1
|
Bhatt SP, Agusti A, Bafadhel M, Christenson SA, Bon J, Donaldson GC, Sin DD, Wedzicha JA, Martinez FJ. Phenotypes, Etiotypes, and Endotypes of Exacerbations of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 208:1026-1041. [PMID: 37560988 PMCID: PMC10867924 DOI: 10.1164/rccm.202209-1748so] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Chronic obstructive pulmonary disease is a major health problem with a high prevalence, a rising incidence, and substantial morbidity and mortality. Its course is punctuated by acute episodes of increased respiratory symptoms, termed exacerbations of chronic obstructive pulmonary disease (ECOPD). ECOPD are important events in the natural history of the disease, as they are associated with lung function decline and prolonged negative effects on quality of life. The present-day therapy for ECOPD with short courses of antibiotics and steroids and escalation of bronchodilators has resulted in only modest improvements in outcomes. Recent data indicate that ECOPD are heterogeneous, raising the need to identify distinct etioendophenotypes, incorporating traits of the acute event and of patients who experience recurrent events, to develop novel and targeted therapies. These characterizations can provide a complete clinical picture, the severity of which will dictate acute pharmacological treatment, and may also indicate whether a change in maintenance therapy is needed to reduce the risk of future exacerbations. In this review we discuss the latest knowledge of ECOPD types on the basis of clinical presentation, etiology, natural history, frequency, severity, and biomarkers in an attempt to characterize these events.
Collapse
Affiliation(s)
- Surya P. Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alvar Agusti
- Institut Respiratori (Clinic Barcelona), Càtedra Salut Respiratoria (Universitat de Barcelona), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-Barcelona), Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), España
| | - Mona Bafadhel
- Faculty of Life Sciences and Medicine, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Stephanie A. Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Jessica Bon
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Gavin C. Donaldson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Don D. Sin
- Centre for Heart Lung Innovation and
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- St. Paul’s Hospital, Vancouver, British Columbia, Canada; and
| | - Jadwiga A. Wedzicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
2
|
Miravitlles M, Matsunaga K, Dreher M. Stepwise management of COPD: What is next after bronchodilation? Ther Adv Respir Dis 2023; 17:17534666231208630. [PMID: 37936381 PMCID: PMC10631322 DOI: 10.1177/17534666231208630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/29/2023] [Indexed: 11/09/2023] Open
Abstract
Inhaled bronchodilator therapy with long-acting muscarinic antagonists (LAMAs) and long-acting β2-agonists (LABAs) in combination is currently the mainstay of treatment for chronic obstructive pulmonary disease (COPD). Treatment guidelines recommend the addition of inhaled corticosteroids (ICS) to LABA/LAMA only in patients with a history of frequent/severe exacerbations and high blood eosinophil counts, or in those with concomitant asthma. Despite this, real-world data suggest that clinicians are not adhering to this guidance and that ICS are frequently overused. This is possibly due to the incorrect assumption that when LABA/LAMA therapy is not sufficient, adding an ICS to the treatment regimen is the logical next step. In this narrative review, we describe global and country-specific guideline recommendations from Germany, Spain, and Japan and compare these with real-world data on LABA/LAMA and ICS use in clinical practice. We also provide a clinical guide to the use of add-on therapies with LABA/LAMA for different patient phenotypes, including (1) patients still symptomatic (but not exacerbating) despite LABA/LAMA treatment; (2) patients still exacerbating despite LABA/LAMA treatment who have high blood eosinophil counts; and (3) patients still exacerbating despite LABA/LAMA treatment who do not have high blood eosinophils or concomitant asthma.
Collapse
Affiliation(s)
- Marc Miravitlles
- Pneumology Department, University Hospital Vall d′Hebron/Vall d’Hebron Research Institute (VHIR, Vall d’Hebron Barcelona Hospital Campus; CIBER de Enfermedades Respiratorias [CIBERES]), P. Vall d’Hebron 119–129, Barcelona 08035, Spain
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
3
|
Singh D, Agusti A, Martinez FJ, Papi A, Pavord ID, Wedzicha JA, Vogelmeier CF, Halpin DMG. Blood Eosinophils and Chronic Obstructive Pulmonary Disease: A GOLD Science Committee 2022 Review. Am J Respir Crit Care Med 2022; 206:17-24. [PMID: 35737975 DOI: 10.1164/rccm.202201-0209pp] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
COPD is a heterogeneous condition. Some patients benefit from treatment with inhaled corticosteroids (ICS) but this requires a precision medicine approach, based on clinical characteristics (phenotyping) and biological information (endotyping) in order to select patients most likely to benefit. The GOLD 2019 report recommended using exacerbation history combined with blood eosinophil counts (BEC) to identify such patients. Importantly, the relationship between BEC and ICS effects is continuous; no / small effects are observed at lower BEC, with increasing effects at higher BEC. The GOLD 2022 report has added additional evidence and recommendations concerning the use of BEC in COPD in clinical practice. Notably, associations have been demonstrated in COPD patients between higher BEC and increased levels of type-2 inflammation in the lungs. These differences in type-2 inflammation can explain the differential ICS response according to BEC. Additionally, lower BEC are associated with greater presence of proteobacteria, notably haemophilus, and increased bacterial infections and pneumonia risk. These observations support management strategies that use BEC to help identify subgroups with increased ICS response (higher BEC) or increased risk of bacterial infection (lower BEC). Recent studies in younger individuals without COPD have also shown that higher BEC are associated with increased risk of FEV1 decline and the development of COPD. Here we discuss and summarise the GOLD 2022 recommendations concerning the use of BEC as a biomarker that can facilitate a personalised management approach in COPD.
Collapse
Affiliation(s)
- Dave Singh
- The University of Manchester, 5292, Manchester, United Kingdom of Great Britain and Northern Ireland;
| | - Alvar Agusti
- Fundacio Clinic per a la Recerca Biomedica, 189152, Barcelona, Spain
| | | | - Alberto Papi
- University of Ferrara, Research Centre on Asthma and COPD, Ferrara, Italy
| | - Ian D Pavord
- Oxford University, Nuffield department of Medicine, Respiratory Medicine, Oxford, United Kingdom of Great Britain and Northern Ireland
| | - Jadwiga A Wedzicha
- Imperial College London, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | | | - David M G Halpin
- University of Exeter College of Medicine, University of Exeter Medical School, Exeter, United Kingdom of Great Britain and Northern Ireland.,Royal Devon and Exeter Hospital, 159028, Exeter, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
4
|
Martínez García MÁ, Soriano JB. Asthma, bronchiectasis, and chronic obstructive pulmonary disease: the Bermuda Triangle of the airways. Chin Med J (Engl) 2022; 135:1390-1393. [PMID: 35869863 PMCID: PMC9481445 DOI: 10.1097/cm9.0000000000002225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Miguel Ángel Martínez García
- Pneumology Department, Hospital Universitario y Politécnico la Fe de Valencia, Spain
- CIBERES de enfermedades respiratorias, Instituto de salud Carlos III, Madrid, Spain
| | - Joan B Soriano
- CIBERES de enfermedades respiratorias, Instituto de salud Carlos III, Madrid, Spain
- Servicio de Neumología, Hospital Universitario de la Princesa, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Martinez-Garcia MA, Miravitlles M. The Impact of Chronic Bronchial Infection in COPD: A Proposal for Management. Int J Chron Obstruct Pulmon Dis 2022; 17:621-630. [PMID: 35355582 PMCID: PMC8958724 DOI: 10.2147/copd.s357491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/12/2022] [Indexed: 11/23/2022] Open
Abstract
Up to 50% of patients with chronic obstructive pulmonary disease (COPD) in stable state may carry potentially pathogenic microorganisms (PPMs) in their airways. The presence of PPMs has been associated with increased symptoms, increased risk and severity of exacerbations, a faster decline in lung function and impairment in quality of life. Although some clinical trials have demonstrated a reduction in exacerbations in patients chronically treated with systemic antibiotics, particularly macrolides, the selection of patients was based on the previous frequency of exacerbations and not on the presence of PPMs in their airways. Therefore, unlike in bronchiectasis, there is a lack of evidence-based recommendations for assessment and treatment of the presence of PPMs in either single or repeated isolations in COPD. In this article, we propose that chronic bronchial infection (CBI) in COPD be defined as the isolation of the same PPM in at least three sputum samples separated by more than one month; we review the impact of CBI on the natural course of COPD and suggest a course of action in patients with a single isolation of a PPM or suspected CBI. Antibiotic treatment in stable COPD should be recommended based on four main criteria: a) the presence of comorbid bronchiectasis, b) the demonstration of a single or multiple isolation of the same PPM, c) the clinical impact of CBI on the patients, and d) the type of PPM, either Pseudomonas aeruginosa or non-pseudomonal PPM. These recommendations are derived from evidence generated in patients with bronchiectasis and, until new evidence specifically obtained in COPD is available, they may help in the management of these challenging patients with COPD. Existing evidence suggests that inhaled therapy is insufficient to manage patients with moderate-to-severe COPD, frequent exacerbations, and CBI. New studies must be conducted in this particularly demanding population.
Collapse
Affiliation(s)
- Miguel Angel Martinez-Garcia
- Pneumology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Miravitlles
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
6
|
Stability of blood eosinophils in acute exacerbation of chronic obstructive pulmonary disease and its relationship to clinical outcomes: a prospective cohort study. Respir Res 2021; 22:301. [PMID: 34819051 PMCID: PMC8611944 DOI: 10.1186/s12931-021-01888-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The clinical value of blood eosinophils and their stability in chronic obstructive pulmonary disease (COPD) remains controversial. There are limited studies on association between the stability of blood eosinophils in acute exacerbation of COPD (AECOPD) and clinical outcomes. This study aimed to evaluate the stability of blood eosinophils in hospitalized AECOPD and its relationship to clinical outcomes. METHODS This prospective observational study recruited patients hospitalized with AECOPD from November 2016 to July 2020. The eligible patients were divided into four groups according to their blood eosinophil counts at admission and discharge: persistently < 300 cells/μl (LL), < 300 cells/μl at admission but ≥ 300 cells/µl at discharge (LH), ≥ 300 cells/μl at admission but < 300 cells/µl at discharge (HL), and persistently ≥ 300 cells/μl (HH). Cox hazard analyses were used to study the association between eosinophil changes and exacerbations or mortality. RESULTS In 530 patients included, 90 (17.0%) had a high blood eosinophil count (BEC) ≥ 300 cells/µl at admission but 32 (35.6%) of them showed a decreased BEC at discharge. The proportions and distribution for group LL, LH, HL, and HH were 381 (71.9%), 59 (11.1%), 32 (6.0%), and 58 (10.9%), respectively. During hospitalization, the LH group had a higher C-reactive protein level, higher rate of intensive care unit (ICU) admission, and higher total cost. The length of hospital stay of the LH group was longer compared with group LL, HL, or HH (P = 0.002, 0.017, and 0.001, respectively). During a follow-up of 12 months, the HH group was associated with a higher risk of moderate-to-severe exacerbations compared to the LL group (hazard ratio 2.00, 95% confidence interval 1.30-3.08, P = 0.002). Eosinophil changes had no significant association with mortality at 12 months. Sensitivity analyses in patients without asthma and without use of systemic corticosteroids prior to admission did not alter the results. CONCLUSIONS More attention should be paid to the LH group when evaluating the short-term prognosis of AECOPD. A persistently high BEC was a risk factor for long-term exacerbations. Eosinophil changes during hospitalization could help to predict outcomes.
Collapse
|
7
|
Shaikh SB, Bhandary YP. Therapeutic properties of Punica granatum L (pomegranate) and its applications in lung-based diseases: A detailed review. J Food Biochem 2021; 45:e13684. [PMID: 33709449 DOI: 10.1111/jfbc.13684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/26/2022]
Abstract
Respiratory diseases are the prime cause of death and disability worldwide. The majority of lung-based diseases are resistant to treatment. Hence, research on unique drugs/compounds with a more efficient and minimum side effect for treating lung diseases is urgent. Punica granatum L (pomegranate) fruit has been used in the prevention and treatment of various respiratory disorders in recent times. In vivo and in vitro studies have demonstrated that pomegranate fruit, as well as its juice, extract, peel powder, and oil, exert anti-proliferative, anti-oxidant, anti-microbial, anti-inflammatory, anti-cancer, and anti-tumorigenic properties by attenuating various respiratory conditions such as asthma, lung fibrosis, lung cancer, chronic obstructive pulmonary disease (COPD), and alveolar inflammation via modulating various signaling pathways. The current review summarizes the potential properties and medical benefits of pomegranate against different lung-based diseases, also highlighting its possible role in the lung fibrinolytic system. The available data suggest that pomegranate is effective in controlling the disease progressions and could be a potential therapeutic target benefiting human health status. Furthermore, this review also outlines the preclinical and clinical studies highlighting the role of pomegranate in lung diseases further evoking future studies to investigate the effect of intake of this anti-oxidant fruit in larger and well-defined human clinical trials. PRACTICAL APPLICATIONS: This review outlines the putative pharmacologic benefits of P. granatum L (pomegranate) in treating various chronic lung-based diseases such as lung cancer, COPD, ARDS, asthma, lung fibrosis, and cystic fibrosis. This review also highlights the possible inhibitory role of P. granatum L (pomegranate) in the lung fibrinolytic system triggering the fibrinolytic markers. This review summarizes the preclinical and clinical studies using in vitro, in vivo, and human models highlighting the potential role of P. granatum L (pomegranate) in lung diseases. This review evokes future research to investigate the effect of intake of pomegranate fruit in well-defined human clinical trials.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|