1
|
Nwosu-Obieogu K, Nonso UC, Okechukwu OD, Joseph E. Kinetics and soft computing evaluation of Linseed oil transesterification via CD-BaCl-IL catalyst. Heliyon 2024; 10:e37686. [PMID: 39323820 PMCID: PMC11422019 DOI: 10.1016/j.heliyon.2024.e37686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
A novel clay-doped ionic liquid and BaCl (CD-BaCl-IL) heterogeneous catalyst for biodiesel synthesis from linseed oil (LSO) was generated after 4 h of calcination at 600°C using Scanning Electron Micrograph (SEM), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray fluorescence (XRF) was used to evaluate the catalyst's processability. After optimization using response surface methodology (RSM), the second-order polynomial model was shown in the Analysis of variance (ANOVA) with R2 values of 0.9947, Adj R2 (0.9850), and Pred R2 (0.8594), demonstrating model acceptability. The maximum biodiesel yield (97.097 %) was obtained with 2.6 wt% catalyst, 6 mol/mol methanol/molar ratio, 1.5 h, 50 °C, and 400 rpm agitation. ANFIS predicted biodiesel yield more accurately than ANN (R2 = 0.999, MSE = 0.27594), with the lowest MSE (R2 = 0.99, MSE = 0.00038). Under optimal conditions, this study employed a kinetic model based on two elementary chemical processes: Eley-Rideal (ER) and Langmuir-Hinshelwood-Hougen-Watson (LHHW). The LHHW model accurately described CD-BaCl-IL catalyst experimental data at 50 °C, with favourable parameters, an R2 value of 0.9348, and a variance of 2.61E-8. The surface reaction between adsorbed triglyceride and alcohol dictated the rate-determining step. Temperature increased the rate, indicating an endothermic process. The reaction's activation energy and frequency factor were 10.22 kJ/mol and 6.41 h-1, respectively. Linseed biodiesel met the D6751 criterion.
Collapse
Affiliation(s)
- Kenechi Nwosu-Obieogu
- Department of Chemical Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Ude Callistus Nonso
- Department of Chemical Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria
| | | | - Ezeugo Joseph
- Department of Chemical Engineering, Chukwuemeka Odumegwu University, Uli, Nigeria
| |
Collapse
|
2
|
Piras S, Salathia S, Guzzini A, Zovi A, Jackson S, Smirnov A, Fragassa C, Santulli C. Biomimetic Use of Food-Waste Sources of Calcium Carbonate and Phosphate for Sustainable Materials-A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:843. [PMID: 38399094 PMCID: PMC10890559 DOI: 10.3390/ma17040843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Natural and renewable sources of calcium carbonate (CaCO3), also referred to as "biogenic" sources, are being increasingly investigated, as they are generated from a number of waste sources, in particular those from the food industry. The first and obvious application of biogenic calcium carbonate is in the production of cement, where CaCO3 represents the raw material for clinker. Overtime, other more added-value applications have been developed in the filling and modification of the properties of polymer composites, or in the development of biomaterials, where it is possible to transform calcium carbonate into calcium phosphate for the substitution of natural hydroxyapatite. In the majority of cases, the biological structure that is used for obtaining calcium carbonate is reduced to a powder, in which instance the granulometry distribution and the shape of the fragments represent a factor capable of influencing the effect of addition. As a result of this consideration, a number of studies also reflect on the specific characteristics of the different sources of the calcium carbonate obtained, while also referring to the species-dependent biological self-assembly process, which can be defined as a more "biomimetic" approach. In particular, a number of case studies are investigated in more depth, more specifically those involving snail shells, clam shells, mussel shells, oyster shells, eggshells, and cuttlefish bones.
Collapse
Affiliation(s)
- Sara Piras
- School of Science and Technology, Chemistry Section, Università di Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (S.P.); (A.G.)
| | - Saniya Salathia
- School of Pharmacy, Università di Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy; (S.S.); (A.Z.); (S.J.); (A.S.)
| | - Alessandro Guzzini
- School of Science and Technology, Chemistry Section, Università di Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (S.P.); (A.G.)
| | - Andrea Zovi
- School of Pharmacy, Università di Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy; (S.S.); (A.Z.); (S.J.); (A.S.)
| | - Stefan Jackson
- School of Pharmacy, Università di Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy; (S.S.); (A.Z.); (S.J.); (A.S.)
| | - Aleksei Smirnov
- School of Pharmacy, Università di Camerino, Via Sant’Agostino 1, 62032 Camerino, Italy; (S.S.); (A.Z.); (S.J.); (A.S.)
| | - Cristiano Fragassa
- Department of Industrial Engineering, Alma Mater Studiorum Università di Bologna, 40133 Bologna, Italy;
| | - Carlo Santulli
- School of Science and Technology, Geology Section, Università di Camerino, Via Gentile III da Varano 7, 62032 Camerino, Italy
| |
Collapse
|
3
|
Bojesomo RS, Raj A, Elkadi M, Ali MIH, Stephen S. An ICP-MS study on metal content in biodiesel and bioglycerol produced from heated and unheated canola oils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115064-115080. [PMID: 37878179 PMCID: PMC10691977 DOI: 10.1007/s11356-023-30004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/17/2023] [Indexed: 10/26/2023]
Abstract
This study addresses the challenges of biodiesel production costs and waste oil disposal by investigating the use of low-cost waste oil as a feedstock. The impact of heating temperature on biodiesel yield and trace metal levels is examined using response surface methodology (RSM). Optimal conditions for high biodiesel yields (95-98%) from canola oil are determined with a methanol/oil ratio of 12:1, 1 wt% catalyst, and 60-min reaction time. For crude bioglycerol, the optimal conditions involve a methanol/oil ratio of 4.25:1, 2.93 wt% catalyst, and 119.15-min reaction time. Elemental analysis reveals the presence of high-concentration metals like Cu and Zn and low-concentration ones such as Pb, As, Se, and Zr in both oil feedstocks and their respective biodiesel and bioglycerol products. The study demonstrates that thermal stress on canola oil significantly impacts biodiesel and bioglycerol yields and trace metal levels during the transesterification process. The findings contribute to enhancing cost-effectiveness and environmental sustainability in biodiesel production.
Collapse
Affiliation(s)
- Rukayat S Bojesomo
- Department of Chemistry, Khalifa University of Science and Technology, P.O Box: 127788, Abu Dhabi, United Arab Emirates.
| | - Abhijeet Raj
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Mirella Elkadi
- Department of Chemistry, Khalifa University of Science and Technology, P.O Box: 127788, Abu Dhabi, United Arab Emirates
| | - Mohamed I Hassan Ali
- Department of Mechanical Engineering, Khalifa University of Science and Technology, P.O Box: 127788, Abu Dhabi, United Arab Emirates
| | - Sasi Stephen
- Department of Chemistry, Khalifa University of Science and Technology, P.O Box: 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Ashar A, Qayyum A, Bhatti IA, Aziz H, Bhutta ZA, Abdel-Maksoud MA, Saleem MH, Eletmany MR. Photo-Induced Super-Hydrophilicity of Nano-Calcite @ Polyester Fabric: Enhanced Solar Photocatalytic Activity against Imidacloprid. ACS OMEGA 2023; 8:35722-35737. [PMID: 37810732 PMCID: PMC10552504 DOI: 10.1021/acsomega.3c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023]
Abstract
The present study is pertinent to photo-induced, hydrophilic, nano-calcite grown onto the mercerized surface of polyester fabric (PF), treated with UV (10-50 min) and visible light (1-5 h) in addition to its photocatalytic application. The wicking method has been employed to select the most hydrophilic sample of fabric upon irradiation. The micrographs obtained by scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy indicated the erosions occurring at the surface of nano-calcite after UV light irradiation, maintaining the crystallinity of the photocatalyst. The surface charge has been measured for as-fabricated and irradiated nano-calcite @ PF for the development of high negative zeta potential after UV light irradiation (-24.6 mV). The irradiated nano-calcite @ PF exhibited a significant change in its contact angle, and the wetting property was enhanced to a considerable extent on UV (55.32°) and visible light irradiation (79.00°) in comparison to as-fabricated nano-calcite @ PF (137.54°). The irradiated samples of nano-calcite @ PF delineated the redshift in harvesting of solar spectrum, as revealed by diffuse reflectance spectroscopy comparative spectra. Additionally, the band gap of untreated nano-calcite was found to be 3.5 eV, while UV- and visible light-irradiated PF showed a reduction in band gap up to 2.95 and 3.15 eV upon UV and visible light irradiation. The photocatalytic efficiency of mesoporous nano-calcite was evaluated by photocatalytic degradation of imidacloprid as the probe pollutant. Higher solar photocatalytic degradation of imidacloprid (94.15%) was attained by UV light-irradiated nano-calcite @ PF. The time-resolved photoluminescence study has verified the high photocatalytic activity of UV light-irradiated nano-calcite @ PF for the generation of high concentration of hydroxyl radicals. The highly efficient reusability of a nano-calcite-based solar photocatalytic reactor has been observed for 10 cycles of treatment of imidacloprid bearing wastewater. The enhanced photocatalytic activity of UV light-exposed (20 min), superhydrophilic, nano-calcite @ PF for mineralization of pollutants suggests it to be an efficient solar photocatalyst for environmental applications.
Collapse
Affiliation(s)
- Ambreen Ashar
- TECS
Department, Wilson College of Textiles, NC State University, Raleigh, North Carolina 27606, United States
| | - Ayesha Qayyum
- Department
of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan 49315, Republic
of Korea
| | - Ijaz Ahmad Bhatti
- Department
of Chemistry, University of Agriculture
Faisalabad (UAF), Faisalabad 38040, Pakistan
| | - Humera Aziz
- Department
of Agricultural Sciences, College of Agriculture and Environmental
Sciences, Government College University, Faisalabad 38040, Pakistan
- Department
of Environmental Science, College of Agriculture and Environmental
Sciences, Government College University, Faisalabad 38040, Pakistan
| | - Zeeshan Ahmad Bhutta
- Laboratory
of Veterinary Immunology and Biochemistry, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Mostafa A. Abdel-Maksoud
- Botany and
Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Hamzah Saleem
- College
of Plant Science and Technology, Huazhong
Agricultural University, Wuhan 430070, China
| | - Mohamed R. Eletmany
- TECS
Department, Wilson College of Textiles, NC State University, Raleigh, North Carolina 27606, United States
- Chemistry
Department, Faculty of Science, South Valley
University, Qena 83523, Egypt
| |
Collapse
|
5
|
Kumar A, Thakur AK, Gaurav GK, Klemeš JJ, Sandhwar VK, Pant KK, Kumar R. A critical review on sustainable hazardous waste management strategies: a step towards a circular economy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105030-105055. [PMID: 37725301 PMCID: PMC10579135 DOI: 10.1007/s11356-023-29511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Globally, industrialisation and urbanisation have led to the generation of hazardous waste (HW). Sustainable hazardous waste management (HWM) is the need of the hour for a safe, clean, and eco-friendly environment and public health. The prominent waste management strategies should be aligned with circular economic models considering the economy, environment, and efficiency. This review critically discusses HW generation and sustainable management with the strategies of prevention, reduction, recycling, waste-to-energy, advanced treatment technology, and proper disposal. In this regard, the major HW policies, legislations, and international conventions related to HWM are summarised. The global generation and composition of hazardous industrial, household, and e-waste are analysed, along with their environmental and health impacts. The paper critically discusses recently adapted management strategies, waste-to-energy conversion techniques, treatment technologies, and their suitability, advantages, and limitations. A roadmap for future research focused on the components of the circular economy model is proposed, and the waste management challenges are discussed. This review stems to give a holistic and broader picture of global waste generation (from many sources), its effects on public health and the environment, and the need for a sustainable HWM approach towards the circular economy. The in-depth analysis presented in this work will help build cost-effective and eco-sustainable HWM projects.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016 India
- School of Chemical & Biotechnology, SASTRA Deemed to Be University, Tirmalaisamudram, Thanjavur, Tamil Nadu 613401 India
| | - Amit K. Thakur
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007 Uttarakhand India
| | - Gajendra Kumar Gaurav
- Sustainable Process Integration Laboratory, Faculty of Mechanical Engineering, SPIL, NETME Centre, Brno University of Technology, VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory, Faculty of Mechanical Engineering, SPIL, NETME Centre, Brno University of Technology, VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Vishal Kumar Sandhwar
- Department of Chemical Engineering, Parul Institute of Technology, Parul University, Vadodara, Gujarat 391760 India
| | - Kamal Kishore Pant
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016 India
| | - Rahul Kumar
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007 Uttarakhand India
| |
Collapse
|
6
|
An J, Nhung NTH, Ding Y, Chen H, He C, Wang X, Fujita T. Chestnut Shell-Activated Carbon Mixed with Pyrolytic Snail Shells for Methylene Blue Adsorption. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15228227. [PMID: 36431712 PMCID: PMC9696031 DOI: 10.3390/ma15228227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 06/02/2023]
Abstract
Activated carbon has been used to treat organic dyes in water systems; however, the adsorption capacity of the samples studied was limited by the specific surface area and influenced by the pH of the aqueous solution. In this study, a hybrid adsorbent consisting of a mixture (MCS) of activated chestnut shell biochar (CN) and pyrolyzed snail shell material (SS) was developed to solve this problem, with the waste snail shell samples being processed by pyrolysis and the chestnut shell samples chemically pretreated and then pyrolyzed. The BET and SEM results revealed that the SS had a mesoporous fluffy structure with a higher specific surface (1705 m2/g) and an average pore diameter of about 4.07 nm, providing a large number of sites for adsorption. In addition, XPS and FTIR results showed that the main component of SS was calcium oxide, and it also contained a certain amount of calcium carbonate, which not only provided an alkaline environment for the adsorption of biochar but also degradation and photocatalytic capabilities. The results showed that the MCS3-1 sample, obtained when CN and SS were mixed in the ratio of 3:1, had good capacity for adsorption for methylene blue (MB), with 1145 mg/g at an initial concentration of 1300 mg/L (92% removal rate). The adsorption behaviors were fitted with the pseudo-second-order kinetic model and Freundlich isotherm model, which indicated that the adsorption was multilayer chemisorption with a saturated adsorption capacity of 1635 mg/g. The photocatalytic capacity from the SS composition was about 89 mg/g, and the sorption of MB dye onto the sorbent reached equilibrium after 300 min. The results suggested that MCS3-1 has enormous potential for removing MB from wastewater.
Collapse
Affiliation(s)
- Jiahao An
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nguyen Thi Hong Nhung
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yaxuan Ding
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Hao Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Chunlin He
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xinpeng Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Toyohisa Fujita
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
Eskikaya O, Gun M, Bouchareb R, Bilici Z, Dizge N, Ramaraj R, Balakrishnan D. Photocatalytic activity of calcined chicken eggshells for Safranin and Reactive Red 180 decolorization. CHEMOSPHERE 2022; 304:135210. [PMID: 35679982 DOI: 10.1016/j.chemosphere.2022.135210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/08/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
One of the most important problems affecting the environment today is the inability to adequately treat wastewater containing dyes. Among of the many treatment processes used in the treatment of dye-containing wastewater, photocatalytic based wastewater treatment processes attract the attention of scientists as a new, economically feasible, and promising approach which has been in practice for a few decades. However, in order to use these processes in wider areas, cheap and effective catalysts are still being developed today. In this study, the photocatalytic activity of eggshell-CaO produced from waste chicken eggshells was investigated for decolorization of Safranin (Basic Red 2) and Reactive Red 180 (RR180) dyes. First, sintering process was applied to the waste chicken eggshells at different temperatures (300, 600, 900 °C) in order to observe CaO formation from the eggshells. Second, the parameters such as photocatalyst amount, pH, concentration of dyes, and reaction time were optimized on dye removal efficiency in photocatalytic experiments. The optimum conditions were performed under visible light and found to be 1 g/L of catalyst amount (sintered at 900 °C), original solution pH (6.80 for Safranin and 6.60 for RR180), and 5 mg/L of dye concentration. The photocatalytic removal efficiencies of Safranin and RR180 dyes were 100% and 97.90%, respectively, under the determined optimum experimental conditions. The adsorption efficiency of the dyes that could be realized during the photocatalytic experiment was measured as 20.99% and 9.99% for Safranin and RR180 dyes, respectively.
Collapse
Affiliation(s)
- Ozan Eskikaya
- Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, Tarsus, 33400, Turkey
| | - Melis Gun
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Raouf Bouchareb
- Department of Environmental Engineering, Saleh Boubnider University, Constantine, 25000, Algeria
| | - Zeynep Bilici
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | | | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| |
Collapse
|
8
|
The Preparation of CaO Catalyst from Eggshells and Its Application in Biodiesel Production from Waste Cooking Oil. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Perveen S, Nadeem R, Rehman SU, Afzal N, Anjum S, Noreen S, Saeed R, Amami M, Al-Mijalli SH, Iqbal M. Green synthesis of iron (Fe) nanoparticles using Plumeria obtusa extract as a reducing and stabilizing agent: Antimicrobial, antioxidant and biocompatibility studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
10
|
Huang J, Jian Y, Zhu P, Abdelaziz O, Li H. Research Progress on the Photo-Driven Catalytic Production of Biodiesel. Front Chem 2022; 10:904251. [PMID: 35548672 PMCID: PMC9081561 DOI: 10.3389/fchem.2022.904251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
Biodiesel considered a green, environmentally friendly, and renewable energy source is one of the most promising candidates to replace fossil fuels to supply energy for the world. The conventional thermocatalytic methods have been extensively explored for producing biodiesel, while inevitably encountering some drawbacks, such as harsh operating conditions and high energy consumption. The catalytic production of biodiesel under mild conditions is a research hotspot but with difficulty. Photocatalysis has recently been highlighted as an eco-friendly and energy-saving approach for biodiesel production. This mini-review summarizes typical photocatalysts for biodiesel production and discusses in detail the catalytic mechanism and strategies of the photo-driven (trans)esterification to produce biodiesel. The current challenges and future opportunities of photo-driven catalysis to prepare biodiesel are also outlined, in steps towards guiding the design of advanced photocatalysts for biodiesel production.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Yumei Jian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ping Zhu
- Department of Chemistry, Centre for Catalysis and Sustainable Chemistry, Technical University of Denmark, Kemitorvet, Denmark
- *Correspondence: Ping Zhu, ; Omar Abdelaziz, ; Hu Li,
| | - Omar Abdelaziz
- Department of Chemical Engineering, Lund University, Lund, Sweden
- *Correspondence: Ping Zhu, ; Omar Abdelaziz, ; Hu Li,
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
- *Correspondence: Ping Zhu, ; Omar Abdelaziz, ; Hu Li,
| |
Collapse
|
11
|
Hosseinzadeh-Bandbafha H, Li C, Chen X, Peng W, Aghbashlo M, Lam SS, Tabatabaei M. Managing the hazardous waste cooking oil by conversion into bioenergy through the application of waste-derived green catalysts: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127636. [PMID: 34740507 DOI: 10.1016/j.jhazmat.2021.127636] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Waste cooking oil (WCO) is a hazardous waste generated at staggering values globally. WCO disposal into various ecosystems, including soil and water, could result in severe environmental consequences. On the other hand, mismanagement of this hazardous waste could also be translated into the loss of resources given its energy content. Hence, finding cost-effective and eco-friendly alternative pathways for simultaneous management and valorization of WCO, such as conversion into biodiesel, has been widely sought. Due to its low toxicity, high biodegradability, renewability, and the possibility of direct use in diesel engines, biodiesel is a promising alternative to mineral diesel. However, the conventional homogeneous or heterogeneous catalysts used in the biodiesel production process, i.e., transesterification, are generally toxic and derived from non-renewable resources. Therefore, to boost the sustainability features of the process, the development of catalysts derived from renewable waste-oriented resources is of significant importance. In light of the above, the present work aims to review and critically discuss the hazardous WCO application for bioenergy production. Moreover, various waste-oriented catalysts used to valorize this waste are presented and discussed.
Collapse
Affiliation(s)
- Homa Hosseinzadeh-Bandbafha
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Biofuel Research Team (BRTeam), Terengganu, Malaysia
| | - Cheng Li
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangmeng Chen
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Wanxi Peng
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Biofuel Research Team (BRTeam), Terengganu, Malaysia; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Extension, And Education Organization (AREEO), Karaj, Iran.
| |
Collapse
|
12
|
Prewetting Induced Hydrophilicity to Augment Photocatalytic Activity of Nanocalcite @ Polyester Fabric. Polymers (Basel) 2022; 14:polym14020295. [PMID: 35054700 PMCID: PMC8777986 DOI: 10.3390/polym14020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
Abstract
To eliminate imidacloprid insecticide from wastewater, nanocalcite was grafted onto the surface of pretreated polyester fabric. The process of seeding was followed by the low temperature hydrothermal method for the growth of nanocalcite for the functionalization of fabric. The goal of this study was to improve the hydrophilicity of the nanocalcite photocatalyst that had been grafted onto the surface of polyester fabric (PF) using acidic and basic prewetting techniques. The morphological characteristics, crystalline nature, surface charge density, functional groups of surface-modified nanocalcite @ PF were determined via SEM, XRD, FTIR, and Zeta potential (ZP), respectively. Characterization results critically disclosed surface roughness due to excessive induction of hydroxyl groups, rhombohedral crystal structure, and high charge density (0.721 mS/cm). Moreover, contact angle of nanocalcite @ PF was calculated to be 137.54° while after acidic and basic prewetting, it was reduced to 87.17° and 48.19°. Similarly, bandgap of the as fabricated nanocalcite was found to be 3.5 eV, while basic prewetted PF showed a reduction in band gap (2.9 eV). The solar photocatalytic mineralization of imidacloprid as a probe pollutant was used to assess the improvement in photocatalytic activity of nanocalcite @ PF after prewetting. Response surface methodology was used to statistically optimize the solar exposure time, concentration of the oxidant, and initial pH of the reaction mixture. Maximum solar photocatalytic degradation of the imidacloprid was achieved by basic prewetted nanocalcite @ PF (up to 91.49%), which was superior to acidic prewetted fabric and as-fabricated nanocalcite @ PF. Furthermore, HPLC and FTIR findings further indicated that imidacloprid was decomposed vastly to harmless species by basic prewetted nanocalcite @ PF.
Collapse
|