1
|
Prajapat R, Yadav H, Shaik AH, Kiran B, Kanchi RS, Shaik S, Said Z, Chandan MR, Chakraborty S. A review of the prospects, efficacy and sustainability of nanotechnology-based approaches for oil spill remediation. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024:734242X241257095. [PMID: 38915231 DOI: 10.1177/0734242x241257095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Numerous marine oil spill incidents and their environmental catastrophe have raised the concern of the research community and environmental agencies on the topic of the offshore crude oil spill. The oil transport through oil tankers and pipelines has further aggravated the risk of the oil spill. This has led to the necessity to develop an effective, environment-friendly, versatile oil spill clean-up strategy. The current review article analyses various nanotechnology-based methods for marine oil spill clean-up, focusing on their recovery rate, reusability and cost. The authors weighed the three primary factors recovery, reusability and cost distinctively for the analysis based on their significance in various contexts. The findings and analysis suggest that magnetic nanomaterials and nano-sorbent have been the most effective nanotechnology-based marine oil spill remediation techniques, with the magnetic paper based on ultralong hydroxyapatite nanowires standing out with a recovery rate of over 99%. The chitosan-silica hybrid nano-sorbent and multi-wall carbon nanotubes are also promising options with high recovery rates of up to 95-98% and the ability to be reused multiple times. Although the photocatalytic biodegradation approach and the nano-dispersion method do not offer benefits for recovery or reusability, they can nevertheless help lessen the negative ecological effects of marine oil spills. Therefore, careful evaluation and selection of the most appropriate method for each marine oil spill situation is crucial. The current review article provides valuable insights into the current state of nanotechnology-based marine oil spill clean-up methods and their potential applications.
Collapse
Affiliation(s)
- Ramchandra Prajapat
- Colloids and Polymer Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Himanshu Yadav
- Colloids and Polymer Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Aabid Hussain Shaik
- Colloids and Polymer Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bandaru Kiran
- Colloids and Polymer Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Rohit Sunil Kanchi
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Saboor Shaik
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Zafar Said
- Sustainable and Renewable Energy Engineering (SREE), College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammed Rehaan Chandan
- Colloids and Polymer Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Samarshi Chakraborty
- Colloids and Polymer Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Perera HJ, Goyal A, Alhassan SM, Banu H. Biobased Castor Oil-Based Polyurethane Foams Grafted with Octadecylsilane-Modified Diatomite for Use as Eco-Friendly and Low-Cost Sorbents for Crude Oil Clean-Up Applications. Polymers (Basel) 2022; 14:polym14235310. [PMID: 36501710 PMCID: PMC9739393 DOI: 10.3390/polym14235310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Herein we report the synthesis and characterization of novel castor oil-based polyurethane (PU) foam functionalized with octadecyltrichlorosilane (C18)-modified diatomaceous earth (DE) particles, exhibiting superior hydrophobicity and oil adsorption, and poor water absorption, for use in effective clean-up of crude oil spillage in water bodies. High-performance and low-cost sorbents have a tremendous attraction in oil spill clean-up applications. Recent studies have focused on the use of castor oil as a significant polyol that can be used as a biodegradable and eco-friendly raw material for the synthesis of PU. However, biobased in-house synthesis of foam modified with C18-DE particles has not yet been reported. This study involves the synthesis of PU using castor oil, further modification of castor oil-based PU using C18 silane, characterization studies and elucidation of oil adsorption capacity. The FTIR analysis confirmed the fusion of C18 silane particles inside the PU skeleton by adding the new functional group, and the XRD study signified the inclusion of crystalline peaks in amorphous pristine PU foam owing to the silane cross-link structure. Thermogravimetric analysis indicated improvement in thermal stability and high residual content after chemical modification with alkyl chain moieties. The SEM and EDX analyses showed the surface's roughness and the incorporation of inorganic and organic elements into pristine PU foam. The contact angle analysis showed increased hydrophobicity of the modified PU foams treated with C18-DE particles. The oil absorption studies showed that the C18-DE-modified PU foam, in comparison with the unmodified one, exhibited a 2.91-fold increase in the oil adsorption capacity and a 3.44-fold decrease in the water absorbing nature. From these studies, it is understood that this novel foam can be considered as a potential candidate for cleaning up oil spillage on water bodies.
Collapse
Affiliation(s)
- Helanka J. Perera
- Maths and Natural Science, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi P.O. Box 25026, United Arab Emirates
- Correspondence:
| | - Anjali Goyal
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Saeed M. Alhassan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Hussain Banu
- Maths and Natural Science, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi P.O. Box 25026, United Arab Emirates
| |
Collapse
|
3
|
Medjahdi M, Mahida B, Benderdouche N, Mechab B, Bestani B, Reinert L, Duclaux L, Baillis D. Development of a Hydrophobic Carbon Sponge Nanocomposite for Oil Spill Cleanup. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8389. [PMID: 36499888 PMCID: PMC9741137 DOI: 10.3390/ma15238389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Oil leaks (or spills) into the aquatic environment are considered a natural disaster and a severe environmental problem for the entire planet. Samples of polyurethane (PU) composites were prepared with high specific surface area carbon nanotubes (CNT) to investigate crude oil sorption. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), density measurements, and mechanical compression tests were used to characterize the polyurethane-carbon PU-CNT prepared samples. The spongy composites exhibited good mechanical behavior and a contact angle of up to 119°. The oleophilic character resulted in increased hydrophobicity, a homogeneous oil distribution inside the sponge, and a sorption capacity in a water/oil mixture of 41.82 g/g. Stress-strain curves of the prepared samples showed the good mechanical properties of the sponge, which maintained its stability after more than six sorption desorption cycles. The CNT-PU composites may prove very effective in solving oil pollution problems.
Collapse
Affiliation(s)
- Malika Medjahdi
- LGPME, Sidi Bel Abbes University, Sidi Bel Abbes 22000, Algeria
| | - Badra Mahida
- LGPME, Sidi Bel Abbes University, Sidi Bel Abbes 22000, Algeria
| | | | - Belaid Mechab
- LMPM, Sidi Bel Abbes University, Sidi Bel Abbes 22000, Algeria
| | - Benaouda Bestani
- LSEA2M, Abdelhamid Ibn Badis University, Mostaganem 27000, Algeria
| | - Laurence Reinert
- EDYTEM Laboratory, University of Savoie-Mont Blanc, 73000 Chambery, France
| | - Laurent Duclaux
- EDYTEM Laboratory, University of Savoie-Mont Blanc, 73000 Chambery, France
| | - Dominique Baillis
- Univ Lyon, INSA Lyon, CNRS UMR5259, LaMCoS, 69621 Villeurbanne, France
| |
Collapse
|
4
|
Effective oil spill cleaned up with environmentally friendly foams filled with eucalyptus charcoal residue. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-021-00997-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Wong LY, Lau SY, Pan S, Lam MK. 3D graphene-based adsorbents: Synthesis, proportional analysis and potential applications in oil elimination. CHEMOSPHERE 2022; 287:132129. [PMID: 34509009 DOI: 10.1016/j.chemosphere.2021.132129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The suitability and efficacy of three-dimensional (3D) graphene, including its derivatives, have garnered widespread attention towards the development of novel, sustainable materials with ecological amenability. This is especially relevant towards its utilization as adsorbents of wastewater contaminants, such as heavy metals, dyes, and oil, which could be majorly attributed to its noteworthy physicochemical features, particularly elevated chemical and mechanical robustness, advanced permeability, as well as large specific surface area. In this review, we emphasize on the adsorptive elimination of oil particles from contaminated water. Specifically, we assess and collate recent literature on the conceptualization and designing stages of 3D graphene-based adsorbents (3DGBAs) towards oil adsorption, including their applications in either batch or continuous modes. In addition, we analytically evaluate the adsorption mechanism, including sorption sites, physical properties, surface chemistry of 3DGBA and interactions between the adsorbent and adsorbate involving the adsorptive removal of oil, as well as numerous effects of adsorption conditions on the adsorption performance, i.e. pH, temperature, initial concentration of oil contaminants and adsorbent dosage. Furthermore, we focus on the equilibrium isotherms and kinetic studies, in order to comprehend the oil elimination procedures. Lastly, we designate encouraging avenues and recommendations for a perpetual research thrust, and outline the associated future prospects and perspectives.
Collapse
Affiliation(s)
- Lee Yi Wong
- Department of Chemical Engineering, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Sie Yon Lau
- Department of Chemical Engineering, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Sharadwata Pan
- TUM School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
6
|
Hailan SM, Ponnamma D, Krupa I. The Separation of Oil/Water Mixtures by Modified Melamine and Polyurethane Foams: A Review. Polymers (Basel) 2021; 13:4142. [PMID: 34883644 PMCID: PMC8659166 DOI: 10.3390/polym13234142] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 12/03/2022] Open
Abstract
Melamine (MA) and polyurethane (PU) foams, including both commercial sponges for daily use as well as newly synthesized foams are known for their high sorption ability of both polar and unipolar liquids. From this reason, commercial sponges are widely used for cleaning as they absorb a large amount of water, oil as well as their mixtures. These sponges do not preferentially absorb any of those components due to their balanced wettability. On the other hand, chemical and physical modifications of outer surfaces or in the bulk of the foams can significantly change their original wettability. These treatments ensure a suitable wettability of foams needed for an efficient water/oil or oil/water separation. MA and PU foams, dependently on the treatment, can be designed for both types of separations. The particular focus of this review is dealt with the separation of oil contaminants dispersed in water of various composition, however, an opposite case, namely a separation of water content from continuous oily phase is also discussed in some extent. In the former case, water is dominant, continuous phase and oil is dispersed within it at various concentrations, dependently on the source of polluted water. For example, waste waters associated with a crude oil, gas, shale gas extraction and oil refineries consist of oily impurities in the range from tens to thousands ppm [mg/L]. The efficient materials for preferential oil sorption should display significantly high hydrophobicity and oleophilicity and vice versa. This review is dealt with the various modifications of MA and PU foams for separating both oil in water and water in oil mixtures by identifying the chemical composition, porosity, morphology, and crosslinking parameters of the materials. Different functionalization strategies and modifications including the surface grafting with various functional species or by adding various nanomaterials in manipulating the surface properties and wettability are thoroughly reviewed. Despite the laboratory tests proved a multiply reuse of the foams, industrial applications are limited due to fouling problems, longer cleaning protocols and mechanical damages during performance cycles. Various strategies were proposed to resolve those bottlenecks, and they are also reviewed in this study.
Collapse
Affiliation(s)
| | | | - Igor Krupa
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (S.M.H.); (D.P.)
| |
Collapse
|
7
|
Selvasembian R, Gwenzi W, Chaukura N, Mthembu S. Recent advances in the polyurethane-based adsorbents for the decontamination of hazardous wastewater pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125960. [PMID: 34229405 DOI: 10.1016/j.jhazmat.2021.125960] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
The pollution of aquatic systems with noxious organic and inorganic contaminants is a challenging problem faced by most countries. Water bodies are contaminated with diverse inorganic and organic pollutants originating from various diffuse and point sources, including industrial sectors, agricultural practices, and domestic wastes. Such hazardous water pollutants tend to accumulate in the environmental media including living organisms, thereby posing significant environmental health risks. Therefore, the remediation of wastewater pollutants is a priority. Adsorption is considered as the most efficient technique for the removal of pollutants in aqueous systems, and the deployment of suitable adsorbents plays a vital role for the sustainable application of the technique. The present review gives an overview of polyurethane foam (PUF) as an adsorbent, the synthesis approaches of polyurethane, and characterization aspects. Further emphasis is on the preparation of the various forms of polyurethane adsorbents, and their potential application in the removal of various challenging water pollutants. The removal mechanisms, including adsorption kinetics, isotherms, thermodynamics, and electrostatic and hydrophobic interactions between polyurethane adsorbents and pollutants are discussed. In addition, regeneration, recycling and disposal of spent polyurethane adsorbents are reported. Finally, key knowledge gaps on synthesis, characterization, industrial applications, life cycle analysis, and potential health risks of polyurethane adsorbents are discussed.
Collapse
Affiliation(s)
- Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India.
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP 167, Mount Pleasant, Harare, Zimbabwe.
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, South Africa.
| | - Siyanda Mthembu
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, South Africa.
| |
Collapse
|
8
|
Marvelous oleophillic adsorption ability of SiO2/activated carbon and GO composite nanostructure using polyurethane for rapid oil spill cleanup. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Visco A, Quattrocchi A, Nocita D, Montanini R, Pistone A. Polyurethane Foams Loaded with Carbon Nanofibers for Oil Spill Recovery: Mechanical Properties under Fatigue Conditions and Selective Absorption in Oil/Water Mixtures. NANOMATERIALS 2021; 11:nano11030735. [PMID: 33804089 PMCID: PMC8000632 DOI: 10.3390/nano11030735] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/19/2023]
Abstract
Marine pollution due to spillage of hydrocarbons represents a well-known current environmental problem. In order to recover the otherwise wasted oils and to prevent pollution damage, polyurethane foams are considered suitable materials for their ability to separate oils from sea-water and for their reusability. In this work we studied polyurethane foams filled with carbon nanofibers, in varying amounts, aimed at enhancing the selectivity of the material towards the oils and at improving the mechanical durability of the foam. Polyurethane-based foams were experimentally characterized by morphological, surface, and mechanical analyses (optical microscopy observation, contact angle measurement, absorption test according to ASTM F726-99 standard and compression fatigue tests according to ISO 24999 standard). Results indicated an increase in hydrophobic behavior and a good oleophilic character of the composite sponges besides an improved selective absorption of the foam toward oils in mixed water/oil media. The optimal filler amount was found to be around 1 wt% for the homogeneous distribution inside the polymeric foam. Finally, the fatigue test results showed an improvement of the mechanical properties of the foam with the growing carbon filler amount.
Collapse
Affiliation(s)
- Annamaria Visco
- Department of Engineering, University of Messina, C.da di Dio (S. Agata), I-98166 Messina, Italy; (A.Q.); (R.M.)
- Institute for Polymers, Composites and Biomaterials-CNR IPCB, Via P. Gaifami 18, I-95126 Catania, Italy
- Correspondence: (A.V.); (A.P.); Tel.: +39-090-676-5249 (ext. 3808) (A.V.); +39-090-676-5506 (A.P.)
| | - Antonino Quattrocchi
- Department of Engineering, University of Messina, C.da di Dio (S. Agata), I-98166 Messina, Italy; (A.Q.); (R.M.)
| | - Davide Nocita
- Polymer IRC, Faculty of Engineering and Informatics, University of Bradford, Bradford BD7 1DP, UK;
| | - Roberto Montanini
- Department of Engineering, University of Messina, C.da di Dio (S. Agata), I-98166 Messina, Italy; (A.Q.); (R.M.)
| | - Alessandro Pistone
- Department of Engineering, University of Messina, C.da di Dio (S. Agata), I-98166 Messina, Italy; (A.Q.); (R.M.)
- Correspondence: (A.V.); (A.P.); Tel.: +39-090-676-5249 (ext. 3808) (A.V.); +39-090-676-5506 (A.P.)
| |
Collapse
|
10
|
Meng Y, Wang Y, Wang C. Phosphorus Release and Adsorption Properties of Polyurethane-Biochar Crosslinked Material as a Filter Additive in Bioretention Systems. Polymers (Basel) 2021; 13:polym13020283. [PMID: 33477252 PMCID: PMC7830493 DOI: 10.3390/polym13020283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/01/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
Bioretention systems are frequently employed in stormwater treatment to reduce phosphorus pollution and prevent eutrophication. To enhance their efficiency, filter additives are required but the currently used traditional materials cannot meet the primary requirements of excellent hydraulic properties as well as outstanding release and adsorption capacities at the same time. In this research, a polyurethane-biochar crosslinked material was produced by mixing the hardwood biochar (HB) with polyurethane to improve the performance of traditional filter additives. Through basic parameter tests, the saturated water content of polyurethane-biochar crosslinked material (PCB) was doubled and the permeability coefficient of PCB increased by two orders of magnitude. Due to the polyurethane, the leaching speed of phosphorus slowed down in the batching experiments and fewer metal cations leached. Moreover, PCB could adsorb 93–206 mg/kg PO43− at a typical PO43− concentration in stormwater runoff, 1.32–1.58 times more than HB, during isothermal adsorption experiments. In the simulating column experiments, weaker hydropower reduced the PO43− leaching quantities of PCB and had a stable removal rate of 93.84% in phosphate treatment. This study demonstrates the potential use of PCB as a filter additive in a bioretention system to achieve hydraulic goals and improve phosphate adsorption capacities.
Collapse
Affiliation(s)
- Yike Meng
- College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China;
- Correspondence: (Y.M.); (Y.W.)
| | - Yuan Wang
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
- Correspondence: (Y.M.); (Y.W.)
| | - Chuanyue Wang
- College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China;
| |
Collapse
|
11
|
Wang B, Liu Q, Fan Z. A Mini Review: Application Progress of Magnetic Graphene Three-Dimensional Materials for Water Purification. Front Chem 2020; 8:595643. [PMID: 33330385 PMCID: PMC7716700 DOI: 10.3389/fchem.2020.595643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Marine oil pollution, colored counterattacks, and heavy metal ions in the water will cause serious environmental problems and threaten human health. The three-dimensional material prepared by graphene, as a new nanomaterial, has a large specific surface area and surface chemical activity. Various impurities in the water can be absorbed, which is very suitable as a water purification material. Depositing Fe3O4 and other magnetic materials on graphene three-dimensional materials can not only increase recyclability but increase hydrophobicity. Therefore, magnetic graphene three-dimensional materials have a high potential for use in water purification. This article reviews the research progress and adsorption mechanism of magnetic graphene materials for water purification. Finally, the future research prospects of magnetic graphene materials have prospected.
Collapse
Affiliation(s)
- Biao Wang
- Petroleum Engineering College, Northeast Petroleum University, Daqing, China
| | - Qingwang Liu
- Petroleum Engineering College, Northeast Petroleum University, Daqing, China
| | - Zhenzhong Fan
- Petroleum Engineering College, Northeast Petroleum University, Daqing, China
| |
Collapse
|
12
|
A Green Approach to Modify Surface Properties of Polyurethane Foam for Enhanced Oil Absorption. Polymers (Basel) 2020; 12:polym12091883. [PMID: 32825561 PMCID: PMC7565495 DOI: 10.3390/polym12091883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
The non-selective property of conventional polyurethane (PU) foam tends to lower its oil absorption efficiency. To address this issue, we modified the surface properties of PU foam using a rapid solvent-free surface functionalization approach based on the chemical vapor deposition (CVD) method to establish an extremely thin yet uniform coating layer to improve foam performance. The PU foam was respectively functionalized using different monomers, i.e., perfluorodecyl acrylate (PFDA), 2,2,3,4,4,4-hexafluorobutyl acrylate (HFBA), and hexamethyldisiloxane (HMDSO), and the effect of deposition times (1, 5 and 10 min) on the properties of foam was investigated. The results showed that all the modified foams demonstrated a much higher water contact angle (i.e., greater hydrophobicity) and greater absorption capacities compared to the control PU foam. This is due to the presence of specific functional groups, e.g., fluorine (F) and silane (Si) in the modified PU foams. Of all, the PU/PHFBAi foam exhibited the highest absorption capacities, recording 66.68, 58.15, 53.70, and 58.38 g/g for chloroform, acetone, cyclohexane, and edible oil, respectively. These values were 39.19–119.31% higher than that of control foam. The promising performance of the PU/PHFBAi foam is due to the improved surface hydrophobicity attributed to the original perfluoroalkyl moieties of the HFBA monomer. The PU/PHFBAi foam also demonstrated a much more stable absorption performance compared to the control foam when both samples were reused for up to 10 cycles. This clearly indicates the positive impact of the proposed functionalization method in improving PU properties for oil absorption processes.
Collapse
|
13
|
Guan Y, Cheng F, Pan Z. Superwetting Polymeric Three Dimensional (3D) Porous Materials for Oil/Water Separation: A Review. Polymers (Basel) 2019; 11:E806. [PMID: 31064062 PMCID: PMC6571923 DOI: 10.3390/polym11050806] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Oil spills and the emission of oily wastewater have triggered serious water pollution and environment problems. Effectively separating oil and water is a world-wide challenge and extensive efforts have been made to solve this issue. Interfacial super-wetting separation materials e.g., sponge, foams, and aerogels with high porosity tunable pore structures, are regarded as effective media to selectively remove oil and water. This review article reports the latest progress of polymeric three dimensional porous materials (3D-PMs) with super wettability to separate oil/water mixtures. The theories on developing super-wetting porous surfaces and the effects of wettability on oil/water separation have been discussed. The typical 3D porous structures (e.g., sponge, foam, and aerogel), commonly used polymers, and the most reported techniques involved in developing desired porous networks have been reviewed. The performances of 3D-PMs such as oil/water separation efficiency, elasticity, and mechanical stability are discussed. Additionally, the current challenges in the fabrication and long-term operation of super-wetting 3D-PMs in oil/water separation have also been introduced.
Collapse
Affiliation(s)
- Yihao Guan
- Institute of Resources and Environmental Engineering, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, China.
- Shanxi Collaborative Innovation Center of High Value-Added Utilization of Coal-Related Wastes, Shanxi University, Taiyuan 030006, China.
| | - Fangqin Cheng
- Institute of Resources and Environmental Engineering, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, China.
- Shanxi Collaborative Innovation Center of High Value-Added Utilization of Coal-Related Wastes, Shanxi University, Taiyuan 030006, China.
| | - Zihe Pan
- Institute of Resources and Environmental Engineering, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, China.
- Shanxi Collaborative Innovation Center of High Value-Added Utilization of Coal-Related Wastes, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|