1
|
Aljuhani A, Alsehli M, Seleem MA, Alraqa SY, Ahmed HEA, Rezki N, Aouad MR. Exploring of N-phthalimide-linked 1,2,3-triazole analogues with promising -anti-SARS-CoV-2 activity: synthesis, biological screening, and molecular modelling studies. J Enzyme Inhib Med Chem 2024; 39:2351861. [PMID: 38847308 PMCID: PMC11164105 DOI: 10.1080/14756366.2024.2351861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
In this study, a library of phthalimide Schiff base linked to 1,4-disubstituted-1,2,3-triazoles was designed, synthesised, and characterised by different spectral analyses. All analogues have been introduced for in vitro assay of their antiviral activity against COVID-19 virus using Vero cell as incubator with different concentrations. The data revealed most of these derivatives showed potent cellular anti-COVID-19 activity and prevent viral growth by more than 90% at two different concentrations with no or weak cytotoxic effect on Vero cells. Furthermore, in vitro assay was done against this enzyme for all analogues and the results showed two of them have IC50 data by 90 µM inhibitory activity. An extensive molecular docking simulation was run to analyse their antiviral mechanism that found the proper non-covalent interaction within the Mpro protease enzyme. Finally, we profiled two reversible inhibitors, COOH and F substituted analogues that might be promising drug candidates for further development have been discovered.
Collapse
Affiliation(s)
| | - Mosa Alsehli
- Chemistry Department, College of Sciences, Taibah University, Saudi Arabia
| | - Mohamed A. Seleem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr, City, Cairo, Egypt
| | - Shaya Y. Alraqa
- Chemistry Department, College of Sciences, Taibah University, Saudi Arabia
| | - Hany E. A. Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr, City, Cairo, Egypt
| | - Nadjet Rezki
- Chemistry Department, College of Sciences, Taibah University, Saudi Arabia
| | - Mohamed R. Aouad
- Chemistry Department, College of Sciences, Taibah University, Saudi Arabia
| |
Collapse
|
2
|
Aljuhani A, Nafie MS, Albujuq NR, Hourani W, Albelwi FF, Darwish KM, Samir Ayed A, Reda Aouad M, Rezki N. Unveiling the anti-cancer potentiality of phthalimide-based Analogues targeting tubulin polymerization in MCF-7 cancerous Cells: Rational design, chemical Synthesis, and Biological-coupled Computational investigation. Bioorg Chem 2024; 153:107827. [PMID: 39321715 DOI: 10.1016/j.bioorg.2024.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
The present study deals with an anti-cancer investigation of an array of phthalimide-1,2,3-triazole molecular conjugates with various sulfonamide fragments against human breast MCF-7 and prostate PC3 cancer cell lines. The targeted 1,2,3-triazole derivatives 4a-l and 6a-c were synthesized from focused phthalimide-based alkyne precursors using a facile click synthesis approach and were thoroughly characterized using several spectroscopic techniques (IR, 1H, 13C NMR, and elemental analysis). The hybrid click adducts 4b, 4 h, and 6c displayed cytotoxic potency (IC50 values of 1.49, 1.07, and 0.56 μM, respectively) against MCF-7 cells. On the contrary, none of the synthesized compounds showed apparent cytotoxic efficacy for PC3 cells (IC50 ranging from 9.87- >100 μM). As a part of the mechanism analysis, compound 6c demonstrated a potent inhibitory effect (78.3 % inhibition) of tubulin polymerization in vitro with an IC50 value of 6.53 µM. In addition, biological assays showed that compound 6c could prompt apoptotic cell death and induce G2/M cell cycle arrest in MCF-7 cells. Accordingly, compound 6c can be further developed as an anti-breast cancer agent through apoptosis-induction.
Collapse
Affiliation(s)
- Ateyatallah Aljuhani
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. 27272, United Arab Emirates (UAE); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, P.O. 41522, Egypt.
| | - Nader R Albujuq
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan.
| | - Wafa Hourani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan.
| | - Fawzia F Albelwi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
| | - Aya Samir Ayed
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, P.O. 41522, Egypt.
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| |
Collapse
|
3
|
Albelwi FF, Nafie MS, Albujuq NR, Hourani W, Aljuhani A, Darwish KM, Tawfik MM, Rezki N, Aouad MR. Design and synthesis of chromene-1,2,3-triazole benzene sulfonamide hybrids as potent carbonic anhydrase-IX inhibitors against prostate cancer. RSC Med Chem 2024; 15:2440-2461. [PMID: 39026656 PMCID: PMC11253856 DOI: 10.1039/d4md00302k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Considering the promising effects of molecular hybridization on drug discovery in recent years and the ongoing endeavors to develop bioactive scaffolds tethering the 1,2,3-triazole core, the present study sought to investigate whether the 1,2,3-triazole-linked chromene and benzene sulfonamide nucleus could exhibit activity against the human breast cancer cell line MCF-7 and prostate cancer cell line PC-3. To this end, three focused bioactive series of mono- and -bis-1,2,3-triazoles were effectively synthesized via copper-assisted cycloaddition of mono- and/or di-alkyne chromenone derivatives 2a and b and 9 with several sulfa drug azides 4a-d and 6. The resulting molecular derivatives were tested for cytotoxicity against prostate and breast cancer cells. Among the derivatives, 10a, 10c, and 10e exhibited potent cytotoxicity against PC-3 cells with IC50 values of 2.08, 7.57, and 5.52 μM compared to doxorubicin (IC50 = 2.31 μM) with potent inhibition of CA IX with IC50 values of 0.113, 0.134, and 0.214 μM. The most active compound, 10a, was tested for apoptosis-induction; it induced apoptosis by 31.9-fold cell cycle arrest at the G1-phase. Further, the molecular modeling approach highlighted the relevant binding affinity for the top-active compound 10a against CA IX as one of the most prominent PC-3 prostate cancer-associated biotargets.
Collapse
Affiliation(s)
- Fawzia F Albelwi
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P.O. 27272 Sharjah United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University P.O. 41522 Ismailia Egypt
| | - Nader R Albujuq
- Department of Chemistry, School of Science, The University of Jordan Amman 11942 Jordan
| | - Wafa Hourani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University Amman 19392 Jordan
| | - Ateyatallah Aljuhani
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed M Tawfik
- Zoology Department, Faculty of Science, Port Said University Port Said 42526 Egypt
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| |
Collapse
|
4
|
Targeting the interplay between MMP-2, CA II and VEGFR-2 via new sulfonamide-tethered isomeric triazole hybrids; Microwave-assisted synthesis, computational studies and evaluation. Bioorg Chem 2022; 124:105816. [DOI: 10.1016/j.bioorg.2022.105816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022]
|
5
|
Synthesis, characterization, DFT calculation, antifungal, antioxidant, CT-DNA/pBR322 DNA interaction and molecular docking studies of heterocyclic analogs. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|