1
|
Indrelid SH, Dongre HN, Nunes IP, Virtej A, Bletsa A, Berggreen E. Human gingival epithelial cells stimulate proliferation, migration, and tube formation of lymphatic endothelial cells in vitro. J Periodontal Res 2023; 58:596-606. [PMID: 36843064 DOI: 10.1111/jre.13110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/28/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the response of gingival epithelial cells to microbial and inflammatory signals. BACKGROUND The gingival epithelial barrier provides the first line of defense and supports tissue homeostasis by maintaining the cross-talk between gingival epithelium, oral microbiota, and immune cells. Lymphatic vessels are essential to sustaining this homeostasis. The gingival epithelial cells have been shown to produce prolymphangiogenic factors during physiologic conditions, but their role in response to microbial and inflammatory signals is unknown. METHODS Immortalized human gingival epithelial cells (HGEC) and human dermal lymphatic microvascular endothelial cells (LEC) were cultured. HGEC were exposed to Porphyromonas gingivalis derived-LPS, human IL-1 beta/IL-1F2 protein, or recombinant human IL-6/IL-6R. Levels of vascular growth factors (VEGF-A, VEGF-C, and VEGF-D) in cell supernatants were determined by ELISA. LEC were grown to confluence, and a scratch was induced in the monolayer. Uncovered area was measured up to 48 h after exposure to conditioned medium (CM) from HGEC. Tube formation assays were performed with LEC cocultured with labelled HGEC or exposed to CM. RESULTS VEGF-A, VEGF-C, and low levels of VEGF-D were constitutively expressed by HGEC. The expression of VEGF-C and VEGF-D, but not VEGF-A, was upregulated in response to proinflammatory mediators. VEGF-C was upregulated in response to P. gingivalis LPS, but not to Escherichia coli LPS. A scratch migration assay showed that LEC migration was significantly increased by CM from HGEC. Both the CM and coculture with HGEC induced significant tube formation of LEC. CONCLUSIONS HGEC can regulate production of lymphangiogenic/angiogenic factors during inflammatory insults and can stimulate proliferation, migration, and tube formation of LEC in vitro in a paracrine manner.
Collapse
Affiliation(s)
| | - Harsh Nitin Dongre
- Centre for Cancer Biomarkers and Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | | | - Anca Virtej
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Oral and Maxillofacial Surgery, Haukeland University Hospital, Bergen, Norway
| | - Athanasia Bletsa
- Oral Health Center of Expertise, Western Norway, Bergen, Norway.,Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Ellen Berggreen
- Oral Health Center of Expertise, Western Norway, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Barreto de Albuquerque J, Altenburger LM, Abe J, von Werdt D, Wissmann S, Martínez Magdaleno J, Francisco D, van Geest G, Ficht X, Iannacone M, Bruggmann R, Mueller C, Stein JV. Microbial uptake in oral mucosa-draining lymph nodes leads to rapid release of cytotoxic CD8 + T cells lacking a gut-homing phenotype. Sci Immunol 2022; 7:eabf1861. [PMID: 35714202 DOI: 10.1126/sciimmunol.abf1861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The gastrointestinal (GI) tract constitutes an essential barrier against ingested microbes, including potential pathogens. Although immune reactions are well studied in the lower GI tract, it remains unclear how adaptive immune responses are initiated during microbial challenge of the oral mucosa (OM), the primary site of microbial encounter in the upper GI tract. Here, we identify mandibular lymph nodes (mandLNs) as sentinel lymphoid organs that intercept ingested Listeria monocytogenes (Lm). Oral Lm uptake led to local activation and release of antigen-specific CD8+ T cells that constituted most of the early circulating effector T cell (TEFF) pool. MandLN-primed TEFF disseminated to lymphoid organs, lung, and OM and contributed substantially to rapid elimination of target cells. In contrast to CD8+ TEFF generated in mesenteric LN (MLN) during intragastric infection, mandLN-primed TEFF lacked a gut-seeking phenotype, which correlated with low expression of enzymes required for gut-homing imprinting by mandLN stromal and dendritic cells. Accordingly, mandLN-primed TEFF decreased Lm burden in spleen but not MLN after intestinal infection. Our findings extend the concept of regional specialization of immune responses along the length of the GI tract, with CD8+ TEFF generated in the upper GI tract displaying homing profiles that differ from those imprinted by lymphoid tissue of the lower GI tract.
Collapse
Affiliation(s)
| | - Lukas M Altenburger
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Diego von Werdt
- Division of Experimental Pathology, Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jose Martínez Magdaleno
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - David Francisco
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Xenia Ficht
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Remy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Christoph Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
3
|
Hathaway-Schrader JD, Aartun JD, Poulides NA, Kuhn MB, McCormick BE, Chew ME, Huang E, Darveau RP, Westwater C, Novince CM. Commensal oral microbiota induces osteoimmunomodulatory effects separate from systemic microbiome in mice. JCI Insight 2022; 7:140738. [PMID: 35077397 PMCID: PMC8876522 DOI: 10.1172/jci.insight.140738] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Commensal microbes critically regulate skeletal homeostasis, yet the impact of specific microbiota communities on osteoimmune response mechanisms is unknown. To discern osteoimmunomodulatory effects imparted by the commensal oral microbiota that are distinct from the systemic microbiota, osteoimmunology studies were performed in both alveolar bone and nonoral skeletal sites of specific pathogen–free (SPF) versus germ-free (GF) mice and SPF mice subjected to saline versus chlorhexidine oral rinses. SPF versus GF mice had reduced cortical/trabecular bone and an enhanced pro-osteoclastic phenotype in alveolar bone. TLR signaling and Th17 cells that have known pro-osteoclastic actions were increased in alveolar BM, but not long BM, of SPF versus GF mice. MHC II antigen presentation genes and activated DCs and CD4+ T cells were elevated in alveolar BM, but not long BM, of SPF versus GF mice. These findings were substantiated by in vitro allostimulation studies demonstrating increased activated DCs derived from alveolar BM, but not long BM, of SPF versus GF mice. Chlorhexidine antiseptic rinse depleted the oral, but not gut, bacteriome in SPF mice. Findings from saline- versus chlorhexidine-treated SPF mice corroborated outcomes from SPF versus GF mice, which reveals that the commensal oral microbiota imparts osteoimmunomodulatory effects separate from the systemic microbiome.
Collapse
Affiliation(s)
- Jessica D. Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine
- Department of Pediatrics-Division of Endocrinology, College of Medicine, and
- Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| | | | | | - Megan B. Kuhn
- Department of Oral Health Sciences, College of Dental Medicine
| | | | - Michael E. Chew
- Department of Oral Health Sciences, College of Dental Medicine
| | - Emily Huang
- Department of Oral Health Sciences, College of Dental Medicine
| | - Richard P. Darveau
- Department of Periodontics, School of Dentistry, and
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Caroline Westwater
- Department of Oral Health Sciences, College of Dental Medicine
- Department of Microbiology and Immunology, Hollings Cancer Center, MUSC, Charleston, South Carolina, USA
| | - Chad M. Novince
- Department of Oral Health Sciences, College of Dental Medicine
- Department of Pediatrics-Division of Endocrinology, College of Medicine, and
- Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| |
Collapse
|
4
|
Wang H, Chen Y, Li W, Sun L, Chen H, Yang Q, Zhang H, Zhang W, Yuan H, Zhang H, Xing L, Sun W. Effect of VEGFC on lymph flow and inflammation-induced alveolar bone loss. J Pathol 2020; 251:323-335. [PMID: 32418202 PMCID: PMC10587832 DOI: 10.1002/path.5456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022]
Abstract
The lymphatic system plays a crucial role in the maintenance of tissue fluid homeostasis and the immunological response to inflammation. The effects of lymphatic drainage dysfunction on periodontitis have not been well studied. Here we show that lymphatic vessel endothelial receptor 1 (LYVE1)+ /podoplanin (PDPN)+ lymphatic vessels (LVs) are increased in the periodontal tissues, with accumulation close to the alveolar bone surface, in two murine periodontitis models: rheumatoid arthritis (RA)-associated periodontitis and ligature-induced periodontitis. Further, PDPN+ /alpha-smooth muscle actin (αSMA)- lymphatic capillaries are increased, whereas PDPN+ /αSMA+ collecting LVs are decreased significantly in the inflamed periodontal tissues. Both mouse models of periodontitis have delayed lymph flow in periodontal tissues, increased TRAP-positive osteoclasts, and significant alveolar bone loss. Importantly, the local administration of adeno-associated virus for vascular endothelial growth factor C, the major growth factor that promotes lymphangiogenesis, increases the area and number of PDPN+ /αSMA+ collecting LVs, promotes local lymphatic drainage, and reduces alveolar bone loss in both models of periodontitis. Lastly, LYVE1+ /αSMA- lymphatic capillaries are increased, whereas LYVE1+ /αSMA+ collecting LVs are decreased significantly in gingival tissues of patients with chronic periodontitis compared with those of clinically healthy controls. Thus, our findings reveal an important role of local lymphatic drainage in periodontal inflammation-mediated alveolar bone loss. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hua Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Yuyi Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Wenlei Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Lian Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Hongyu Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Qiudong Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Hang Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Weibing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
- Department of Basic Science of Stomatology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
5
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
6
|
Papadakou P, Bletsa A, Yassin MA, Karlsen TV, Wiig H, Berggreen E. Role of Hyperplasia of Gingival Lymphatics in Periodontal Inflammation. J Dent Res 2017; 96:467-476. [PMID: 28081372 DOI: 10.1177/0022034516681762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lymphatic vessels are important for maintenance of tissue fluid homeostasis and afferent antigen transport. In chronic inflammation, lymphangiogenesis takes place and is characterized by lymphatic endothelial cell proliferation and lymphatic hyperplasia. Vascular endothelial growth factor C (VEGFC) is the main known lymphangiogenic growth factor, and its expression is increased in periodontitis, a common chronic infectious disease that results in tissue destruction and alveolar bone loss. The role of lymphangiogenesis during development of periodontitis is unknown. Here, we test if transgenic overexpression of epithelial VEGFC in a murine model is followed by hyperplasia of lymphatic vessels in oral mucosa and if the lymphatic drainage capacity is altered. We also test if lymphatic hyperplasia protects against periodontal disease development. Transgenic keratin 14 (K14)-VEGFC mice had significant hyperplasia of lymphatics in oral mucosa, including gingiva, without changes in blood vessel vasculature. The basal lymph flow was normal but slightly lower than in wild-type mice when oral mucosa was challenged with lipopolysaccharide from Porphyromonas gingivalis. Under normal conditions, K14-VEGFC mice exhibited an increased number of neutrophils in gingiva, demonstrated enhanced phagocyte recruitment in the cervical lymph nodes, and had more alveolar bone when compared with their wild-type littermates. After induction of periodontitis, no strain differences were observed in the periodontal tissues with respect to granulocyte recruitment, bone resorption, angiogenesis, cytokines, and bone-related protein expressions or in draining lymph node immune cell proportions and vascularization. We conclude that overexpression of VEGFC results in hyperplastic lymphatics, which do not enhance lymphatic drainage capacity but facilitate phagocyte transport to draining lymph nodes. Hyperplasia of lymphatics does not protect against development of ligature-induced periodontitis.
Collapse
Affiliation(s)
- P Papadakou
- 1 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - A Bletsa
- 2 Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - M A Yassin
- 2 Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - T V Karlsen
- 1 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - H Wiig
- 1 Department of Biomedicine, University of Bergen, Bergen, Norway
| | - E Berggreen
- 1 Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Papadakou P, Karlsen TV, Wiig H, Berggreen E. Determination of lymph flow in murine oral mucosa using depot clearance of near-infrared-labeled albumin. J Immunol Methods 2015; 425:97-101. [DOI: 10.1016/j.jim.2015.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 11/24/2022]
|
8
|
Berggreen E, Wiig H. Lymphatic function and responses in periodontal disease. Exp Cell Res 2014; 325:130-7. [DOI: 10.1016/j.yexcr.2013.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/05/2013] [Indexed: 12/17/2022]
|
9
|
Berggreen E, Wiig H. Lymphangiogenesis and Lymphatic Function in Periodontal Disease. J Dent Res 2013; 92:1074-80. [DOI: 10.1177/0022034513504589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lymphatic vessels return extravasated fluid, proteins, and cells back into the circulation and are important in immune cell trafficking. In the gingiva, lymphatic vessels are located in the lamina propria and travel over the external surface of the alveolar bone. The gingival lymphatics are important for fluid drainage, since lack of lymphatics has been shown to increase interstitial fluid pressure and fluid volume. Maintenance of gingival lymphatic vessels requires continuous signaling by the growth factors VEGF-C and -D via their receptor VEGFR-3. The growth factors are expressed in the gingival epithelium and also in immune cells in the lamina propria. VEGF-C seems to be crucial for lymphangiogenesis induced during periodontal disease development. The lymphatic vessels protect against periodontitis in mice, probably by clearing bacteria and bacterial products and by promoting humoral immune responses. Down-regulation of CCL21, a ligand important for dendritic cell migration, has been demonstrated in lymphatics from patients with periodontitis. High enzymatic activity in the gingiva of these patients may also contribute to impaired lymphatic function, due to the loss of structural components in the interstitium influencing lymphatic function. So far, knowledge is limited in this field because of the dearth of studies on the role of lymphatic vessels in periodontal disease.
Collapse
Affiliation(s)
- E. Berggreen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Oral Health Centre, Hordaland, Western Norway
| | - H. Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
Mkonyi LE, Bletsa A, Bolstad AI, Bakken V, Wiig H, Berggreen E. Gingival lymphatic drainage protects against Porphyromonas gingivalis-induced bone loss in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:907-16. [PMID: 22901755 DOI: 10.1016/j.ajpath.2012.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/08/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
Periodontitis is characterized by tissue destruction and bone loss mainly due to inflammatory responses after bacterial challenge of the gingiva. Gingiva is supplied with lymphatics that drain interstitial fluid and transport immune cells to the lymph nodes for antigen presentation; yet, the role of lymphatics in periodontal disease development is unknown. To investigate the lymphatic function after periodontal infection, we used K14-VEGF receptor 3-Ig (K14) mice that lack lymphatics in gingiva. Mice were orally infected with human Porphyromonas gingivalis and observed for 42 days. The infected K14 mice developed significantly more bone loss than the wild-type mice, and were associated with an increased number of macrophages and major histocompatibility complex class II antigen-presenting cells in the bone resorptional areas. The infected transgenic mice expressed a significant higher periodontal level of several proinflammatory cytokines, whereas the plasma level of P. gingivalis IgG was significantly lower than in the wild-type mice. No differences were found in immune cell distribution in draining lymph nodes between the strains. Our results show that a strong periodontal inflammatory response and a weakened systemic humoral B-cell response took place in K14 mice after infection. We conclude that gingival lymphatics protect against P. gingivalis-induced periodontitis, and we speculate that they are critical in the protection by clearance of infection and by promotion of humoral immune responses.
Collapse
|
11
|
Mkonyi LE, Bletsa A, Fristad I, Wiig H, Berggreen E. Importance of lymph vessels in the transcapillary fluid balance in the gingiva studied in a transgenic mouse model. Am J Physiol Heart Circ Physiol 2010; 299:H275-83. [DOI: 10.1152/ajpheart.01199.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gingiva is frequently challenged by oral bacterial products leading to inflammatory responses such as increased fluid filtration and edema formation. The role of initial lymphatics for transcapillary fluid balance in the gingiva is unknown and was therefore investigated in genetically engineered K14-VEGF receptor 3-Ig (K14) lymphedema mice. The mutant mice demonstrated a total lack of lymphatics in the gingiva, whereas lymphatics were found in the submucosal parts of the alveolar mucosa, although they were almost completely absent in the mucosa. In wild-type (WT) mice, lymphatic vessels were detected in mucosal and submucosal parts of the alveolar mucosa. Interstitial fluid pressure (Pif) measured with micropipettes was increased in the gingiva of K14 mice in the normal situation ( P < 0.001) and after inflammation ( P < 0.01) induced by lipopolysaccharide from the oral bacteria Porphyromonas gingivalis compared with WT littermates. Fluid volume expansion caused a >75% increase in interstitial fluid volume followed by a drop in Pif after recovery in both strains. Continuous measurements during the expansion showed an increase in Pif followed by a decline, suggesting that compliance is increased after the disruption of the extracellular matrix during edema formation. In the alveolar mucosa, no strain differences were observed in Pif in the normal situation or after fluid volume expansion, suggesting that lymph vessels in the mucosa are not critical for tissue fluid regulation in any situation. Our study demonstrates an important role of gingival lymphatics in transcapillary fluid balance in the steady-state condition and during acute perturbations.
Collapse
Affiliation(s)
| | - Athanasia Bletsa
- Departments of 1Biomedicine and
- Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Inge Fristad
- Clinical Dentistry, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|