1
|
Assila H, Zaoui Y, Kalonji Mubengayi C, Guerrab W, Alsubari A, Mague JT, Ramli Y, Ansar M. Synthesis, crystal structure and Hirshfeld surface analysis of 2-{4-[(2-chloro-phen-yl)meth-yl]-3-methyl-6-oxopyridazin-1-yl}- N-phenyl-acetamide. Acta Crystallogr E Crystallogr Commun 2024; 80:1221-1225. [PMID: 39712150 PMCID: PMC11660474 DOI: 10.1107/s2056989024010296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 12/24/2024]
Abstract
In the title mol-ecule, C20H18ClN3O2, the 2-chloro-phenyl group is disordered to a small extent [occupancies 0.875 (2)/0.125 (2)]. The phenyl-acetamide moiety is nearly planar due to a weak, intra-molecular C-H⋯O hydrogen bond. In the crystal, N-H⋯O hydrogen bonds and π-stacking inter-actions between pyridazine and phenyl rings form helical chains of mol-ecules in the b-axis direction, which are linked by C-H⋯O hydrogen bonds and C-H⋯π(ring) inter-actions. A Hirshfeld surface analysis was performed, which showed that H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter-actions to dominate the inter-molecular contacts in the crystal.
Collapse
Affiliation(s)
- Hamza Assila
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in RabatRabatMorocco
| | - Younes Zaoui
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in RabatRabatMorocco
| | - Camille Kalonji Mubengayi
- Laboratoire de Chimie et Biochimie, Institut Superieur des Techniques Medicales Kinshasa, Republique Democratique, du, Congo
| | - Walid Guerrab
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in RabatRabatMorocco
| | - Abdulsalam Alsubari
- Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in RabatRabatMorocco
| | - Mhammed Ansar
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in RabatRabatMorocco
| |
Collapse
|
2
|
Abad N, Mague JT, Kalonji Mubengayi C, Alsubari A, Essassi EM, Ramli Y. Synthesis, crystal structure and Hirshfeld surface analysis of 1-[(1-octyl-1 H-1,2,3-triazol-4-yl)methyl]-3-phenyl-1,2-di-hydro-quinoxalin-2(1 H)-one. Acta Crystallogr E Crystallogr Commun 2024; 80:936-941. [PMID: 39267873 PMCID: PMC11389679 DOI: 10.1107/s2056989024007746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
In the title mol-ecule, C25H29N5O, the di-hydro-quinoxaline unit is not quite planar (r.m.s. deviation = 0.030 Å) as there is a dihedral angle of 2.69 (3)° between the mean planes of the constituent rings and the mol-ecule adopts a hairpin conformation. In the crystal, the polar portions of the mol-ecules are associated through C-H⋯O and C-H⋯N hydrogen bonds and C-H⋯π(ring) and C=O⋯π(ring) inter-actions, forming thick layers parallel to the bc plane and with the n-octyl groups on the outside surfaces.
Collapse
Affiliation(s)
- Nadeem Abad
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in Rabat Morocco
- Laboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Camille Kalonji Mubengayi
- Laboratoire de Chimie et Biochimie, Institut Superieur des Techniques Medicales de Kinshasa, Republique Democratique du , Congo
| | - Abdulsalam Alsubari
- Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry Drug Sciences Research Center Faculty of Medicine and Pharmacy Mohammed V University in Rabat Morocco
| |
Collapse
|
3
|
Singh A, Singh K, Sharma A, Kaur U, Kaur K, Mohinder Singh Bedi P. Recent Developments in 1,2,3-Triazole Based α-Glucosidase Inhibitors: Design Strategies, Structure-Activity Relationship and Mechanistic Insights. Chem Biodivers 2024; 21:e202401109. [PMID: 38951966 DOI: 10.1002/cbdv.202401109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Diabetes mellitus is a chronic and most prevalent metabolic disorder affecting 422 million the people worldwide and causing life-threatening associated conditions including disorders of kidney, heart, and nervous system as well as leg amputation and retinopathy. Steadily rising cases from the last few decades suggest the failure of currently available drugs in containment of this disease. α-Glucosidase is a potential target for effectively tackling this disease and attracting significant interest from medicinal chemists around the globe. Besides having a set of side effects, currently available α-glucosidase inhibitors (carbohydrate mimics) offer better tolerability, safety, and synergistic pharmacological outcomes with other antidiabetic drugs therefore medicinal chemists have working extensively over last three decades for developing alternative α-glucosidase inhibitors. The 1,2,3-Triazole nucleus is energetically used by various research groups around the globe for the development of α-glucosidase inhibitors posing it as an optimum scaffold in the field of antidiabetic drug development. This review is a systematic analysis of α-glucosidase inhibitors developed by employing 1,2,3-triazole scaffold with special focus on design strategies, structure-activity relationships, and mechanism of inhibitory effect. This article will act as lantern for medicinal chemists in developing of potent, safer, and effective α-glucosidase inhibitors with desired properties and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Uttam Kaur
- University School of Business Management, Chandigarh University, Gharuan, 140413, India
| | - Kamaljit Kaur
- Hershey Dental Group, Hershey, Pennsylvania, 17033, USA
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Drug and Pollution testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
4
|
Ragab A, Salem MA, Ammar YA, Aboulthana WM, Helal MH, Abusaif MS. Explore new quinoxaline pharmacophore tethered sulfonamide fragments as in vitro α-glucosidase, α-amylase, and acetylcholinesterase inhibitors with ADMET and molecular modeling simulation. Drug Dev Res 2024; 85:e22216. [PMID: 38831547 DOI: 10.1002/ddr.22216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024]
Abstract
A new series of quinoxaline-sulfonamide derivatives 3-12 were synthesized using fragment-based drug design by reaction of quinoxaline sulfonyl chloride (QSC) with different amines and hydrazines. The quinoxaline-sulfonamide derivatives were evaluated for antidiabetic and anti-Alzheimer's potential against α-glucosidase, α-amylase, and acetylcholinesterase enzymes. These derivatives showed good to moderate potency against α-amylase and α-glucosidase with inhibitory percentages between 24.34 ± 0.01%-63.09 ± 0.02% and 28.95 ± 0.04%-75.36 ± 0.01%, respectively. Surprisingly, bis-sulfonamide quinoxaline derivative 4 revealed the most potent activity with inhibitory percentages of 75.36 ± 0.01% and 63.09 ± 0.02% against α-glucosidase and α-amylase compared to acarbose (IP = 57.79 ± 0.01% and 67.33 ± 0.01%), respectively. Moreover, the quinoxaline derivative 3 exhibited potency as α-glucosidase and α-amylase inhibitory with a minute decline from compound 4 and acarbose with inhibitory percentages of 44.93 ± 0.01% and 38.95 ± 0.01%. Additionally, in vitro acetylcholinesterase inhibitory activity for designed derivatives exhibited weak to moderate activity. Still, sulfonamide-quinoxaline derivative 3 emerged as the most active member with inhibitory percentage of 41.92 ± 0.02% compared with donepezil (IP = 67.27 ± 0.60%). The DFT calculations, docking simulation, target prediction, and ADMET analysis were performed and discussed in detail.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed H Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| |
Collapse
|
5
|
Kothari M, Kannan K, Sahadevan R, Sadhukhan S. Novel molecular hybrids of EGCG and quinoxaline: Potent multi-targeting antidiabetic agents that inhibit α-glucosidase, α-amylase, and oxidative stress. Int J Biol Macromol 2024; 263:130175. [PMID: 38360242 DOI: 10.1016/j.ijbiomac.2024.130175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Diabetes mellitus is a multifactorial disease and its effective therapy often demands several drugs with different modes of action. Herein, we report a rational design and synthesis of multi-targeting novel molecular hybrids comprised of EGCG and quinoxaline derivatives that can effectively inhibit α-glucosidase, α-amylase as well as control oxidative stress by scavenging ROS. The hybrids showed superior inhibition of α-glucosidase along with similar α-amylase inhibition as compared to standard drug, acarbose. Most potent compound, 15c showed an IC50 of 0.50 μM (IC50 of acarbose 190 μM) against α-glucosidase. Kinetics studies with 15c revealed a competitive inhibition against α-glucosidase. Binding affinity of 15c (-9.5 kcal/mol) towards α-glucosidase was significantly higher than acarbose (-7.7 kcal/mol). 15c exhibited remarkably high antioxidant activity (IC50 = 18.84 μM), much better than vitamin C (IC50 = 33.04 μM). Of note, acarbose shows no antioxidant activity. Furthermore, α-amylase activity was effectively inhibited by 15c with an IC50 value of 16.35 μM. No cytotoxicity was observed for 15c (up to 40 μM) in MCF-7 cells. Taken together, we report a series of multi-targeting molecular hybrids capable of inhibiting carbohydrate hydrolysing enzymes as well as reducing oxidative stress, thus representing an advancement towards effective and novel therapeutic approaches for diabetes.
Collapse
Affiliation(s)
- Manan Kothari
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Karthika Kannan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India; Physical & Chemical Biology Laboratory and Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala 678 623, India.
| |
Collapse
|
6
|
Khatoon H, Malek EA. A Focussed Analysis of β-cyclodextrins for Quinoxaline Derivatives Synthesis. CURR ORG CHEM 2024; 28:368-374. [DOI: 10.2174/0113852728295463240216074814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 08/18/2024]
Abstract
Abstract:
Cyclodextrins (CDs), which are a type of cyclic oligosaccharides, are widely used
in supramolecular chemistry. For example, they can be used to encapsulate volatile compounds,
such as drugs, within their hydrophobic cavity. This encapsulation reduces the volatility
of the compounds and helps to retain their desired properties. Due to its extraordinary
properties, cyclodextrins have been utilized as catalysts in numerous organic synthesis processes.
An intrinsic objective of organic chemists is to optimize the efficacy of organic synthesis
through the mitigation of chemical waste and energy expenditure. Utilizing water as a
green solvent is, therefore, economical, environmentally sustainable, and secure. It appears
that employing water in conjunction with a recyclable catalyst is the most effective method
for supramolecular catalysis. As a consequence, we focused this review on the use of water
as a solvent and cyclodextrin as a polymer catalyst to produce quinoxaline derivatives in an environmentally
friendly and sustainable manner.
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Emilia Abdul Malek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Integrated Chemical
BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
7
|
Khatoon H, Abdul Malek E, Faudzi SM, Rukayadi Y. Synthesis of a Series of Quinoxaline Derivatives and Their Antibacterial Effectiveness Against Pathogenic Bacteria. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202305073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/24/2024] [Indexed: 08/18/2024]
Abstract
AbstractThe pharmacological importance of quinoxaline derivatives in antibacterial research is well recognized. This study focuses on the synthesis of new 2,3‐dichloroquinoxaline derivatives containing thioether/ether groups to explore their potential as potent antibacterial agents against various pathogenic bacteria. Most of the compounds exhibited significant antibacterial properties comparable to the standard drug chlorhexidine (CHX). The derivatives of 2‐chloro‐3‐(arylthiol)quinoxaline demonstrated efficacy against Escherichia coli with minimum inhibitory concentrations (MIC) of 2.5 mg/mL and minimum bactericidal concentrations (MBC) of 2.5 to 5.0 mg/mL. These derivatives also showed similar sensitivity to Bacillus pumilus. In addition, molecular docking simulations were performed to investigate the interaction between the synthesized compounds and the DNA gyrase protein (PDB ID: 1KZN), a target for antibiotics. Among the synthesized compounds, 2,3‐bis(3‐nitrophenoxy)quinoxaline exhibited the most favourable docking score of −8.36 kcal/mol, with a binding affinity comparable to that of the reference ligand clorobiocin (−9.3 kcal/mol).
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry Faculty of Science Universiti Putra Malaysia Serdang 43400 Selangor Malaysia
| | - Emilia Abdul Malek
- Department of Chemistry Faculty of Science Universiti Putra Malaysia Serdang 43400 Selangor Malaysia
- Integrated Chemical BioPhysics Research Faculty of Science Universiti Putra Malaysia, Serdang 43400 Selangor Malaysia
| | - Siti Munirah Faudzi
- Department of Chemistry Faculty of Science Universiti Putra Malaysia Serdang 43400 Selangor Malaysia
- Department of Food Science Faculty of Food Science and technology Universiti Putra Malaysia Serdang 434000 Selangor Malaysia
| | - Yaya Rukayadi
- Department of Food Science Faculty of Food Science and technology Universiti Putra Malaysia Serdang 434000 Selangor Malaysia
- Natural Medicines and Product Research Laboratory Institute of Bioscience Universiti Putra Malaysia, Serdang 43400 Selangor Malaysia
| |
Collapse
|
8
|
Farghaly TA, Alqurashi RM, Masaret GS, Abdulwahab HG. Recent Methods for the Synthesis of Quinoxaline Derivatives and their Biological Activities. Mini Rev Med Chem 2024; 24:920-982. [PMID: 37885112 DOI: 10.2174/0113895575264375231012115026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 10/28/2023]
Abstract
Quinoxaline derivatives have been incorporated into numerous marketed drugs used for the treatment of various diseases. Examples include glecaprevir (Mavyret), voxilaprevir (Vosevi), Balversa (L01EX16) (erdafitinib), carbadox, XK469R (NSC698215), and becampanel (AMP397). These quinoxaline derivatives exhibit a diverse range of pharmacological activities, including antibacterial, antitubercular, antiviral, anti-HIV, anti-inflammatory, antifungal, anticancer, antiproliferative, antitumor, kinase inhibition, antimicrobial, antioxidant, and analgesic effects. Recognizing the significance of these bioactive quinoxaline derivatives, researchers have dedicated their efforts to developing various synthetic methods for their production. This review aimed to compile the most recent findings on the synthesis and biological properties of quinoxaline derivatives from 2015 to 2023.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Raghad M Alqurashi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
9
|
Cui Y, Sun Y, Yu H, Guo Y, Yao W, Xie Y, Yang F. Exploring the binding mechanism and adverse toxic effects of degradation metabolites of pyrethroid insecticides to human serum albumin: Multi-spectroscopy, calorimetric and molecular docking approaches. Food Chem Toxicol 2023; 179:113951. [PMID: 37479174 DOI: 10.1016/j.fct.2023.113951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Pyrethroid insecticides (PIs), a class of structurally similar non-persistent organic pollutants, can be degraded and metabolized to more toxic, and longer half-life products. In this study, the binding interaction mechanisms between human serum albumin (HSA) and the main degradation metabolites of PIs, 3-phenoxybenzoic acid (3-PBA) and 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA), were studied by theoretical simulation and experimental verification. Steady state fluorescence spectra showed that the fluorescence quenching mechanism was static. According to the binding constant, 4-F-3-PBA (1.53 × 105 L mol-1) was bound more strongly to HSA than 3-PBA (1.42 × 105 L mol-1) in subdomain ⅡA (site I). It was found by isothermal titration calorimetry that the metabolites and HSA spontaneously combined mainly through hydrogen bond and van der Waals interaction. Ultraviolet absorption spectra and circular dichroism spectra showed that the metabolites caused slight changes in the microenvironment and conformation of HSA. The above results were proved by molecular docking. The toxicity properties of the metabolites were further analyzed by software, and 4-F-3-PBA was found to be more toxic than 3-PBA. Considering the high exposure level of these metabolites in food, the environment and human body, it is necessary to further explore the toxicity of PIs metabolites.
Collapse
Affiliation(s)
- Yiwen Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yingying Sun
- Research Institute, Centre Testing International Group Co., Ltd., Shenzhen, 518000, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.
| | - Fangwei Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food and Health, Beijing Technology & Business University (BTBU), 33 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
10
|
Zala AR, Naik HN, Ahmad I, Patel H, Jauhari S, Kumari P. Design and synthesis of novel 1,2,3-triazole linked hybrids: Molecular docking, MD simulation, and their antidiabetic efficacy as α-Amylase inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
11
|
Shafique K, Farrukh A, Mahmood Ali T, Qasim S, Jafri L, Abd-Rabboh HSM, AL-Anazy MM, Kalsoom S. Designing Click One-Pot Synthesis and Antidiabetic Studies of 1,2,3-Triazole Derivatives. Molecules 2023; 28:molecules28073104. [PMID: 37049866 PMCID: PMC10096114 DOI: 10.3390/molecules28073104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
In the present study, a new series of 1,2,3-triazole derivatives was synthesized via a click one-pot reaction. The synthesized compounds were found to be active during molecular docking studies against targeted protein 1T69 by using the Molecular Operating Environment (MOE) software. The designed and synthesized compounds were characterized by using FT-IR, 1H-NMR and LC-MS spectra. The synthesized triazole moieties were further screened for their α-amylase and α-glucosidase inhibitory activities. The preliminary activity analysis revealed that all the compounds showed good inhibition activity, ranging from moderate to high depending upon their structures and concentrations and compared to the standard drug acarbose. Both in silico and in vitro analysis indicated that the synthesized triazole molecules are potent for DM type-II. Out of all the compounds, compound K-1 showed the maximum antidiabetic activity with 87.01% and 99.17% inhibition at 800 µg/mL in the α-amylase and α-glucosidase inhibition assays, respectively. Therefore these triazoles may be further used as promising molecules for development of antidiabetic compounds.
Collapse
|
12
|
Ghous F, Shukla S, Singh R, Parveen S, Banerjee M, Bishnoi A. Synthesis, Crystal Structure, Computational Investigation, Molecular Docking Analysis and Anti-lung Cancer Activity of Novel (Z)-3-amino-2-(cyclohexylidenehydrazono)thiazolidin-4-one. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Jayashankar J, Hema M, Mahmoudi G, Masoudiasl A, Dušek M, Montazerozohori M, Karthik C, Lokanath N. N,N'-bis(2-bromobenzylidene)-2,2′-diaminodiphenyldisulfide (BBDD): Insights of crystal structure, DFT, QTAIM, PASS, ADMET and Molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|