1
|
Xu Y, Shen W, Liu Y, Wei J. Chitosan/lemon residues activated carbon efficiently removal of acid red 18 from aqueous solutions: batch study, isotherm and kinetics. ENVIRONMENTAL TECHNOLOGY 2023; 44:1405-1414. [PMID: 34779747 DOI: 10.1080/09593330.2021.2003439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
In this research, chitosan-decorated activated carbon (AC-CS) was proposed. The AC was cross-linked with glutaraldehyde to prepare an adsorbent (AC-CS). The AC-CS has a rough surface. Adding the AC-CS directly to the dye solution can achieve simple and convenient removal of anionic azo dyes acid red 18 (AR-18). In the dye solution, the AC-CS was used as an adsorbent. The effects of pH, contact time, temperature, initial concentration of AR-18 and the AC-CS dosage on the adsorption efficiency were investigated. Full kinetic and isotherm analyses were also undertaken. In addition, the reusability of the AC-CS was evaluated, and the results showed that the removal rate of AR18 after regeneration remained relatively stable, above 90%. This experiment has shown that AC-CS is a promising anionic azo dye adsorbent.
Collapse
Affiliation(s)
- Yongyao Xu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China
| | - Wangqing Shen
- School of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, Sichuan, People's Republic of China
| | - Yin Liu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China
| | - Jiafeng Wei
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China
| |
Collapse
|
2
|
High efficiency removal of heavy metals and organic pollutants from brassware using raw coal: kinetic adsorption and optimized process. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
3
|
He H, Huang M, Gao Z, Zhou Y, Zhao Y, Chen Y, Gu Y, Chen S, Yan B. Mussel-inspired polydopamine-modified silk nanofibers as an eco-friendly and highly efficient adsorbent for cationic dyes. NEW J CHEM 2023. [DOI: 10.1039/d2nj06055h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Obtaining silk nanofibers by simple swelling and mechanical splitting of fibers.
Collapse
Affiliation(s)
- Heng He
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Minggang Huang
- Key Laboratory of Fine Chemical Application Technology of Luzhou, Luzhou 646099, China
| | - Zhiwei Gao
- Xinjiang Xinchun Petroleum Development Co., Ltd., Sinopec, Dongying 257000, China
| | - Yifan Zhou
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yuxiang Zhao
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yan Chen
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yingchun Gu
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Sheng Chen
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Bin Yan
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Neolaka YA, Riwu AA, Aigbe UO, Ukhurebor KE, Onyancha RB, Darmokoesoemo H, Kusuma HS. Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
5
|
Güngör Z, Ozay H. Use of cationic p[2-(acryloyloxy)ethyl] trimethylammonium chloride in hydrogel synthesis and adsorption of methyl orange with jeffamine based crosslinker. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2129676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Zeynep Güngör
- School of Graduate Studies, Department of Chemistry, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Hava Ozay
- Laboratory of Inorganic Materials, Department of Chemistry, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
6
|
Wei W, Shang N, Zhang X, Liu W, Zhang T, Wu M. A green 3-step combined modification for the preparation of biomass sorbent from waste chestnut thorns shell to efficient removal of methylene blue. BIORESOURCE TECHNOLOGY 2022; 360:127593. [PMID: 35809869 DOI: 10.1016/j.biortech.2022.127593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Although several green methods for the preparation of biomass adsorbents have been proposed, the low adsorption performance of the biomass adsorbents prepared by these methods has limited the development of this technological route. This is the first work that uses an ultrasound-assisted binary solvent system and low temperature ice crystal fixation to achieve high adsorption performance of a biomass sorbent. Chestnut thorns shell (CTS) sorbent with high adsorption performance on MB was successfully prepared with an adsorption performance of 305.81 mg/g, which is on par with most high temperature carbonized adsorbents. Further reaction kinetics, TEM, XPS and FTIR studies showed that the MB adsorption of CTS was through electrostatic attraction, hydrogen bonding, ion-dipole interaction and π-π interaction. After five cycles, the adsorption capacity of the adsorbent remained at a high level. This work provided an effective strategy for safer and greener preparation of high adsorption performance adsorbents from agroforestry waste.
Collapse
Affiliation(s)
- Wenguang Wei
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xun Zhang
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Wen Liu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Tong Zhang
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
7
|
Jethave G, Fegade U, Siddiqui MFA, Ahamed MI, Suryawanshi KE. Adsorption of hexamethyl pararosaniline chloride dye on MgO‐PbFe
2
O
4
: Experimental study and statistical physics modeling via double‐layer model. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ganesh Jethave
- Department of Chemistry Dr. Annasaheb G. D. Bendale Mahila Mahavidyalaya Jalgaon Maharashtra India
| | - Umesh Fegade
- Department of Applied Science & Humanities R.C. Patel Institute of Technology Districts Dhule Shirpur Maharashtra India
| | - Mohd Faizan Alam Siddiqui
- Department of Chemistry Bhusawal Arts, Science and P. O. Nahata Commerce College Bhusawal Maharashtra India
| | - Mohd Imran Ahamed
- Department of Chemistry Faculty of Science Aligarh Muslim University Aligarh India
| | - Kiran E. Suryawanshi
- Department of Chemistry Faculty of Science Aligarh Muslim University Aligarh India
| |
Collapse
|
8
|
Falyouna O, Faizul Idham M, Maamoun I, Bensaida K, Ashik UPM, Sugihara Y, Eljamal O. Promotion of ciprofloxacin adsorption from contaminated solutions by oxalate modified nanoscale zerovalent iron particles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Licona-Aguilar ÁI, Torres-Huerta AM, Domínguez-Crespo MA, Palma-Ramírez D, Conde-Barajas E, Negrete-Rodríguez MXL, Rodríguez-Salazar AE, García-Zaleta DS. Reutilization of waste biomass from sugarcane bagasse and orange peel to obtain carbon foams: Applications in the metal ions removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154883. [PMID: 35358521 DOI: 10.1016/j.scitotenv.2022.154883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The high levels of heavy metals contained in residual water and the pollution generated by a large amount of unexploited agro-industrial waste are a serious problem for the environment and mankind. Therefore, in the present work, with the aim of treating and reducing the pollution caused by heavy metal ions (Pb, Cd, Zn and Cu), activated carbons (ACs) were synthesized from sugarcane bagasse (SCB) and orange peel (OP) by means of physical - chemical activation method in an acid medium (H3PO4, 85 wt%) followed by an activation at high temperature (500 and 700 °C). Thereafter, these materials were used to produce carbon foams (CF) by the replica method and to evaluate their adsorbent capacity for the removal of heavy metals from synthetic water. XRD, FTIR, DLS, BET, Zeta Potential (ζ), SEM-EDS and AAS were used to investigate their structures, surface area, pore size, morphology, and adsorption capacity. The results show that as-prepared CF have a second level mesoporous structure and AC present a micro-mesoporous structure with a pore diameter between 3 and 4 nm. The experimental adsorption capacities of heavy metals showed that the CF from OP present a better elimination of heavy metals compared to the AC; exhibiting a removal capacity of 95.2 ± 3.96% (Pb) and 94.7 ± 4.88% (Cu) at pH = 5. The adsorption values showed that the optimal parameters to reach a high metal removal are pH values above 5. In the best of cases, the minimum remaining concentration of lead and copper were 2.4 and 2.6 mg L-1, respectively. The experimental data for carbon adsorbents are in accordance with the Langmuir and BET isotherms, with R2 = 0.99 and the maximum homogenous biosorption capacity for lead and copper was Qmax = 968.72 and 754.14 mg g-1, respectively. This study showed that agro-industrial wastes can be effectively retrieved to produce adsorbents materials for wastewater treatment applications.
Collapse
Affiliation(s)
- Á I Licona-Aguilar
- Instituto Politécnico Nacional, CICATA-Altamira, CIAMS. km 14.5 carretera Tampico-Puerto Industrial Altamira, Mexico
| | - A M Torres-Huerta
- Instituto Politécnico Nacional, UPIIH, Ciudad del conocimiento y la cultura, Carretera Pachuca-Actopan km. 1+500 San Agustin Tlaxiaca, C.P. 42162, Hidalgo, Mexico.
| | - M A Domínguez-Crespo
- Instituto Politécnico Nacional, UPIIH, Ciudad del conocimiento y la cultura, Carretera Pachuca-Actopan km. 1+500 San Agustin Tlaxiaca, C.P. 42162, Hidalgo, Mexico.
| | - D Palma-Ramírez
- Instituto Politécnico Nacional, Centro Mexicano para la Producción más Limpia (CMPL), Av. Acueducto s/n, la Laguna Ticomán, C.P. 07340 México City, Mexico
| | - E Conde-Barajas
- Laboratory of Environmental Biotechnology, Department Environmental Engineering, TNM/IT de Celaya, Av. Tecnológico y A. García Cubas 600, Celaya 38010 Celaya, Guanajuato, Mexico
| | - M X L Negrete-Rodríguez
- Laboratory of Environmental Biotechnology, Department Environmental Engineering, TNM/IT de Celaya, Av. Tecnológico y A. García Cubas 600, Celaya 38010 Celaya, Guanajuato, Mexico
| | - A E Rodríguez-Salazar
- Instituto Politécnico Nacional, CICATA Querétaro, Cerro Blanco 141, Col. Colinas del Cimatario, C.P. 76090 Santiago de Querétaro, Querétaro, Mexico
| | - D S García-Zaleta
- Universidad Juárez Autónoma de Tabasco, Carretera Estatal Libre Villahermosa-Comalcalco, Km. 27 +000 s/n Ranchería Ribera Alta, C.P. 86205, Tabasco, Mexico
| |
Collapse
|
10
|
Anderson A, Anbarasu A, Pasupuleti RR, Manigandan S, Praveenkumar TR, Aravind Kumar J. Treatment of heavy metals containing wastewater using biodegradable adsorbents: A review of mechanism and future trends. CHEMOSPHERE 2022; 295:133724. [PMID: 35101432 DOI: 10.1016/j.chemosphere.2022.133724] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 05/27/2023]
Abstract
The direct disposal of industrial effluents into the aquatic system is considered as a significant environmental hazard in many countries. Because of poisonous chemicals, substantial volumes of effluent release, as well as the lack of adequate of conventional treatment methodologies, industrial effluent treatment is extremely difficult. Numerous researchers have been interested in adsorption technology for its high efficiency of pollutant removal, low cost, and abundantly available adsorbent. Various adsorbent materials, both natural and modified form, have been widely used for the removal of toxic contaminants from industrial effluent. This paper highlights recent advancements in multiple modification types to functionalize the adsorbent material, resulting in higher adsorption capacity on various toxic pollutants. This review provides an overview of the adsorption mechanism and parameters (pH, adsorbent dosage, initial concentration, temperature and interaction time), which influencing the removal efficiency of adsorbents. Furthermore, this review compiles the desorption study to recover the adsorbent and improve the cycle's financial viability. This review provides a concise overview of the future directions and outlook in the framework of adsorbent application for industrial wastewater treatment.
Collapse
Affiliation(s)
- A Anderson
- Department of Aeronautical Engineering, Sathyabama Institute of Science and Technology, Chennai, 119, India
| | - A Anbarasu
- Department of Mechanical Engineering, Panimalar Engineering College, 600123, India
| | - Raghavendra Rao Pasupuleti
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sekar Manigandan
- Department of Aeronautical Engineering, Sathyabama Institute of Science and Technology, Chennai, 119, India.
| | - T R Praveenkumar
- Department of Construction Technology and Management, Wollega University, Nekemte, Ethiopia.
| | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamilnadu, India
| |
Collapse
|
11
|
Georgin J, Netto MS, Franco DSP, Piccilli DGA, da Boit Martinello K, Silva LFO, Foletto EL, Dotto GL. Woody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16988-17000. [PMID: 34657260 DOI: 10.1007/s11356-021-16792-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Activated carbon prepared from grape branches was used as a remarkable adsorbent to uptake naproxen and treat a synthetic mixture from aqueous solutions. The material presented a highly porous texture, a surface area of 938 m2 g-1, and certain functional groups, which were key factors to uptake naproxen from effluents. The maximum adsorption capacity predicted by the Langmuir model for naproxen was 176 mg g-1. The thermodynamic study revealed that the adsorption process was endothermic and spontaneous. The linear driving force (LDF) model presented a good statistical adjustment to the experimental decay data. A suitable interaction pathway of naproxen adsorption onto activated carbon was proposed. The adsorbent material was highly efficient to treat a synthetic mixture containing several drugs and salts, reaching 95.63% removal. Last, it was found that the adsorbent can be regenerated up to 7 times using an HCl solution. Overall, the results proved that the activated carbon derived from grape branches could be an effective and sustainable adsorbent to treat wastewaters containing drugs.
Collapse
Affiliation(s)
- Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Matias S Netto
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Daniel G A Piccilli
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Kátia da Boit Martinello
- Departamento de Ingeniería Civil y Arquitectura, Universidad de Lima, Avenida Javier Prado Este 4600, Santiago de Surco, 15023, Perú
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Luis F O Silva
- Departamento de Ingeniería Civil y Arquitectura, Universidad de Lima, Avenida Javier Prado Este 4600, Santiago de Surco, 15023, Perú
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Edson L Foletto
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme L Dotto
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
12
|
Chang W, Zhang L, Qin J, Zhang P, Fu C, Fujino T. Chestnut-Shell-Derived Magnetic Porous Carbon for Removing Malachite Green Dye from Water. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2022. [DOI: 10.1252/jcej.21we024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Chang
- Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi’an Polytechnic University
| | - Li Zhang
- Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi’an Polytechnic University
| | - Jie Qin
- Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi’an Polytechnic University
| | - Pengfei Zhang
- Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi’an Polytechnic University
| | - Chengyu Fu
- Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi’an Polytechnic University
| | | |
Collapse
|
13
|
Moradi O, Sharma G. Emerging novel polymeric adsorbents for removing dyes from wastewater: A comprehensive review and comparison with other adsorbents. ENVIRONMENTAL RESEARCH 2021; 201:111534. [PMID: 34146528 DOI: 10.1016/j.envres.2021.111534] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Dye molecules are one of the most hazardous compounds for human and animal health and the excess intake of these materials can create toxic impacts. Several studies show the practicality of the adsorption process for dye uptake from wastewaters. In recent years, various adsorbents were used to be efficient in this process. Among all, polymeric adsorbents demonstrate great applicability in different environmental conditions and attract many researchers to work on them, although there is not enough reliable and precise information regarding these adsorbents. This study aims to investigate some influential parameters such as their type, physical properties, experimental conditions, their capacity, and further modeling along with a comparison with non-polymeric adsorbents. The influence of the main factors of adsorption capacity was studied and the dominant mechanism is explained extensively.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; School of Life and Allied Health Sciences, Glocal University, Saharanpur, India.
| |
Collapse
|
14
|
Lei M, Yang L, Shen Y, Yang L, Sun J. Efficient Adsorption of Anionic Dyes by Ammoniated Waste Polyacrylonitrile Fiber: Mechanism and Practicability. ACS OMEGA 2021; 6:19506-19516. [PMID: 34368537 PMCID: PMC8340109 DOI: 10.1021/acsomega.1c01780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/18/2021] [Indexed: 05/15/2023]
Abstract
Adsorption is one of the commonly used methods in wastewater treatment, but it has the problem of high cost and a complicated production process. In this paper, a low-cost and efficient decolorizing adsorbent was successfully prepared based on waste polyacrylonitrile fiber (PANF). The waste PANF was ammoniated by propylene diamine derivates (PANAMF), and benzylamine (PANABMF) and quaternary ammonium ions (PANQMF) were introduced for PANAMF to regulate hydrophilicity and hydrophobicity. With acidic red 249 as the model anionic dye, influences of the adsorption center structure, the degree of modification, the concentration of acid, the dye structure, and the auxiliary agent in the solution on the dye adsorption performance were studied. Isothermal models, kinetic models, reusability, and continuous application ability of the fiber adsorbent were discussed. PANAMF, PANABMF, and PANAQF exhibit excellent adsorption performance compared to the common adsorbent. After protonation, the saturation adsorption value can reach 2051.3 mg/g for PANAMF. PANAMF also exhibited excellent reusability, and the adsorption capacity after being reused eight times still can keep 72.7% of that for the first time. The adsorption of the anionic dye for PANAMF is a chemisorption process, and the rate-determining step is changed from the diffuse step to the adsorption on the surface with the adsorption time. PANAMF can also be used in the continuous flow process, and the absorption amount is similar to that in the batch adsorption, which shows excellent commercial application potential.
Collapse
Affiliation(s)
- Manjun Lei
- Key
Laboratory of Advance Textile Materials and Manufacturing Technology,
Ministry of Education, College of Textile Science and Engineering
(International Institute of Silk), Zhejiang
Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Engineering
Research Center for Eco-Dyeing and Finishing of Textiles, Ministry
of Education, College of Textile Science and Engineering (International
Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Lihui Yang
- Key
Laboratory of Advance Textile Materials and Manufacturing Technology,
Ministry of Education, College of Textile Science and Engineering
(International Institute of Silk), Zhejiang
Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Engineering
Research Center for Eco-Dyeing and Finishing of Textiles, Ministry
of Education, College of Textile Science and Engineering (International
Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Yifeng Shen
- Key
Laboratory of Advance Textile Materials and Manufacturing Technology,
Ministry of Education, College of Textile Science and Engineering
(International Institute of Silk), Zhejiang
Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Engineering
Research Center for Eco-Dyeing and Finishing of Textiles, Ministry
of Education, College of Textile Science and Engineering (International
Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Lei Yang
- Key
Laboratory of Advance Textile Materials and Manufacturing Technology,
Ministry of Education, College of Textile Science and Engineering
(International Institute of Silk), Zhejiang
Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Engineering
Research Center for Eco-Dyeing and Finishing of Textiles, Ministry
of Education, College of Textile Science and Engineering (International
Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Jie Sun
- Key
Laboratory of Advance Textile Materials and Manufacturing Technology,
Ministry of Education, College of Textile Science and Engineering
(International Institute of Silk), Zhejiang
Sci-Tech University, Hangzhou 310018, Zhejiang, China
- Engineering
Research Center for Eco-Dyeing and Finishing of Textiles, Ministry
of Education, College of Textile Science and Engineering (International
Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
15
|
Isik B, Ugraskan V, Cankurtaran O. Effective biosorption of methylene blue dye from aqueous solution using wild macrofungus (Lactarius piperatus). SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1956540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Birol Isik
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Volkan Ugraskan
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Ozlem Cankurtaran
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
16
|
Han X, Wang Y, Zhang N, Meng J, Li Y, Liang J. Facile synthesis of mesoporous silica derived from iron ore tailings for efficient adsorption of methylene blue. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126391] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Bardhan M, Novera TM, Tabassum M, Islam MA, Jawad AH, Islam MA. Adsorption of methylene blue onto betel nut husk-based activated carbon prepared by sodium hydroxide activation process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1932-1949. [PMID: 33201856 DOI: 10.2166/wst.2020.451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, activated carbon (AC) was prepared from agro-waste betel nut husks (BNH) through the chemical activation method. Different characterization techniques described the physicochemical nature of betel nut husks activated carbon (BNH-AC) through Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), and pH point of zero charge. Later, the produced AC was used for methylene blue (MB) adsorption via numerous batch experimental parameters: initial concentrations of MB dye (25-250 mg/L), contact time (0.5-24 hours) and initial pH (2-12). Dye adsorption isotherms were also assessed at three temperatures where the maximum adsorption capacity (381.6 mg/g) was found at 30 °C. The adsorption equilibrium data were best suited to the non-linear form of the Freundlich isotherm model. Additionally, non-linear pseudo-second-order kinetic model was better fitted with the experimental value as well. Steady motion of solute particles from the boundary layer to the BNH-AC's surface was the possible reaction dynamics concerning MB adsorption. Thermodynamic study revealed that the adsorption process was spontaneous and exothermic in nature. Saline water emerged as an efficient eluent for the desorption of adsorbed dye on AC. Therefore, the BNH-AC is a very promising and cost-effective adsorbent for MB dye treatment and has high adsorption capacity.
Collapse
Affiliation(s)
- Mondira Bardhan
- Environmental Science Discipline, Khulna University, Khulna 9208, Bangladesh E-mail:
| | - Tamanna Mamun Novera
- Environmental Science Discipline, Khulna University, Khulna 9208, Bangladesh E-mail:
| | - Mumtahina Tabassum
- Environmental Science Discipline, Khulna University, Khulna 9208, Bangladesh E-mail:
| | - Md Azharul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Ali H Jawad
- School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Md Atikul Islam
- Environmental Science Discipline, Khulna University, Khulna 9208, Bangladesh E-mail:
| |
Collapse
|