1
|
Sousa JF, Amaro HM, Ribeirinho-Soares S, Esteves AF, Salgado EM, Nunes OC, Pires JCM. Native Microalgae-Bacteria Consortia: A Sustainable Approach for Effective Urban Wastewater Bioremediation and Disinfection. Microorganisms 2024; 12:1421. [PMID: 39065189 PMCID: PMC11278754 DOI: 10.3390/microorganisms12071421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Urban wastewater is a significant by-product of human activities. Conventional urban wastewater treatment plants have limitations in their treatment, mainly concerning the low removal efficiency of conventional and emerging contaminants. Discharged wastewater also contains harmful microorganisms, posing risks to public health, especially by spreading antibiotic-resistant bacteria and genes. Therefore, this study assesses the potential of a native microalgae-bacteria system (MBS) for urban wastewater bioremediation and disinfection, targeting NH4+-N and PO43--P removal, coliform reduction, and antibiotic resistance gene mitigation. The MBS showed promising results, including a high specific growth rate (0.651 ± 0.155 d-1) and a significant average removal rate of NH4+-N and PO43--P (9.05 ± 1.24 mg L-1 d-1 and 0.79 ± 0.06 mg L-1 d-1, respectively). Microalgae-induced pH increase rapidly reduces coliforms (r > 0.9), including Escherichia coli, within 3 to 6 days. Notably, the prevalence of intI1 and the antibiotic resistance genes sul1 and blaTEM are significantly diminished, presenting the MBS as a sustainable approach for tertiary wastewater treatment to combat eutrophication and reduce waterborne disease risks and antibiotic resistance spread.
Collapse
Affiliation(s)
- Joana F. Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.F.S.); (H.M.A.); (S.R.-S.); (A.F.E.); (E.M.S.); (O.C.N.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Helena M. Amaro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.F.S.); (H.M.A.); (S.R.-S.); (A.F.E.); (E.M.S.); (O.C.N.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sara Ribeirinho-Soares
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.F.S.); (H.M.A.); (S.R.-S.); (A.F.E.); (E.M.S.); (O.C.N.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana F. Esteves
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.F.S.); (H.M.A.); (S.R.-S.); (A.F.E.); (E.M.S.); (O.C.N.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Eva M. Salgado
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.F.S.); (H.M.A.); (S.R.-S.); (A.F.E.); (E.M.S.); (O.C.N.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olga C. Nunes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.F.S.); (H.M.A.); (S.R.-S.); (A.F.E.); (E.M.S.); (O.C.N.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José C. M. Pires
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (J.F.S.); (H.M.A.); (S.R.-S.); (A.F.E.); (E.M.S.); (O.C.N.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
2
|
Vašková J, Stupák M, Vidová Ugurbaş M, Žatko D, Vaško L. Therapeutic Efficiency of Humic Acids in Intoxications. Life (Basel) 2023; 13:life13040971. [PMID: 37109500 PMCID: PMC10143271 DOI: 10.3390/life13040971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Humins, humic and fulvic acids represent molecules with complex structures. These compounds comprising humic substances (HS) exist naturally in soil, brown coal, peat, and water. They are formed during the decomposition and transformation of organic matter (animal and plant remains) and their formation explains several theories. Within their chemical structures, there are numerous phenolic and carboxyl groups and their derivatives that affect their different properties, such as their solubility in water or their absorption of cations or mycotoxins. The manifold chemical structure of HS alters their polyelectrolyte character and thus their chelating efficiency. For many years, HS have been studied due to their detoxification, anti-, and pro-inflammatory or anticancer and antiviral ability. This article summarizes the antioxidant and adsorption properties of humic acids, highlighting their usefulness in intoxications.
Collapse
Affiliation(s)
- Janka Vašková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Marek Stupák
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Martina Vidová Ugurbaş
- Second Department of Surgery, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Daniel Žatko
- Imuna Pharm, a.s., Šarišské Michaľany, 082 22 Presov, Slovakia
| | - Ladislav Vaško
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| |
Collapse
|
3
|
Csicsor A, Tombácz E. Screening of Humic Substances Extracted from Leonardite for Free Radical Scavenging Activity Using DPPH Method. Molecules 2022; 27:molecules27196334. [PMID: 36234869 PMCID: PMC9571906 DOI: 10.3390/molecules27196334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Humic substances (HSs) have been researched for a long time and still manage to surprise humanity today. According to the latest research, in addition to their previously well-known effects, they also have antioxidant properties. However, this previous research does not examine the difference in the antioxidant effect of the fractions extracted/produced in different processes; they do not consider the light absorption of the HSs, which falsifies analysis based on the measurement of color change over time. In the present work, HS fractions were obtained from leonardite, the extraction processes can also be implemented on an industrial scale. The fractions were characterized by elementary analysis, UV–Vis and FT-IR spectroscopies, to prove that our self-extracted samples have similar characteristics to the International Humic Substances Society (IHSS) standard samples. The different methods of HS fractionation affected the elemental composition, and the spectral characteristics. The antioxidant effect was investigated using the DPPH method to screen the antioxidant efficiency of humic, fulvic, and himatomelanic acids. In addition, we compared our results with the IHSS standard samples to obtain a more comprehensive picture of the antioxidant effect of HSs extracted in different ways according to the DPPH method. Based on our results, the extraction method affects not only the physico-chemical properties but also the free radical scavenging activity of the fractions.
Collapse
Affiliation(s)
- Attila Csicsor
- Doctoral School of Environmental Sciences, University of Szeged, Rerrich Béla tér 1., H-6720 Szeged, Hungary
- Hymato Products Ltd., Kossuth u 33., H-8225 Szentkirályszabadja, Hungary
- Correspondence: ; Tel.: +36-703897852
| | - Etelka Tombácz
- Soós Ernő Water Technology Research and Development Center, University of Pannonia, H-8200 Veszprém, Hungary
| |
Collapse
|
4
|
Khuda F, Alam N, Khalil AAK, Jan A, Naureen F, Ullah Z, Alotaibi A, Ullah R, Ullah S, Shah Y, Shah SI, Büyüker SM. Screening of Rhamnus Purpurea (Edgew.) Leaves for Antimicrobial, Antioxidant, and Cytotoxic Potential. ACS OMEGA 2022; 7:22977-22985. [PMID: 35811929 PMCID: PMC9260770 DOI: 10.1021/acsomega.2c03094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Exploring new antimicrobial and cytotoxic drugs has been one of the most active areas of research. Rhamnus purpurea (Edgew.) buckthorn (Rhamnaceae) is a wild shrub traditionally used in Pakistan for the treatment of various ailments including cancer and infectious diseases. The aim of this study is to find novel antimicrobial and cytotoxic agents of plant origin. The crude methanol extract and full range of fractions of R. purpurea leaves were screened for the said activities using in vitro antimicrobial, antioxidant, and cytotoxic models following standard protocols. The antimicrobial activity was evaluated using the agar well diffusion method, while the antioxidant activity was assessed with 1,1-diphenyl-2-picryl hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The cytotoxic effect was investigated against the human cancer cell lines i.e. Caco-2 (gut), A549 (lung), HepG2 (liver), and MDA-MB-231 (breast) by MTS assay. In addition, toxicity studies were conducted on renal and alveolar primary epithelial cells (HRPTEpiC and HPAEpiC, respectively). Phytochemical investigation showed the presence of secondary metabolites such as alkaloids, saponins, tannins, glycosides, phenols, carbohydrates, proteins, and flavonoids. The n-hexane and chloroform fractions showed significant activity against Staphylococcus aureus (MIC 0.60 and 0.68 mg/mL, respectively), Salmonella typhi (MIC 0.48 and 0.45 mg/mL, respectively), and Bacillus subtilis (MIC 0.54 and 0.76 mg/mL, respectively). Among fungal strains, crude methanol and chloroform fractions exhibited significant activity against Fusarium solani (MIC 0.53 and 0.44 mg/mL, respectively) and Aspergillus niger (MIC 0.47 and 0.42 mg/mL, respectively). The crude methanol, n-hexane and chloroform fractions revealed the highest antioxidant activity at 1000 μg/mL, compared to that of ascorbic acid. The n-hexane fraction showed a significant cytotoxic effect against Caco-2, A549, and HepG2 cell lines with IC50 values of 5.65 ± 0.88, 5.50 ± 0.90, and 4.95 ± 1.0 μg/mL, respectively. Similarly, the chloroform fraction depicted significant activity against Caco-2, A549, and HepG2 cell lines with IC50 values of 4.55 ± 1.25, 4.65 ± 1.55, and 2.85 ± 0.98 μg/mL, respectively. The crude methanol extract and almost all fractions exhibited the highest selectivity index (>2.0) for Caco-2, A549, and HepG2 cancer cell lines, providing safety data for this study. The results showed that R. purpurea leaves have excellent antimicrobial, antioxidant, and cytotoxic potential and warrant further studies to search for novel compounds for the said activities.
Collapse
Affiliation(s)
- Fazli Khuda
- Department
of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Nida Alam
- Department
of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Atif Ali Khan Khalil
- Department
of Biological Sciences, National University
of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Asif Jan
- Department
of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Faiza Naureen
- Department
of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Zaki Ullah
- Department
of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Amal Alotaibi
- Department
of Basic Science, College of Medicine, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Riaz Ullah
- Department
of Pharmacognosy (Medicinal Aromatic and Poisonous Plants Research
Center) College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sami Ullah
- Department
of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Yasar Shah
- Department
of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | | | | |
Collapse
|