1
|
Shirsul J, Tripathi A, Mohanta D, Ankamwar B. Monstera deliciosa mediated single step biosynthesis of gold nanoparticles by bottom-up approach and its non-antimicrobial properties. 3 Biotech 2024; 14:43. [PMID: 38261935 PMCID: PMC10796889 DOI: 10.1007/s13205-023-03898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
In this study, we have stated the green biosynthesis of gold nanoparticles (AuNPs) by utilizing the extract of Monstera deliciosa leaves (MDL) as a reducing agent. Biosynthesized flat, thin, and single-crystalline gold nanotriangles obtained through centrifugation are then analyzed by different characterization techniques. The UV - visible absorption spectra of AuNPs exhibited maxima bands in the range of 500-590 nm, indicating a characteristic of AuNPs. XRD analysis revealed the formation of the (111)-oriented face-centered cubic (FCC) phase of AuNPs. ATR-IR spectra showed signatures of stretching vibrations of O-H, C-H, C=C, C=O, C-O, and C-N, accompanied by CH3 rocking vibrations present in functional groups of biomolecules. FESEM images confirmed spherical nanoparticles with an average diameter in the range of 53-66 nm and predominantly triangular morphology of synthesized AuNPs within the size range of 420-800 nm. NMR, GC-MS, and HR-MS studies showed the presence of different biomolecules, including phenols, flavonoids, and antioxidants in MDL extracts, which play a crucial role of both, reducing as well as stabilizing and capping agents to form stable AuNPs by a bottom-up approach. They were then investigated for their antibacterial assay against Gram-positive (S. aureus, B. subtilis) and Gram-negative (E. coli, P. aeruginosa) microorganisms, along with testing of antifungal potential against various fungi (Penicillium sp., Aspergillus flavus, Fusarium oxysporum, Rhizoctonia solani) using the well diffusion method. Here, biosynthesized AuNPs showed non-antimicrobial properties against all four used bacteria and fungi, showing their suitability as a contender for biomedical applications in drug delivery ascribed to their inert and biocompatible nature. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03898-0.
Collapse
Affiliation(s)
- Janvi Shirsul
- Bio-Inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University, Formerly University of Pune, Ganeshkhind, Pune, 411007 India
| | - Ambuj Tripathi
- Inter-University Accelerator Centre, Aruna Asaf Ali Marg, Near Vasant Kunj, Vasant Kunj, New Delhi, 110067 India
| | - Dambarudhar Mohanta
- Department of Physics, Tezpur University, PO: Napaam, Tezpur, Assam 784028 India
| | - Balaprasad Ankamwar
- Bio-Inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University, Formerly University of Pune, Ganeshkhind, Pune, 411007 India
| |
Collapse
|
2
|
Gattupalli M, Dashora K, Mishra M, Javed Z, Tripathi GD. Microbial bioprocess performance in nanoparticle-mediated composting. Crit Rev Biotechnol 2023; 43:1193-1210. [PMID: 36510336 DOI: 10.1080/07388551.2022.2106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/10/2022] [Indexed: 12/15/2022]
Abstract
Microbial composting is one of the most cost-effective techniques for degradation, remediation, nutrition, etc. Currently, there is faster growth and development in nanotechnology in different sectors. This development leads nanoparticles (NPs) to enter into the composts in different ways. First, unintentional entry of NPs into the composts via: waste discharge, buried solid waste, surface runoff, direct disposal into wastes (consumer goods, food, pharmaceuticals, and personal care products). Second, intentional mediation of the NPs in the composting process is a novel approach developed to enhance the degradation rate of wastes and as a nutrient for plants. The presence of NPs in the composts can cause nanotoxicity. Conversely, their presence might also be beneficial, such as soil reclamations, degradation, etc. Alternatively, metal NPs are also helpful for all living organisms, including microorganisms, in various biological processes, such as DNA replication, precursor biosynthesis, respiration, oxidative stress responses, and transcription. NPs show exemplary performance in multiple fields, whereas their role in composting process is worth studying. Consequently, this article aids the understanding of the role of NPs in the composting process and how far their presence can be beneficial. This article reviews the significance of NPs in: the composting process, microbial bioprocess performance during nano composting, basic life cycle assessment (LCA) of NP-mediated composting, and mode of action of the NPs in the soil matrix. This article also sheds insight on the notion of nanozymes and highlights their biocatalytic characterization, which will be helpful in future composting research.
Collapse
Affiliation(s)
- Meghana Gattupalli
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Mansi Mishra
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Zoya Javed
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| | - Gyan Datta Tripathi
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
3
|
Pelinescu D, Anastasescu M, Bratan V, Maraloiu VA, Negrila C, Mitrea D, Calderon-Moreno J, Preda S, Gîfu IC, Stan A, Ionescu R, Stoica I, Anastasescu C, Zaharescu M, Balint I. Antibacterial Activity of PVA Hydrogels Embedding Oxide Nanostructures Sensitized by Noble Metals and Ruthenium Dye. Gels 2023; 9:650. [PMID: 37623105 PMCID: PMC10454060 DOI: 10.3390/gels9080650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Nanostructured oxides (SiO2, TiO2) were synthesized using the sol-gel method and modified with noble metal nanoparticles (Pt, Au) and ruthenium dye to enhance light harvesting and promote the photogeneration of reactive oxygen species, namely singlet oxygen (1O2) and hydroxyl radical (•OH). The resulting nanostructures were embedded in a transparent polyvinyl alcohol (PVA) hydrogel. Morphological and structural characterization of the bare and modified oxides was performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-Vis spectroscopy, and X-ray photoelectron spectroscopy (XPS). Additionally, electrokinetic potential measurements were conducted. Crystallinity data and elemental analysis of the investigated systems were obtained through X-ray diffraction and X-ray fluorescence analyses, while the chemical state of the elements was determined using XPS. The engineered materials, both as simple powders and embedded in the hydrogel, were evaluated for their ability to generate reactive oxygen species (ROS) under visible and simulated solar light irradiation to establish a correlation with their antibacterial activity against Staphylococcus aureus. The generation of singlet oxygen (1O2) by the samples under visible light exposure can be of significant importance for their potential use in biomedical applications.
Collapse
Affiliation(s)
- Diana Pelinescu
- Faculty of Biology, Intrarea Portocalilor 1–3, Sector 5, 060101 Bucharest, Romania; (D.P.); (I.S.)
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Veronica Bratan
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Valentin-Adrian Maraloiu
- National Institute of Materials Physics, 405A Atomistilor St., 077125 Magurele, Ilfov, Romania; (V.-A.M.); (C.N.)
| | - Catalin Negrila
- National Institute of Materials Physics, 405A Atomistilor St., 077125 Magurele, Ilfov, Romania; (V.-A.M.); (C.N.)
| | - Daiana Mitrea
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Jose Calderon-Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Silviu Preda
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Ioana Catalina Gîfu
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Adrian Stan
- Techir Cosmetics SRL, Plantelor Str., 907015 Agigea, Romania;
| | - Robertina Ionescu
- Faculty of Biology, Intrarea Portocalilor 1–3, Sector 5, 060101 Bucharest, Romania; (D.P.); (I.S.)
| | - Ileana Stoica
- Faculty of Biology, Intrarea Portocalilor 1–3, Sector 5, 060101 Bucharest, Romania; (D.P.); (I.S.)
| | - Crina Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Maria Zaharescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Ioan Balint
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| |
Collapse
|
4
|
Yang Y, Yang Y, Jiang G, Yang L, Chen J, Xu Z, Zheng B, Tian Y. Biosynthesis, characterization, and determination of trace hydrogen peroxide of Organo-Cr(III) nanoparticles by Lysinibacillus sp. 4H. AIP ADVANCES 2023; 13. [DOI: 10.1063/5.0151141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The mechanism of microbial reduction of Cr(VI) has been widely reported; however, only a few studies have focused on Cr(VI) reduction products. In this study, a green synthetic pathway for the biosynthesis of Organo-Cr(III) nanoparticles using Lysinibacillus sp. 4H was investigated, and some properties of these nanoparticles were characterized, based on analysis using X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy, among other techniques. The analyses revealed that the reduction product induced by Lysinibacillus sp. 4H may be amorphous Organo-Cr(III) nanoparticles with an irregular spherical structure (20–90 nm). Thermal characterization of the nanoparticles showed that they maintain a high residual mass (50.45%) at 700 °C, indicating high stability. In addition, the nanoparticles were capable of detecting trace amounts of hydrogen peroxide (H2O2), owing to their redox properties, such that the corresponding H2O2 concentrations could be accurately determined in a range of concentrations. This study provided novel insights and strategies regarding the use of nanoparticles to detect trace hydrogen peroxide concentrations in multiple fields.
Collapse
Affiliation(s)
- Yichen Yang
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Yi Yang
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Jia Chen
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Zhe Xu
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Bijun Zheng
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University 1 , Chengdu 610065, People’s Republic of China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education 2 , Chengdu 610065, People’s Republic of China
| |
Collapse
|
5
|
Liang Y, Yang Y, Zheng L, Zheng X, Xiao D, Wang S, Ai B, Sheng Z. Extraction of Pectin from Passion Fruit Peel: Composition, Structural Characterization and Emulsion Stability. Foods 2022; 11:foods11243995. [PMID: 36553737 PMCID: PMC9777908 DOI: 10.3390/foods11243995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Extraction methods directly affect pectin extraction yield and physicochemical and structural characteristics. The effects of acid extraction (AE), ultrasonic-assisted acid extraction (UA), steam explosion pretreatment combined with acid extraction (SEA) and ultrasonic-assisted SEA (USEA) on the yield, structure, and properties of passion fruit pectin were studied. The pectin yield of UA was 6.5%, equivalent to that of AE at 60 min (5.3%), but the emulsion stability of UA pectin was poor. The pectin obtained by USEA improved emulsion stability. Compared with UA, it had higher protein content (0.62%), rhamnogalacturonan I (18.44%) and lower molecular weight (0.72 × 105 Da). In addition, SEA and USEA had high pectin extraction yields (9.9% and 10.7%) and the pectin obtained from them had lower degrees of esterification (59.3% and 68.5%), but poor thermal stability. The results showed that ultrasonic-assisted steam explosion pretreatment combined with acid extraction is a high-efficiency and high-yield method. This method obtains pectin with good emulsifying stability from passion fruit peel.
Collapse
Affiliation(s)
- Yonglun Liang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yang Yang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Lili Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Xiaoyan Zheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Dao Xiao
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Shenwan Wang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Binling Ai
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
| | - Zhanwu Sheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Haikou Key Laboratory of Banana Biology, Haikou 571101, China
- Correspondence:
| |
Collapse
|
6
|
Al Jahdaly B, Abu-Rayyan A, Taher MM, Shoueir K. Phytosynthesis of Co 3O 4 Nanoparticles as the High Energy Storage Material of an Activated Carbon/Co 3O 4 Symmetric Supercapacitor Device with Excellent Cyclic Stability Based on a Na 2SO 4 Aqueous Electrolyte. ACS OMEGA 2022; 7:23673-23684. [PMID: 35847248 PMCID: PMC9280953 DOI: 10.1021/acsomega.2c02305] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The benign preparation of cobalt oxide nanoparticles (Co3O4-NPs) was performed using marine red algae extract (Grateloupia sparsa) as a simple, cost-effective, scalable, and one-pot hydrothermal technique. The nominated extract was employed as an environmental reductant and stabilizing agent. The resultant product showed the typical peak of Co3O4-NPs around 400 nm wavelength as ascertained by UV-vis spectroscopy. Size and morphological techniques combined with X-ray diffraction (XRD) showed the small size of Co3O4-NPs deformed in a spherical shape. The activated carbon (AC) electrode and Co3O4-NP electrode delivered a specific capacitance (C sp) of 125 and 182 F g-1 at 1 A g-1, respectively. The energy density of the AC and AC/Co3O4 electrodes with a power density of 543.44 and 585 W kg-1 was equal to 17.36 and 25.27 Wh kg-1, respectively. The capacitance retention of designed electrodes was 99.2 and 99.5% after 3000 cycles. Additionally, a symmetric AC/Co3O4//AC/Co3O4 supercapacitor device had a specific capacitance (C sp) of 125 F g-1 and a high energy density of 55 Wh kg-1 at a power density of 650 W kg-1. Meanwhile, the symmetric device exhibited superior cyclic stability after 8000 cycles, with a capacitance retention of 93.75%. Overall, the adopted circular criteria, employed to use green technology to avoid noxious chemicals, make the AC/Co3O4 nanocomposite an easily accessible electrode for energy storage applications.
Collapse
Affiliation(s)
- Badreah
Ali Al Jahdaly
- Chemistry
Department, Faculty of Applied Science, Umm Al-Qura University, Makkah 24382, Kingdom of Saudi Arabia
| | - Ahmed Abu-Rayyan
- Department
of Chemistry, Faculty of Science, Applied
Science Private University, P.O. Box 166, Amman 11931, Jordan
| | - Mohamed M. Taher
- Department
of Chemistry, Faculty of Science, Cairo
University, 12613 Cairo, Egypt
| | - Kamel Shoueir
- Institute
of Nanoscience & Nanotechnology, Kafrelsheikh
University, 33516 Kafrelsheikh, Egypt
- Institut
de Chimie et Procédés pour l’Énergie,
l’Environnement et la Santé (ICPEES), CNRS UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
7
|
Dang VS, Tran HH, Dieu PTT, Tran MT, Dang CH, Mai DT, Doan VD, Nguyen TLH, Chi TTK, Nguyen TD. Effective catalysis and antibacterial activity of silver and gold nanoparticles biosynthesized by Phlogacanthus turgidus. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04687-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Omran BA, Baek KH. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114806. [PMID: 35240500 DOI: 10.1016/j.jenvman.2022.114806] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the most critical issues worldwide and is a priority in all scientific agendas. Green nanotechnology presents a plethora of promising avenues for wastewater treatment. This review discusses the current trends in the valorization of zero-cost, biodegradable, and readily available agro-industrial biowaste to produce green bio-nanocatalysts and bio-nanosorbents for wastewater treatment. The promising roles of green bio-nanocatalysts and bio-nanosorbents in removing organic and inorganic water contaminants are discussed. The potent antimicrobial activity of bio-derived nanodisinfectants against water-borne pathogenic microbes is reviewed. The bioactive molecules involved in the chelation and tailoring of green synthesized nanomaterials are highlighted along with the mechanisms involved. Furthermore, this review emphasizes how the valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment adheres to the fundamental principles of green chemistry, circular economy, nexus thinking, and zero-waste manufacturing. The potential economic, environmental, and health impacts of valorizing agro-industrial biowaste to green nanomaterials are highlighted. The challenges and future outlooks for the management of agro-industrial biowaste and safe application of green nanomaterials for wastewater treatment are summarized.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
9
|
Ahmad Kuthi N, Chandren S, Basar N, Jamil MSS. Biosynthesis of Gold Nanoisotrops Using Carallia brachiata Leaf Extract and Their Catalytic Application in the Reduction of 4-Nitrophenol. Front Chem 2022; 9:800145. [PMID: 35127648 PMCID: PMC8814362 DOI: 10.3389/fchem.2021.800145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The past decade has observed a significant surge in efforts to discover biological systems for the fabrication of metal nanoparticles. Among these methods, plant-mediated synthesis has garnered sizeable attention due to its rapid, cost-effective, environmentally benign single-step procedure. This study explores a step-wise, room-temperature protocol for the synthesis of gold nanoparticles (AuNPs) using Carallia brachiata, a mangrove species from the west coast of Peninsular Malaysia. The effects of various reaction parameters, such as incubation time, metal ion concentration, amount of extract and pH, on the formation of stable colloids were monitored using UV-visible (UV-Vis) absorption spectrophotometry. Our findings revealed that the physicochemical properties of the AuNPs were significantly dependent on the pH. Changing the pH of the plant extract from acidic to basic appears to have resulted in a blue-shift in the main characteristic feature of the surface plasmon resonance (SPR) band, from 535 to 511 nm. The high-resolution-transmission electron microscopy (HR-TEM) and field emission scanning electron microscopy (FESEM) images revealed the morphologies of the AuNPs synthesized at the inherent pH, varying from isodiametric spheres to exotic polygons and prisms, with sizes ranging from 10 to 120 nm. Contrarily, an optimum pH of 10 generated primarily spherical-shaped AuNPs with narrower size distribution (8-13 nm). The X-ray diffraction (XRD) analysis verified the formation of AuNPs as the diffraction patterns matched well with the standard value of a face-centered cubic (FCC) Au lattice structure. The Fourier-transform infrared (FTIR) spectra suggested that different functional groups are involved in the biosynthetic process, while the phytochemical test revealed a clear role of the phenolic compounds. The reduction of 4-nitrophenol (4-NP) was selected as the model reaction for evaluating the catalytic performance of the green-synthesized AuNPs. The catalytic activity of the small, isotropic AuNPs prepared using basic aqueous extract was more effective than the nanoanisotrops, with more than 90% of 4-NP conversion achieved in under an hour with just 3 mg of the nanocatalyst.
Collapse
Affiliation(s)
- Najwa Ahmad Kuthi
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Sheela Chandren
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Norazah Basar
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | | |
Collapse
|
10
|
Nguyen THA, Nguyen VC, Phan TNH, Le VT, Vasseghian Y, Trubitsyn MA, Nguyen AT, Chau TP, Doan VD. Novel biogenic silver and gold nanoparticles for multifunctional applications: Green synthesis, catalytic and antibacterial activity, and colorimetric detection of Fe(III) ions. CHEMOSPHERE 2022; 287:132271. [PMID: 34547560 DOI: 10.1016/j.chemosphere.2021.132271] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 05/12/2023]
Abstract
In this study, novel biogenic silver (AgNPs) and gold nanoparticles (AuNPs) were developed using a green approach with Ganoderma lucidum (GL) extract. The optimization of synthesis conditions for the best outcomes was conducted. The prepared materials were characterized and their applicability in catalysis, antibacterial and chemical sensing was comprehensively evaluated. The GL-AgNPs crystals were formed in a spherical shape with an average diameter of 50 nm, while GL-AuNPs exhibited multi-shaped structures with sizes ranging from 15 to 40 nm. As a catalyst, the synthesized nanoparticles showed excellent catalytic activity (>98% in 9 min) and reusability (>95% after five recycles) in converting 4-nitrophenol to 4-aminophenol. As an antimicrobial agent, GL-AuNPs were low effective in inhibiting the growth of bacteria, while GL-AgNPs expressed strong antibacterial activity against all the tested strains. The highest growth inhibition activity of GL-AgNPs was observed against B. subtilis (14.58 ± 0.35 mm), followed by B. cereus (13.8 ± 0.52 mm), P. aeruginosa (12.38 ± 0.64 mm), E. coli (11.3 ± 0.72 mm), and S. aureus (10.41 ± 0.31 mm). Besides, GL-AgNPs also demonstrated high selectivity and sensitivity in the colorimetric detection of Fe3+ in aqueous solution with a detection limit of 1.85 nM. Due to the suitable thickness of the protective organic layer and the appropriate particle size, GL-AgNPs validated the triple role as a high-performance catalyst, antimicrobial agent, and nanosensor for environmental monitoring and remediation.
Collapse
Affiliation(s)
- Thi Hong Anh Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Ho Chi Minh City, 70000, Viet Nam
| | - Van-Cuong Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam
| | - Thi Nhu Huynh Phan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam; The Faculty of Environment and Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Viet Nam.
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | | | - Anh-Tien Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong, Ho Chi Minh City, 70000, Viet Nam
| | - Tan Phat Chau
- Institute of Applied Science & Technology, Van Lang University, Ho Chi Minh City, 700000, Viet Nam
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam.
| |
Collapse
|
11
|
Fagieh TM, Bakhsh EM, Khan SB, Akhtar K, Asiri AM. Alginate/Banana Waste Beads Supported Metal Nanoparticles for Efficient Water Remediation. Polymers (Basel) 2021; 13:polym13234054. [PMID: 34883558 PMCID: PMC8659063 DOI: 10.3390/polym13234054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Water pollution is considered a perilous issue that requires an immediate solution. This is largely because of the strong correlation between the global population increase and the amount of waste produced (most notably food waste). This project prompts the conversion of food waste into useful materials that can be used with sodium alginate as a catalytic support for metal nanoparticles. Sodium alginate/banana peel (Alg/BP) beads were prepared simply using an eco-friendly method. The prepared materials were modified using nanostructured materials to enhance their characteristics. Alg/BP beads were employed as adsorbents for metals that were then treated with sodium borohydride to produce MNPs@Alg/BP. Different MNPs@Alg/BP (MNPs = Ag, Ni, Co, Fe, and Cu) were used as catalysts for reducing 4-nitrophenol (4-NP) by NaBH4 to evaluate each catalyst performance in a model reaction. The results exhibited that Cu@Alg/BP was most efficient toward complete transformation of 4-NP. Therefore, Cu@Alg/BP was also used as a catalyst for the reduction of potassium ferricyanide, congo red, methyl orange (MO), and methylene blue. It was found that Cu@Alg/BP beads catalytically reduced up to 95–99% of above pollutants within a few minutes. Cu@Alg/BP beads were more selective in reducing MO among the pollutants. The catalytic activity of Cu@Alg/BP was examined by evaluating the impact of numerous parameters on MO reduction. The results are expected to provide a new strategy for the removal of inorganic and organic water contaminants based on efficient and low-cost catalysts.
Collapse
Affiliation(s)
- Taghreed M Fagieh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kalsoom Akhtar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Dash SS, Sen IK, Dash SK. A review on the plant extract mediated green syntheses of gold nanoparticles and its anti-microbial, anti-cancer and catalytic applications. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00358-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Chowdhury MA, Hossain N, Shuvho MBA, Kowser MA, Islam MA, Ali MR, EI-Badry YA, EI-Bahy ZM. Improvement of interfacial adhesion performance of the kevlar fiber mat by depositing SiC/TiO2/Al2O3/graphene nanoparticles. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|