ± 0.2 eV) and density (1021/m3). The emission line ratio (I763.5/I738.3) approach is used to compare the influence of UV-C on plasma parameters in the SDBD reactor. The study opens a new pathway for developing energy-efficient and scalable plasma-assisted mineralisation of complex and emerging organic pollutants.
Collapse
Affiliation(s)
- Shaik Mahamad Allabakshi
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati, Yerpedu 517619, India
| | - P S N S R Srikar
- Department of Physics & CAMOST, Indian Institute of Technology Tirupati, Yerpedu 517619, India
| | - Suman Gomosta
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati, Yerpedu 517619, India
| | - Reetesh Kumar Gangwar
- Department of Physics & CAMOST, Indian Institute of Technology Tirupati, Yerpedu 517619, India.
| | - Shihabudheen M Maliyekkal
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati, Yerpedu 517619, India.
| |
Collapse
|
3
|
Meng F, Lin C, Song B, Yu L, Zhao Y, Zhi Z, Song M. Synergistic effect of underwater arc discharge plasma and Fe2O3-CoFe2O4 enhanced PMS activation to efficiently degrade refractory organic pollutants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
4
|
Fan J, Wu H, Liu R, Meng L, Sun Y. Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2522-2548. [PMID: 33105014 DOI: 10.1007/s11356-020-11222-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Discharge plasma technology is a new advanced oxidation technology for water treatment, which includes the effects of free radical oxidation, high energy electron radiation, ultraviolet light hydrolysis, and pyrolysis. In order to improve the energy efficiency in the plasma discharge processes, many efforts have been made to combine catalysts with discharge plasma technology. Some heterogeneous catalysts (e.g., activated carbon, zeolite, TiO2) and homogeneous catalysts (e.g., Fe2+/Fe3+, etc.) have been used to enhance the removal of pollutants by discharge plasma. In addition, some reagents of in situ chemical oxidation (ISCO) such as persulfate and percarbonate are also discussed. This article introduces the research progress of the combined systems of discharge plasma and catalysts/oxidants, and explains the different reaction mechanisms. In addition, physical and chemical changes in the plasma catalytic oxidation system, such as the effect of the discharge process on the catalyst, and the changes in the discharge state and solution conditions caused by the catalysts/oxidants, were also investigated. At the same time, the potential advantages of this system in the treatment of different organic wastewater were briefly reviewed, covering the degradation of phenolic pollutants, dyes, and pharmaceuticals and personal care products. Finally, some suggestions for future water treatment technology of discharge plasma are put forward. This review aims to provide researchers with a deeper understanding of plasma catalytic oxidation system and looks forward to further development of its application in water treatment.
Collapse
Affiliation(s)
- Jiawei Fan
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Haixia Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Ruoyu Liu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Liyuan Meng
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
5
|
Alvarado-Camacho C, Castillo-Araiza CO, Ruiz-Martínez RS. Degradation of Rhodamine B in water alone or as part of a mixture by advanced oxidation processes. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1835874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Carlos Alvarado-Camacho
- Grupo de Procesos de Transporte y Reacción en Sistemas Multifásicos, Depto. de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana - Iztapalapa, Iztapalapa, Mexico
| | - Carlos O. Castillo-Araiza
- Grupo de Procesos de Transporte y Reacción en Sistemas Multifásicos, Depto. de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana - Iztapalapa, Iztapalapa, Mexico
| | - Richard S. Ruiz-Martínez
- Grupo de Procesos de Transporte y Reacción en Sistemas Multifásicos, Depto. de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana - Iztapalapa, Iztapalapa, Mexico
| |
Collapse
|
6
|
Liu Y, Wang T, Qu G, Jia H. High-efficient decomplexation of Cu-HA by discharge plasma: Process and mechanisms. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Catalytic/inhibitory effect of the joint presence of two dyes on its destruction by underwater plasma processes: a tool for optimization parameters of treatment. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
8
|
Abstract
In the present study, the waste shells were used as a new low cost and eco-friendly biosorbant for Orange G anionic dye removal from aqueous solutions. Experiments were conducted in batch mode, and the effect of pH of solution, contact time, and initial dye concentration. X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and ICP-MS analysis for chemical analysis were used to characterize the obtained biosorbent. The results showed that the mussel shells are composed 73% of calcite and 26% of aragonite with some traces of aluminum, magnesium, sodium, silicium and zinc. The biosorption results show that the optimal pH was around 2 for efficient Orange G biosorption. The equilibrium was attained in 60 min. The kinetic analysis showed that the pseudo-second-order model is in good agreement with the experimental data. The biosorption isotherm was well described by Langmuir isotherm model, the maximumbiosorption capacity was 1000mg/g. The thermodynamic study revealed that the biosorption of Orange G onto mussel shell is spontaneous and exothermic.
Collapse
|
9
|
Solution Plasma-Assisted Green Synthesis of MnO2 Adsorbent and Removal of Cationic Pollutant. J CHEM-NY 2019. [DOI: 10.1155/2019/7494292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we proposed the solution plasma- (SP-) assisted green synthesis method using plants extracts, i.e., glucose, with the expectation of acting as a reducing agent and promotor for the formation of powder state of nanostructured MnO2. MnO2 was simply and rapidly synthesized within 10 min by the SP-assisted method. The structural features and morphology of as-synthesized MnO2 were characterized by XRD, Raman, FE-SEM, and TEM analyses. For potential application of as-synthesized MnO2, cationic dye, i.e., methylene blue (MB), removal performance was investigated by batch experiment at an initial concentration of C0 = 100 mg L−1. The obtained MnO2 exhibited effective dye removal ability given high C0, and simultaneously applied plasma discharging further enhanced removal efficiency. These contributions therefore open a new window not only on a powerful and environmentally benign synthesis route for efficient adsorbents but also on supporting multiple removal mechanism.
Collapse
|
10
|
Sharma S, Khare N. Hierarchical Bi2S3 nanoflowers: A novel photocatalyst for enhanced photocatalytic degradation of binary mixture of Rhodamine B and Methylene blue dyes and degradation of mixture of p-nitrophenol and p-chlorophenol. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Zhang Q, Qu G, Wang T, Li C, Qiang H, Sun Q, Liang D, Hu S. Humic acid removal from micro-polluted source water in the presence of inorganic salts in a gas-phase surface discharge plasma system. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.06.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Tao X, Wang G, Huang L, Ye Q, Xu D. A novel two-level dielectric barrier discharge reactor for methyl orange degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 184:480-486. [PMID: 27784581 DOI: 10.1016/j.jenvman.2016.10.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
A novel pilot two-level dielectric barrier discharge (DBD) reactor has been proposed and applied for degradation of continuous model wastewater. The two-level DBD reactor was skillfully realized with high space utilization efficiency and large contact area between plasma and wastewater. Various conditions such as applied voltage, initial concentration and initial pH value on methyl orange (MO) model wastewater degradation were investigated. The results showed that the appropriate applied voltage was 13.4 kV; low initial concentration and low initial pH value were conducive for MO degradation. The percentage removal of 4 L MO with concentration of 80 mg/L reached 94.1% after plasma treatment for 80min. Based on ultraviolet spectrum (UV), Infrared spectrum (IR), liquid chromatography-mass spectrometry (LC-MS) analysis of degradation intermediates and products, insights in the degradation pathway of MO were proposed.
Collapse
Affiliation(s)
- Xumei Tao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China.
| | - Guowei Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
| | - Liang Huang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
| | - Qingguo Ye
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
| | - Dongyan Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
| |
Collapse
|
13
|
Sun Y, Liu Y, Li R, Xue G, Ognier S. Degradation of reactive blue 19 by needle-plate non-thermal plasma in different gas atmospheres: Kinetics and responsible active species study assisted by CFD calculations. CHEMOSPHERE 2016; 155:243-249. [PMID: 27124311 DOI: 10.1016/j.chemosphere.2016.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/13/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the degradation of a model organic compound, reactive blue (RB-19), in aqueous solution using a needle-plate non-thermal plasma (NTP) reactor, which was operated using three gas atmospheres (Ar, air, O2) at room temperature and atmospheric pressure. The relative discharge and degradation parameters, including the peak to peak applied voltage, power, ozone generation, pH, decolorization rates, energy density and the total organic carbon (TOC) reduction were analyzed to determine the various dye removal efficiencies. The decolorization rate for Ar, air and O2 were 59.9%, 49.6% and 89.8% respectively at the energy density of 100 kJ/L. The best TOC reduction was displayed by Ar with about 8.8% decrease, and 0% with O2 and air atmospheres. This phenomenon could be explained by the formation of OH• and O3 in the Ar and O2 atmospheres, which are responsible for increased mineralization and efficient decolorization. A one-dimension model was developed using software COMSOL to simulate the RB-19-ozone reaction and verify the experiments by comparing the simulated and experimental results. It was determined that ozone plays the most important role in the dye removal process, and the ozone contribution rate ranged from 0.67 to 0.82.
Collapse
Affiliation(s)
- Yu Sun
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Rui Li
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Stéphanie Ognier
- UPMC Univ Paris 06, EA 3492, Laboratoire de Génie des Procédés et Traitements de Surface, 11 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
14
|
Merouani DR, Abdelmalek F, Ghezzar MR, Semmoud A, Addou A, Brisset JL. Influence of Peroxynitrite in Gliding Arc Discharge Treatment of Alizarin Red S and Postdischarge Effects. Ind Eng Chem Res 2013. [DOI: 10.1021/ie302964a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D. R. Merouani
- Laboratoire des Sciences et
Techniques de l’Environnement et de la Valorisation (STEVA),
Faculté des sciences et de la technologie, Université de Mostaganem, 27000, Mostaganem, Algérie
| | - F. Abdelmalek
- Laboratoire des Sciences et
Techniques de l’Environnement et de la Valorisation (STEVA),
Faculté des sciences et de la technologie, Université de Mostaganem, 27000, Mostaganem, Algérie
| | - M. R. Ghezzar
- Laboratoire des Sciences et
Techniques de l’Environnement et de la Valorisation (STEVA),
Faculté des sciences et de la technologie, Université de Mostaganem, 27000, Mostaganem, Algérie
| | - A. Semmoud
- Laboratoire de Spectrochimie
Infrarouge et Raman (LASIR), Université des Sciences et Technologies de Lille, 59650 Villeneuve d’Ascq,
France
| | - A. Addou
- Laboratoire des Sciences et
Techniques de l’Environnement et de la Valorisation (STEVA),
Faculté des sciences et de la technologie, Université de Mostaganem, 27000, Mostaganem, Algérie
| | - J. L. Brisset
- Faculté des
Sciences, Université de Rouen, Mont-Saint-Aignan,
France
| |
Collapse
|