1
|
Sharma V, Singh SB, Bandyopadhyay S, Sikka K, Kakkar A, Hariprasad G. Label-based comparative proteomics of oral mucosal tissue to understand progression of precancerous lesions to oral squamous cell carcinoma. Biochem Biophys Rep 2024; 40:101842. [PMID: 39483176 PMCID: PMC11525462 DOI: 10.1016/j.bbrep.2024.101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Oral squamous cell carcinomas typically arise from precancerous lesions such as leukoplakia and erythroplakia. These lesions exhibit a range of histological changes from hyperplasia to dysplasia and carcinoma in situ, during their transformation to malignancy. The molecular mechanisms driving this multistage transition remain incompletely understood. To bridge this knowledge gap, our current study utilizes label based comparative proteomics to compare protein expression profiles across different histopathological grades of leukoplakia, erythroplakia, and oral squamous cell carcinoma samples, aiming to elucidate the molecular changes underlying lesion evolution. Methodology An 8-plex iTRAQ proteomics of 4 biological replicates from 8 clinical phenotypes of leukoplakia and erythroplakia, with hyperplasia, mild dysplasia, moderate dysplasia; along with phenotypes of well differentiated squamous cell carcinoma and moderately differentiated squamous cell carcinoma was carried out using the Orbitrap Fusion Lumos mass spectrometer. Raw files were processed with Maxquant, and statistical analysis across groups was conducted using MetaboAnalyst. Statistical tools such as ANOVA, PLS-DA VIP scoring, and correlation analysis were employed to identify differentially expressed proteins that had a linear expression variation across phenotypes of hyperplasia to cancer. Validation was done using Bioinformatic tools such as ClueGO + Cluepedia plugin in Cytoscape to extract functional annotations from gene ontology and pathway databases. Results and discussion A total of 2685 protein groups and 12,397 unique peptides were identified, and 61 proteins consistently exhibited valid reporter ion corrected intensities across all samples. Of these, 6 proteins showed linear varying expression across the analysed sample phenotypes. Collagen type VI alpha 2 chain (COL6A2), Fibrinogen β chain (FGB), and Vimentin (VIM) were found to have increased linear expression across pre-cancer phenotypes of leukoplakia to cancer, while Annexin A7 (ANXA7) was seen to be having a linear decreasing expression. Collagen type VI alpha 2 chain (COL6A2) and Annexin A2 (ANXA2) had increased linear expression across precancer phenotypes of erythroplakia to cancer. The mass spectrometry proteomics data have been deposited to the ProteomeXchanger Consortium via the PRIDE partner repository with the data set identifier PXD054190. These differentially expressed proteins mediate cancer progression mainly through extracellular exosome; collagen-containing extracellular matrix, hemostasis, platelet aggregation, and cell adhesion molecule binding. Conclusion Label-based proteomics is an ideal platform to study oral cancer progression. The differentially expressed proteins provide insights into the molecular mechanisms underlying the progression of oral premalignant lesions to malignant phenotypes. The study has translational value for early detection, risk stratification, and potential therapeutic targeting of oral premalignant lesions and in its prevention to malignant forms.
Collapse
Affiliation(s)
- Vipra Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Sabyasachi Bandyopadhyay
- Proteomics Sub-facility, Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kapil Sikka
- Department of Otorhinolaryngology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aanchal Kakkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
2
|
Okura GC, Bharadwaj AG, Waisman DM. Recent Advances in Molecular and Cellular Functions of S100A10. Biomolecules 2023; 13:1450. [PMID: 37892132 PMCID: PMC10604489 DOI: 10.3390/biom13101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca2+, despite its sequence and structural similarity. This review focuses on studies highlighting the structure, regulation, and binding partners of S100A10. The binding partners of S100A10 were collated and summarized.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
3
|
Horgusluoglu E, Neff R, Song W, Wang M, Wang Q, Arnold M, Krumsiek J, Galindo‐Prieto B, Ming C, Nho K, Kastenmüller G, Han X, Baillie R, Zeng Q, Andrews S, Cheng H, Hao K, Goate A, Bennett DA, Saykin AJ, Kaddurah‐Daouk R, Zhang B. Integrative metabolomics-genomics approach reveals key metabolic pathways and regulators of Alzheimer's disease. Alzheimers Dement 2022; 18:1260-1278. [PMID: 34757660 PMCID: PMC9085975 DOI: 10.1002/alz.12468] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/29/2022]
Abstract
Metabolites, the biochemical products of the cellular process, can be used to measure alterations in biochemical pathways related to the pathogenesis of Alzheimer's disease (AD). However, the relationships between systemic abnormalities in metabolism and the pathogenesis of AD are poorly understood. In this study, we aim to identify AD-specific metabolomic changes and their potential upstream genetic and transcriptional regulators through an integrative systems biology framework for analyzing genetic, transcriptomic, metabolomic, and proteomic data in AD. Metabolite co-expression network analysis of the blood metabolomic data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) shows short-chain acylcarnitines/amino acids and medium/long-chain acylcarnitines are most associated with AD clinical outcomes, including episodic memory scores and disease severity. Integration of the gene expression data in both the blood from the ADNI and the brain from the Accelerating Medicines Partnership Alzheimer's Disease (AMP-AD) program reveals ABCA1 and CPT1A are involved in the regulation of acylcarnitines and amino acids in AD. Gene co-expression network analysis of the AMP-AD brain RNA-seq data suggests the CPT1A- and ABCA1-centered subnetworks are associated with neuronal system and immune response, respectively. Increased ABCA1 gene expression and adiponectin protein, a regulator of ABCA1, correspond to decreased short-chain acylcarnitines and amines in AD in the ADNI. In summary, our integrated analysis of large-scale multiomics data in AD systematically identifies novel metabolites and their potential regulators in AD and the findings pave a way for not only developing sensitive and specific diagnostic biomarkers for AD but also identifying novel molecular mechanisms of AD pathogenesis.
Collapse
Affiliation(s)
- Emrin Horgusluoglu
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Ryan Neff
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Won‐Min Song
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Minghui Wang
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Qian Wang
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Matthias Arnold
- Institute of Computational BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
| | - Jan Krumsiek
- Department of Physiology and BiophysicsWeill Cornell MedicineInstitute for Computational BiomedicineEnglander Institute for Precision MedicineNew YorkNew YorkUSA
| | - Beatriz Galindo‐Prieto
- Department of Physiology and BiophysicsWeill Cornell MedicineInstitute for Computational BiomedicineEnglander Institute for Precision MedicineNew YorkNew YorkUSA
- Helen and Robert Appel Alzheimer's Disease Research InstituteBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNew YorkUSA
| | - Chen Ming
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences; Indiana Alzheimer Disease CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gabi Kastenmüller
- Institute of Computational BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
| | - Xianlin Han
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | | | - Qi Zeng
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Shea Andrews
- Department of NeuroscienceRonald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Haoxiang Cheng
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Ke Hao
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | - Alison Goate
- Department of NeuroscienceRonald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences; Indiana Alzheimer Disease CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Rima Kaddurah‐Daouk
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- Duke Institute of Brain SciencesDuke UniversityDurhamNorth CarolinaUSA
- Department of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Bin Zhang
- Department of Genetics and Genomic SciencesMount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiIcahn Institute of Genomics and Multiscale BiologyNew YorkNew YorkUSA
| | | | | |
Collapse
|
4
|
Li Z, Yu L, Hu B, Chen L, Jv M, Wang L, Zhou C, Wei M, Zhao L. Advances in cancer treatment: a new therapeutic target, Annexin A2. J Cancer 2021; 12:3587-3596. [PMID: 33995636 PMCID: PMC8120175 DOI: 10.7150/jca.55173] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Annexin A2 (ANXA2) is a calcium regulated phospholipid-binding protein. It is expressed in some tumor cells, endothelial cells, macrophages, and mononuclear cells, affecting cell survival and mediating interactions between intercellular and extracellular microenvironment. Aberrant expression of ANXA2 can be used as a potential predictive factor, diagnostic biomarker and therapeutic target in cancer therapy. Investigators used various technologies to target ANXA2 in a preclinical model of human cancers and demonstrated encouraging results. In this review article, we discuss the diagnosis and prognosis latent capacity of ANXA2 in progressive cancers, focus on the exploration of restorative interventions targeting ANXA2 in cancer treatment. Further, we comment on a promising candidate therapy that is conceivable for clinical translation.
Collapse
Affiliation(s)
- Zinan Li
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lianze Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Mingyi Jv
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Chenyi Zhou
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Medical Diagnosis and Treatment Center, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| |
Collapse
|
5
|
Clinical significance of Annexin A2 expression in oral squamous cell carcinoma and its influence on cell proliferation, migration and invasion. Sci Rep 2021; 11:5033. [PMID: 33658625 PMCID: PMC7930260 DOI: 10.1038/s41598-021-84675-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 02/08/2021] [Indexed: 11/21/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant epithelial neoplasm of the head and neck, with poorer prognosis. There is lack of specific targets for diagnosis and treatment of OSCC at present. Annexin A2 (ANXA2) is involved in cell angiogenesis, invasion, proliferation and metastasis. In this study, the significance and effect of ANXA2 on OSCC and OSCC cells were explored from the clinical and basic study. First, ANXA2 expression in OSCC tissues and adjacent non-cancer tissues of 124 patients were detected, and the correlation between ANXA2 expression and clinical parameters were analyzed. The results found that ANXA2 was highly expressed in OSCC tissues, and was associated with the TNM stage, tumor differentiation, lymph node metastasis and poor survival of OSCC patients. The expression of ANXA2 in OSCC cells were higher than the normal oral cells. And knockdown of ANXA2 by transfecting ANXA2-siRNA could suppress the proliferation, migration, and invasion abilities of OSCC cells. Overall, ANXA2 expression is correlated with poor survival of OSCC patients, and silencing of ANXA2 suppress the proliferation, migration and invasion of OSCC cells.
Collapse
|
6
|
Yap T, Pruthi N, Seers C, Belobrov S, McCullough M, Celentano A. Extracellular Vesicles in Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders: A Systematic Review. Int J Mol Sci 2020; 21:E1197. [PMID: 32054041 PMCID: PMC7072764 DOI: 10.3390/ijms21041197] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are secreted from most cell types and utilized in a complex network of near and distant cell-to-cell communication. Insight into this complex nanoscopic interaction in the development, progression and treatment of oral squamous cell carcinoma (OSCC) and precancerous oral mucosal disorders, termed oral potentially malignant disorders (OPMDs), remains of interest. In this review, we comprehensively present the current state of knowledge of EVs in OSCC and OPMDs. A systematic literature search strategy was developed and updated to December 17, 2019. Fifty-five articles were identified addressing EVs in OSCC and OPMDs with all but two articles published from 2015, highlighting the novelty of this research area. Themes included the impact of OSCC-derived EVs on phenotypic changes, lymph-angiogenesis, stromal immune response, mechanisms of therapeutic resistance as well as utility of EVs for drug delivery in OSCC and OPMD. Interest and progress of knowledge of EVs in OSCC and OPMD has been expanding on several fronts. The oral cavity presents a unique and accessible microenvironment for nanoparticle study that could present important models for other solid tumours.
Collapse
Affiliation(s)
- Tami Yap
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (N.P.); (C.S.); (S.B.); (M.M.); (A.C.)
| | | | | | | | | | | |
Collapse
|
7
|
Liu XB, Wang J, Li K, Fan XN. Sp1 promotes cell migration and invasion in oral squamous cell carcinoma by upregulating Annexin A2 transcription. Mol Cell Probes 2019; 46:101417. [PMID: 31254619 DOI: 10.1016/j.mcp.2019.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignant tumor with high metastatic potential in head and neck. Revealing the mechanism of OSCC metastasis will benefit the prognosis and prevention of OSCC. Sp1 is a transcription factor involved in the progression of several tumors. Annexin A2 functions as an oncogene, and there are three putative Sp1 binding sites in the Annexin A2 promoter region. Therefore, we hypothesized that Sp1 could regulate OSCC metastasis by regulating Annexin A2 expression. Quantitative real-time PCR (qRT-PCR) and Western blot were used to evaluate Sp1 or Annexin A2 expression. Transwell assays were used to evaluate the migration and invasion capacity of OSCC cells. Luciferase assays and Chromatin immunoprecipitation assays were used to verify whether Sp1 regulate Annexin A2 at the transcriptional level. We found that the expression of Sp1 increased in OSCC tissues compared to paired adjacent normal tissues, and the overexpression of Sp1 was associated with tumor metastasis. Furthermore, Sp1 promoted cell migration and invasion through Annexin A2. In addition, we verified that Sp1 controls Annexin A2 expression at the transcriptional level and identified the binding sites involved. Our study suggests that Sp1/Annexin A2 expression could be a promising prognostic biomarker and therapeutic target for OSCC metastasis.
Collapse
Affiliation(s)
- Xian-Bin Liu
- Oral and maxillofacial surgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Jing Wang
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Ke Li
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Xian-Nan Fan
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China.
| |
Collapse
|
8
|
Christensen M, H�gdall C, Jochumsen K, H�gdall E. Annexin A2 and cancer: A systematic review. Int J Oncol 2017; 52:5-18. [DOI: 10.3892/ijo.2017.4197] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maria Christensen
- Department of Pathology, Molecular Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Claus H�gdall
- Department of Gynaecology, Juliane Maria Centre (JMC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Jochumsen
- Department of Gynaecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | - Estrid H�gdall
- Department of Pathology, Molecular Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Foley K, Muth S, Jaffee E, Zheng L. Hedgehog signaling stimulates Tenascin C to promote invasion of pancreatic ductal adenocarcinoma cells through Annexin A2. Cell Adh Migr 2017; 11:514-523. [PMID: 28152318 PMCID: PMC5810754 DOI: 10.1080/19336918.2016.1259057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 01/17/2023] Open
Abstract
Pancreatic adenocarcinoma (PDA) is characterized by a dense desmoplastic reaction that comprises 60-90% of the tumor, while only 10-40% of the tumor is composed of malignant epithelial cells. This desmoplastic reaction is composed of stromal fibroblast cells, extracellular matrix proteins, and immune cells. Accumulating evidence has suggested that the stromal and epithelial cell compartments interact during the pathogenesis of this disease. Therefore, it is important to identify the signaling pathways responsible for this interaction to better understand the mechanisms by which PDA invades and metastasizes. Here, we show that secreted stromal factors induce invasion of PDA cells. Specifically, hedgehog signaling from the tumor cells induces tenascin C (TnC) secretion from the stromal cells that acts back upon the tumor cells in a paracrine fashion to induce the invasion of PDA cells through its' receptor annexin A2 (AnxA2). Therefore, blocking the interaction between TnC and AnxA2 has the potential to prevent liver metastasis in PDA.
Collapse
Affiliation(s)
- Kelly Foley
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Muth
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Jaffee
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Zhang W, Gao C, Zhang S, Fang G. Serum Annexin A2 Level Is Associated With Diagnosis and Prognosis in Patients With Oral Squamous Cell Carcinoma. J Oral Maxillofac Surg 2016; 75:1081-1087. [PMID: 27889534 DOI: 10.1016/j.joms.2016.10.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/19/2023]
Abstract
PURPOSE In several human cancer types, serum annexin A2 levels are increased, but little is known regarding oral squamous cell carcinoma (OSCC). This study aimed to measure serum annexin A2 levels in OSCC patients and assess the association with diagnosis and prognosis. MATERIALS AND METHODS This case-control study compared serum annexin A2 concentrations in a group of OSCC patients and a control group. The predictor variable was the presence or absence of OSCC, and the outcome variable was the level of serum annexin A2. Annexin A2 concentrations were measured with an enzyme-linked immunosorbent assay, and correlations with clinicopathologic characteristics of OSCC were further evaluated. Receiver operating characteristic (ROC) curves, Kaplan-Meier curves, log-rank analyses, and a Cox proportional hazards model were used to evaluate the diagnostic and prognostic value of annexin A2. RESULTS Serum samples were taken from 399 individuals: 126 patients with OSCC (aged 62.7 ± 10.6 years, 79 men and 47 women); 115 patients with benign oral disease (aged 63.9 ± 10.8 years, 73 men and 42 women); and 158 healthy controls (aged 65.4 ± 12.8 years, 92 men and 66 women). The annexin A2 level was significantly higher in OSCC patients than in patients with benign disease and controls (27.1 ± 9.81 ng/mL vs 15.9 ± 6.97 ng/mL and 15.0 ± 6.69 ng/mL, respectively). To distinguish OSCC patients from the other 2 groups, ROC curve-area under the ROC curve (AUC) analysis for serum annexin A2 levels provided an AUC of 0.80 (sensitivity, 0.62; specificity, 0.87) and an AUC of 0.77 (sensitivity, 0.57; specificity, 0.89). Furthermore, OSCC patients with high annexin A2 levels had poorer overall survival. CONCLUSIONS This study suggested that an elevated serum annexin A2 level might be a novel diagnostic and prognostic biomarker for OSCC patients.
Collapse
Affiliation(s)
- Wei Zhang
- Resident, Department of Rehabilitation, Linyi People's Hospital, Linyi, China
| | - Chunhai Gao
- Professor, Department of Clinical Laboratory, Linyi People's Hospital, Linyi, China
| | - Shaohua Zhang
- Resident, Admission and Discharge Control Center, Linyi People's Hospital, Linyi, China
| | - Guiqing Fang
- Department Head, Department of Clinical Laboratory, Jinan Stomatological Hospital, Jinan, China.
| |
Collapse
|
11
|
Oral squamous cell carcinoma: Key clinical questions, biomarker discovery, and the role of proteomics. Arch Oral Biol 2016; 63:53-65. [DOI: 10.1016/j.archoralbio.2015.11.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 09/08/2015] [Accepted: 11/20/2015] [Indexed: 12/19/2022]
|
12
|
Wu PC, Lu JW, Yang JY, Lin IH, Ou DL, Lin YH, Chou KH, Huang WF, Wang WP, Huang YL, Hsu C, Lin LI, Lin YM, Shen CKJ, Tzeng TY. H3K9 histone methyltransferase, KMT1E/SETDB1, cooperates with the SMAD2/3 pathway to suppress lung cancer metastasis. Cancer Res 2014; 74:7333-43. [PMID: 25477335 DOI: 10.1158/0008-5472.can-13-3572] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant histone methylation is a frequent event during tumor development and progression. KMT1E (also known as SETDB1) is a histone H3K9 methyltransferase that contributes to epigenetic silencing of both oncogenes and tumor suppressor genes in cancer cells. In this report, we demonstrate that KMT1E acts as a metastasis suppressor that is strongly downregulated in highly metastatic lung cancer cells. Restoring KMT1E expression in this setting suppressed filopodia formation, migration, and invasive behavior. Conversely, loss of KMT1E in lung cancer cells with limited metastatic potential promoted migration in vitro and restored metastatic prowess in vivo. Mechanistic investigations indicated that KMT1E cooperates with the TGFβ-regulated complex SMAD2/3 to repress metastasis through ANXA2. Together, our findings defined an essential role for the KMT1E/SMAD2/3 repressor complex in TGFβ-mediated lung cancer metastasis.
Collapse
Affiliation(s)
- Pei-Chun Wu
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Jeng-Wei Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jer-Yen Yang
- Department of Basic Medical Sciences, Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - I-Hsuan Lin
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Da-Liang Ou
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China. Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Yu-Hsiang Lin
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Kuan-Hsien Chou
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Wen-Feng Huang
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Wan-Ping Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| | - Yih-Leh Huang
- Department of Medical Research, Buddhist Dalin Tzu Chi Hospital, Chiayi, Taiwan, Republic of China
| | - Chiun Hsu
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China. Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China. Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan, Republic of China
| | - C-K James Shen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | - Tsai-Yu Tzeng
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
13
|
Lu CM, Lin JJ, Huang HH, Ko YC, Hsu JL, Chen JC, Din ZH, Wu YJ. A panel of tumor markers, calreticulin, annexin A2, and annexin A3 in upper tract urothelial carcinoma identified by proteomic and immunological analysis. BMC Cancer 2014; 14:363. [PMID: 24884814 PMCID: PMC4039341 DOI: 10.1186/1471-2407-14-363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/20/2014] [Indexed: 12/25/2022] Open
Abstract
Background Upper tract urothelial carcinoma (UTUC) is a tumor with sizable metastases and local recurrence. It has a worse prognosis than bladder cancer. This study was designed to investigate the urinary potential tumor markers of UTUC. Methods Between January 2008 and January 2009, urine was sampled from 13 patients with UTUC and 20 healthy adults. The current study identified biomarkers for UTUC using non-fixed volume stepwise weak anion exchange chromatography for fractionation of urine protein prior to two-dimensional gel electrophoresis. Results Fifty five differential proteins have been determined by comparing with the 2-DE maps of the urine of UTUC patients and those of healthy people. Western blotting analysis and immunohistochemistry of tumor tissues and normal tissues from patients with UTUC were carried out to further verify five possible UTUC biomarkers, including zinc-alpha-2-glycoprotein, calreticulin, annexin A2, annexin A3 and haptoglobin. The data of western blot and immunohistochemical analysis are consistent with the 2-DE data. Combined the experimental data in the urine and in tumor tissues collected from patients with UTUC, the crucial over-expressed proteins are calreticulin, annexin A2, and annexin A3. Conclusions Calreticulin, annexin A2, and annexin A3 are very likely a panel of biomarkers with potential value for UTUC diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu-Jen Wu
- Department of Beauty Science, Meiho University, Pingtung, Taiwan.
| |
Collapse
|
14
|
Dynamic reciprocity: the role of annexin A2 in tissue integrity. J Cell Commun Signal 2014; 8:125-33. [PMID: 24838661 DOI: 10.1007/s12079-014-0231-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/29/2014] [Indexed: 01/09/2023] Open
Abstract
Interactions between cells and the extracellular matrix are integral to tissue development, remodelling and pathogenesis. This is underlined by bi-directional flow of information signalling, referred to as dynamic reciprocity. Annexin A2 is a complex and multifunctional protein that belongs to a large family of Ca(2+)-dependent anionic phospholipid and membrane-binding proteins. It has been implicated in diverse cellular processes at the nuclear, cytoplasmic and extracellular compartments including Ca(2+)-dependent regulation of endocytosis and exocytosis, focal adhesion dynamics, transcription and translation, cell proliferation, oxidative stress and apoptosis. Most of these functions are mediated by the annexin A2-S100A10 heterotetramer (AIIt) via its ability to simultaneously interact with cytoskeletal, membrane and extracellular matrix components, thereby mediating regulatory effects of extracellular matrix adhesion on cell behaviour and vice versa. While Src kinase-mediated phosphorylation of filamentous actin-bound AIIt results in membrane-cytoskeletal remodelling events which control cell polarity, cell morphology and cell migration, AIIt at the cell surface can bind to a number of extracellular matrix proteins and catalyse the activation of serine and cysteine proteases which are important in facilitating tissue remodelling during tissue repair, neoangiogenesis and pathological situations. This review will focus on the role of annexin A2 in regulating tissue integrity through intercellular and cell-extracellular matrix interaction. Annexin A2 is differentially expressed in various tissue types as well as in many pathologies, particularly in several types of cancer. These together suggest that annexin A2 acts as a central player during dynamic reciprocity in tissue homeostasis.
Collapse
|
15
|
Annexin A2: its molecular regulation and cellular expression in cancer development. DISEASE MARKERS 2014; 2014:308976. [PMID: 24591759 PMCID: PMC3925611 DOI: 10.1155/2014/308976] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 01/05/2023]
Abstract
Annexin A2 (ANXA2) orchestrates multiple biologic processes and clinical associations, especially in cancer progression. The structure of ANXA2 affects its cellular localization and function. However, posttranslational modification and protease-mediated N-terminal cleavage also play critical roles in regulating ANXA2. ANXA2 expression levels vary among different types of cancers. With some cancers, ANXA2 can be used for the detection and diagnosis of cancer and for monitoring cancer progression. ANXA2 is also required for drug-resistance. This review discusses the feasibility of ANXA2 which is active in cancer development and can be a therapeutic target in cancer management.
Collapse
|
16
|
Ceruti P, Principe M, Capello M, Cappello P, Novelli F. Three are better than one: plasminogen receptors as cancer theranostic targets. Exp Hematol Oncol 2013; 2:12. [PMID: 23594883 PMCID: PMC3640925 DOI: 10.1186/2162-3619-2-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 12/22/2022] Open
Abstract
Activation of plasminogen on the cell surface initiates a cascade of protease activity with important implications for several physiological and pathological events. In particular, components of the plasminogen system participate in tumor growth, invasion and metastasis. Plasminogen receptors are in fact expressed on the cell surface of most tumors, and their expression frequently correlates with cancer diagnosis, survival and prognosis. Notably, they can trigger multiple specific immune responses in cancer patients, highlighting their role as tumor-associated antigens. In this review, three of the most characterized plasminogen receptors involved in tumorigenesis, namely Annexin 2 (ANX2), Cytokeratin 8 (CK8) and alpha-Enolase (ENOA), are analyzed to ascertain an overall view of their role in the most common cancers. This analysis emphasizes the possibility of delineating new personalized therapeutic strategies to counteract tumor growth and metastasis by targeting plasminogen receptors, as well as their potential application as cancer predictors.
Collapse
Affiliation(s)
- Patrizia Ceruti
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Moitza Principe
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Michela Capello
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Paola Cappello
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Zhong LP, Ow A, Yang WJ, Hu YJ, Wang LZ, Zhang CP. Surgical management of solitary venous malformation in the midcheek region. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114:160-6. [PMID: 22776728 DOI: 10.1016/j.tripleo.2011.05.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/12/2011] [Accepted: 05/19/2011] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The aim of this study was to analyze a single institution's experience of solitary venous malformation (VM) in the midcheek region. STUDY DESIGN From 2002 to 2009, a total of 10 consecutive patients with solitary venous malformation in the midcheek region were retrospectively analyzed. Clinical records were reviewed for patient demographic data, presenting symptoms and signs, imaging modalities used, histologic and immunohistochemical results, surgical data, and clinical outcomes. RESULTS The sample consisted of 5 males and 5 females with a mean age of 42.8 years. The course of disease ranged from 0.5 to 144.0 months with a mean time of 64.9 months. The mean size of the masses was 1.7 × 1.5 cm (range 1.0 × 0.8 cm to 2.5 × 2.5 cm). Investigations included Doppler ultrasonography (US) and computed tomography (CT) scanning. Surgical excision using various surgical approaches was performed in all patients. Postoperative pathologic examination confirmed the diagnosis of VM. The mean follow-up period was 41.2 months (range 2 months to 94 months) with no recurrence reported. CONCLUSIONS For solitary VM in the midcheek region, investigations, such as Doppler US or CT scanning or the use of fine-needle aspiration cytology, may aid in clinical diagnosis. The primary treatment of these lesions is surgical excision, and in our sample, the prognosis of such treatment was good with no recurrence reported.
Collapse
Affiliation(s)
- Lai-ping Zhong
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | | | | | | | | | | |
Collapse
|
18
|
Deng S, Jing B, Xing T, Hou L, Yang Z. Overexpression of annexin A2 is associated with abnormal ubiquitination in breast cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 10:153-7. [PMID: 22917188 PMCID: PMC5054490 DOI: 10.1016/j.gpb.2011.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 12/30/2011] [Accepted: 12/31/2011] [Indexed: 11/22/2022]
Abstract
Abnormal expression of annexin A2 contributes to metastasis and infiltration of cancer cells. To elucidate the cause of abnormal expression of annexin A2, Western blotting, immunoproteomics and immunohistochemical staining were performed to analyze differentially ubiquitinated proteins between fresh breast cancer tissue and its adjacent normal breast tissue from five female volunteers. We detected an ubiquitinated protein that was up-regulated in the cancer tissue, which was further identified as annexin A2 by mass spectrometry. These results suggest that abnormal ubiquitination and/or degradation of annexin A2 may lead to presence of annexin A2 at high level, which may further promote metastasis and infiltration of the breast cancer cells.
Collapse
Affiliation(s)
- Shishan Deng
- Department of Anatomy, North Sichuan Medical College, Nanchong 637007, China.
| | | | | | | | | |
Collapse
|
19
|
Huang Q, Huang HQ. Alterations of protein profile in zebrafish liver cells exposed to methyl parathion: a membrane proteomics approach. CHEMOSPHERE 2012; 87:68-76. [PMID: 22182705 DOI: 10.1016/j.chemosphere.2011.11.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/13/2011] [Accepted: 11/19/2011] [Indexed: 05/31/2023]
Abstract
Methyl parathion (MP) is an extensively used organophosphorus pesticide, which has been associated with a wide spectrum of toxic effects on environmental organisms. The aim of this study is to investigate the alterations of membrane protein profiles in zebrafish liver (ZFL) cell line exposed to MP for 24 h using proteomic approaches. Two-dimensional gel electrophoresis revealed a total of 13 protein spots, whose expression levels were significantly altered by MP. These differential proteins were subjected to matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis, and nine proteins were identified to be membrane proteins, among which seven were up-regulated, while two were down-regulated. In addition, the mRNA levels corresponding to these differential membrane proteins were further analyzed by quantitative real-time PCR. And the differential expression of arginase-2 was specially validated via Western blotting. Regarding the physiological functions, these proteins are involved in molecular chaperon, cytoskeleton system, cell metabolism, signal transduction, transport and hormone receptor respectively, suggesting the complexity of MP-mediated toxicity to ZFL cell. These data could provide useful insights for better understanding the hepatotoxic mechanisms of MP and develop novel protein biomarkers for effectively monitoring MP contamination level in aquatic environment.
Collapse
Affiliation(s)
- Qingyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | |
Collapse
|
20
|
Rodrigo JP, Lequerica-Fernández P, Rosado P, Allonca E, García-Pedrero JM, de Vicente JC. Clinical significance of annexin A2 downregulation in oral squamous cell carcinoma. Head Neck 2011; 33:1708-14. [PMID: 21500302 DOI: 10.1002/hed.21661] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2010] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The purpose of this study was to determine the expression of Annexin A2 (ANXA2) in normal oral epithelium and in oral carcinomas to correlate these findings with prognostically relevant variables. METHODS ANXA2 expression in normal oral mucosa and in 106 oral squamous cell carcinomas was examined by immunohistochemistry. RESULTS ANXA2 expression was detected in basal and suprabasal cell layers of normal epithelium, and immunostaining was preferentially membrane-localized. ANXA2 expression was significantly correlated with the histopathological grade, tumor size, and recurrence, but ANXA2 expression was not an independent prognostic factor. CONCLUSION The reduction of ANXA2 expression in poorly differentiated tumors is expected to result in a loss of function aimed at the coordination of membrane signaling enzyme complexes. The consequences may manifest as an alteration of epithelial tissue growth and remodeling which eventually exert an influence on tumor progression and metastasis.
Collapse
Affiliation(s)
- Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
21
|
The role of annexin A2 in tumorigenesis and cancer progression. CANCER MICROENVIRONMENT 2011; 4:199-208. [PMID: 21909879 DOI: 10.1007/s12307-011-0064-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/21/2011] [Indexed: 02/06/2023]
Abstract
Annexin A2 is a calcium-dependent, phospholipid-binding protein found on various cell types. It is up-regulated in various tumor types and plays multiple roles in regulating cellular functions, including angiogenesis, proliferation, apoptosis, cell migration, invasion and adhesion. Annexin A2 binds with plasminogen and tissue plasminogen activator on the cell surface, which leads to the conversion of plasminogen to plasmin. Plasmin is a serine protease which plays a key role in the activation of metalloproteinases and degradation of extracellular matrix components essential for metastatic progression. We have recently found that both annexin A2 and plasmin are increased in conditioned media of co cultured ovarian cancer and peritoneal cells. Our studies suggest that annexin A2 is part of a tumor-host signal pathway between ovarian cancer and peritoneal cells which promotes ovarian cancer metastasis. Accumulating evidence suggest that interactions between annexin A2 and its binding proteins play an important role in the tumor microenvironment and act together to enhance cancer metastasis. This article reviews the current knowledge on the biological role of annexin A2 and its binding proteins in solid malignancies including ovarian cancer.
Collapse
|
22
|
Sharma M, Ownbey RT, Sharma MC. Breast cancer cell surface annexin II induces cell migration and neoangiogenesis via tPA dependent plasmin generation. Exp Mol Pathol 2010; 88:278-86. [PMID: 20079732 DOI: 10.1016/j.yexmp.2010.01.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 01/05/2010] [Indexed: 01/14/2023]
Abstract
Annexin II, an abundant phospholipids binding cell surface protein, binds tPA and functions as a regulator of fibrinolysis. Annexin II also mediates angiogenesis and enhances tumor growth and metastasis. However, the mechanism supporting this role is not known. Using human breast cancer model we show that invasive human breast cancer cells (MDA-MB231) synthesize annexin II and tissue plasminogen activator (tPA). In vitro both annexin II and tPA interacts which in turn convert zymogen plasminogen to reactive enzyme plasmin. Cell surface produced plasmin inhibited the migration of MDA-MB231 cells. Silencing of annexin II gene in MDA-MB231 cells abolished tPA binding therefore inhibited tPA dependent plasmin generation. These annexin II suppressed MDA-MB231 cells showed reduced motility. Immunohistochemical analysis of prediagnosed clinical specimens showed abundant secretion of tPA and expression of annexin II on the surface of invasive human breast cancer cells which correlates with neovascularization of the tumor. Taken together, these data indicate that annexin II may regulate localized plasmin generation in breast cancer. This may be an early event switching breast cancer from the prevascular phase to the vascular phase and thus contributing to aggressive cancer with the possibility of metastasis. The data provide a mechanism explaining the role of annexin II in breast cancer progression and suggest that annexin II may be an attractive target for therapeutic strategies aimed to inhibit angiogenesis and breast cancer.
Collapse
Affiliation(s)
- Meena Sharma
- University of Pennsylvania, Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
23
|
Kesavan K, Ratliff J, Johnson EW, Dahlberg W, Asara JM, Misra P, Frangioni JV, Jacoby DB. Annexin A2 is a molecular target for TM601, a peptide with tumor-targeting and anti-angiogenic effects. J Biol Chem 2009; 285:4366-74. [PMID: 20018898 DOI: 10.1074/jbc.m109.066092] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
TM601 is a synthetic form of chlorotoxin, a 36-amino acid peptide derived from the venom of the Israeli scorpion, Leirius quinquestriatus, initially found to specifically bind and inhibit the migration of glioma cells in culture. Subsequent studies demonstrated specific in vitro binding to additional tumor cell lines. Recently, we demonstrated that proliferating human vascular endothelial cells are the only normal cell line tested that exhibits specific binding to TM601. Here, we identify annexin A2 as a novel binding partner for TM601 in multiple human tumor cell lines and human umbilical vein endothelial cell (HUVEC). We demonstrate that the surface binding of TM601 to the pancreatic tumor cell line Panc-1 is dependent on the expression of annexin A2. Identification of annexin A2 as a binding partner for TM601 is also consistent with the anti-angiogenic effects of TM601. Annexin A2 functions in angiogenesis by binding to tissue plasminogen activator and regulating plasminogen activation on vascular endothelial cells. We demonstrate that in HUVECs, TM601 inhibits both vascular endothelial growth factor- and basic fibroblast growth factor-induced tissue plasminogen activator activation, which is required for activation of plasminogen to plasmin. Consistent with inhibition of cell surface protease activity, TM601 also inhibits platelet-derived growth factor-C induced trans-well migration of both HUVEC and U373-MG glioma cells.
Collapse
Affiliation(s)
- Kamala Kesavan
- TransMolecular Inc., Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|