1
|
Malinkina ON, Shmakov SL, Shipovskaya AB. Structure, the energy, sorption and biological properties of chiral salts of chitosan with l- and d-ascorbic acid. Int J Biol Macromol 2024; 257:128731. [PMID: 38101672 DOI: 10.1016/j.ijbiomac.2023.128731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/18/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The influence of l- and d-ascorbic acid diastereomers on the structure, supramolecular ordering, energy, sorption and biological properties of heterochiral (D-L) and homochiral (D-D) salt complexes of chitosan (d-glucan)-acid was studied. The thermal effect of dissolving chitosan in l-ascorbic acid and the protonation degree of (D-L)-salts were lower than those in the medium of the d-isomer. Homochiral (D-D) salts, in contrast to heterochiral (D-L) ones, are distinguished by a more developed system of intermolecular and intramolecular contacts, a more ordered and equilibrium supramolecular organization of macrochains, a higher crystallinity degree, and a smaller amount of crystallization water. The sorption isotherms of chiral salts were approximated by the thermal equation of sorption and the superposition of the Langmuir and Flory-Huggins isotherms. Significant differences were found in the limiting value and energy of sorption, the constant of adsorption equilibrium, the limiting sorption capacity of the localized mode of water, and the Gibbs mixing energy. Biotesting on non-vascular (Scenedesmus quadricauda) and vascular eukaryotes (Linum usitatissimum) revealed the growth-stimulating effect of the D-D salts. The obtained results confirm our hypothesis of the homochiral salt complexes d-glucan-d-ascorbic acid best corresponding to the principles of the functional organization of biological objects.
Collapse
Affiliation(s)
- Olga N Malinkina
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russian Federation.
| | - Sergei L Shmakov
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russian Federation
| | - Anna B Shipovskaya
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russian Federation
| |
Collapse
|
2
|
Mi N, Zhang M, Ying Z, Lin X, Jin Y. Vitamin intake and periodontal disease: a meta-analysis of observational studies. BMC Oral Health 2024; 24:117. [PMID: 38245765 PMCID: PMC10799494 DOI: 10.1186/s12903-024-03850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/01/2024] [Indexed: 01/22/2024] Open
Abstract
OBJECTIVE A meta-analysis was performed to assess the epidemiological correlation between dietary intake of various types of vitamin intake and the risk of periodontal disease. METHODS A comprehensive computerized search was conducted in eight databases, namely PubMed, Web of Science, Embase, Cochrane Library, China Biology Medicine Disc, CNKI, VIP, and WanFang Database, and a random effect model was applied to combine pooled odds ratio (ORs) with corresponding 95% confidence intervals (CIs) of the included studies, and the sensitivity analysis was performed to explore the impact of a single study on the comprehensive results. RESULTS We finally included 45 effect groups from 23 observational studies, with a total number of study participants of 74,488. The results showed that higher levels of vitamin A (OR: 0.788, 95% CI: 0.640-0.971), vitamin B complex (OR: 0.884, 95% CI: 0.824-0.948), vitamin C (OR: 0.875, 95% CI: 0.775-0.988), vitamin D (OR: 0.964, 95% CI: 0.948-0.981), and vitamin E (OR: 0.868, 95% CI: 0.776-0.971) intake all were negatively correlated with periodontal disease. After removing each study, leave-one-out sensitivity analysis indicated no significant change in the overall results of any of the five meta-analyses. CONCLUSIONS The results from this meta-analysis demonstrated a negative association between high-dose vitamin A, vitamin B complex, vitamin C, vitamin D, and vitamin E consumption and the likelihood of developing periodontal disease, revealing the significant role of vitamins in preventing periodontal disease.
Collapse
Affiliation(s)
- Nannan Mi
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Miaomiao Zhang
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zheng Ying
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaoping Lin
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ying Jin
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
3
|
Teawcharoensopa C, Srisuwan T. The potential use of ascorbic acid to recover the cellular senescence of lipopolysaccharide-induced human apical papilla cells: an in vitro study. Clin Oral Investig 2023; 28:49. [PMID: 38153550 DOI: 10.1007/s00784-023-05455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES To examine the effect of lipopolysaccharide (LPS) on cellular senescence induction of human apical papilla cells (hAPCs) and evaluate the potential use of 50 μg/ml ascorbic acid to recover cellular senescence and regenerative functions. MATERIALS AND METHODS hAPCs were treated with LPS at 1 and 10 μg/ml either with or without 50 μg/ml ascorbic acid for 48 h. The cellular senescence biomarkers were analyzed by senescence-associated β-galactosidase (SA-β-gal) staining and senescence-related gene expression, p16 and p21. Cell migration, at 12 h and 24 h, was evaluated using a scratch wound assay. Mineralization potential was assessed at 21 days using Alizarin red S staining and dentine sialophosphoprotein (DSPP) and bone sialoprotein (BSP) gene expression. RESULTS 1 μg/ml and 10 μg/ml LPS stimulation for 48 h induced cellular senescence, as shown by remarkable SA-β-gal staining and p16 and p21 gene expression. The percentage of wound closure and mineralized formation was reduced. The co-incubation with ascorbic acid significantly down-regulated the level of SA-β-gal staining. The reduction of senescence-associated gene expressions was observed. Ascorbic acid improved cell migration, mineralized nodule formation, and the expression of DSPP and BSP genes in LPS-treated hAPCs. CONCLUSIONS LPS significantly promoted cellular senescence on hAPCs and diminished the cell function capacity. Co-presence of ascorbic acid could impede cellular senescence and possibly improve the regenerative capacity of LPS-induced senescent hAPCs in vitro. CLINICAL RELEVANCE The data support the in vitro potential benefit of ascorbic acid on cellular senescence recovery of apical papilla cells.
Collapse
Affiliation(s)
- Chananporn Teawcharoensopa
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, TH, Thailand
- Sikhoraphum Hospital Dental Department, Surin, TH, Thailand
| | - Tanida Srisuwan
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, TH, Thailand.
| |
Collapse
|
4
|
Buranasin P, Kominato H, Mizutani K, Mikami R, Saito N, Takeda K, Iwata T. Influence of Reactive Oxygen Species on Wound Healing and Tissue Regeneration in Periodontal and Peri-Implant Tissues in Diabetic Patients. Antioxidants (Basel) 2023; 12:1787. [PMID: 37760090 PMCID: PMC10525304 DOI: 10.3390/antiox12091787] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetes mellitus (DM) is associated with periodontal disease. Clinically, periodontal treatment is less effective for patients with DM. Oxidative stress is one of the mechanisms that link DM to periodontitis. The production of reactive oxygen species (ROS) is increased in the periodontal tissues of patients with DM and is involved in the development of insulin resistance in periodontal tissues. Insulin resistance decreases Akt activation and inhibits cell proliferation and angiogenesis. This results in the deterioration of wound healing and tissue repair in periodontal tissues. Antioxidants and insulin resistance ameliorants may inhibit ROS production and improve wound healing, which is worsened by DM. This manuscript provides a comprehensive review of the most recent basic and clinical evidence regarding the generation of ROS in periodontal tissues resulting from microbial challenge and DM. This study also delves into the impact of oxidative stress on wound healing in the context of periodontal and dental implant therapies. Furthermore, it discusses the potential benefits of administering antioxidants and anti-insulin resistance medications, which have been shown to counteract ROS production and inflammation. This approach may potentially enhance wound healing, especially in cases exacerbated by hyperglycemic conditions.
Collapse
Affiliation(s)
- Prima Buranasin
- Department of Conservative Dentistry and Prosthodontics, Faculty of Dentistry, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Hiromi Kominato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Natsumi Saito
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Kohei Takeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
5
|
Mangal U, Seo JY, Ryu JH, Jin J, Wu C, Cha JY, Lee KJ, Yu HS, Kim KM, Kwon JS, Choi SH. Changes in mechanical and bacterial properties of denture base resin following nanoceria incorporation with and without SBA-15 carriers. J Mech Behav Biomed Mater 2023; 138:105634. [PMID: 36543086 DOI: 10.1016/j.jmbbm.2022.105634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Poly (methyl methacrylate) (PMMA) is a commonly used material for the fabrication of biomedical appliances. Although PMMA has several advantages, it is susceptible to microbial insults with practical use. Therefore, different bioactive nanomaterials, such as nanoceria (CeN), have been proposed to enhance the properties of PMMA. In this study, we investigated the effect of the incorporation of CeN into PMMA with and without the use of mesoporous silica nanoparticle (SBA-15) carriers. The unmodified PMMA specimens (control, CTRL) were compared to groups containing SBA-15, CeN, and the synthesized SBA-15 impregnated with CeN (SBA-15@CeN) at different loading percentages. The mechanical and physical properties of the different SBA-15@CeN groups and their effects on cell viability were investigated, and the optimal CeN concentration was identified accordingly. Our results revealed that flexural strength was significantly (P < 0.01) reduced in the SBA-15@CeN3× group (containing 3-fold the CeN wt. %). Although the surface microhardness increased with the increase in the wt. % of SBA-15@CeN, cell viability was significantly reduced (P < 0.001). The SBA-15@CeN1× group had the optimal concentration and displayed significant resistance to single-and multispecies microbial colonization. Finally, the enzymatic activity of CeN was significantly high in the SBA-15@CeN1× group. The proinflammatory markers (IL-6, IL-1β, TNF-α, CD80, and CD86) showed a significant (P < 0.001) multifold reduction in lipopolysaccharide-induced RAW cells treated with a 5-day eluate of the SBA-15@CeN1× group. These results indicate that the addition of SBA-15@CeN at 1.5 wt % improves the biological response of PMMA without compromising its mechanical properties.
Collapse
Affiliation(s)
- Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeong-Hyun Ryu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jie Jin
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chengzan Wu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyung-Seog Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Blancas-Luciano BE, Becker-Fauser I, Zamora-Chimal J, Delgado-Domínguez J, Ruíz-Remigio A, Leyva-Huerta ER, Portilla-Robertson J, Fernández-Presas AM. Antimicrobial and anti-inflammatory activity of Cystatin C on human gingival fibroblast incubated with Porphyromonas gingivalis. PeerJ 2022; 10:e14232. [PMID: 36312752 PMCID: PMC9615962 DOI: 10.7717/peerj.14232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023] Open
Abstract
Background Periodontal disease is considered one of the most prevalent chronic infectious diseases, often leading to the disruption of tooth-supporting tissues, including alveolar bone, causing tooth mobility and loss. Porphyromonas gingivalis is considered the major etiological agent of this disease, having a plethora of virulence factors, including, lipopolysaccharides (LPS), hemolysins, and proteinases. Antimicrobial peptides are one of the main components of the innate immune response that inhibit the growth of P. gingivalis. The aim of this study was to analyze the antimicrobial activity of cystatin C and to assess the effect on the inflammatory and anti-inflammatory cytokines, the production of reactive oxygen species, and in the release of nitric oxide by human gingival fibroblasts incubated with P. gingivalis in the presence and absence of cystatin C. Methods P. gingivalis ATCC 33277 was exposed to cystatin C for 24h and co-cultured with human gingival fibroblasts (HGFs) ATCC CRL-2014. The effect of cystatin on growth of P. gingivalis and HGFs was evaluated. Pro-inflammatory (TNFα, IL-1β) and anti-inflammatory (IL-10) cytokines were determined by ELISA in the supernatants of HGFs incubated with P. gingivalis exposed to cystatin C. Additionally, nitrites and reactive oxygen species (ROS) production were evaluated. Results Cystatin Cinhibited the growth of P. gingivalis without affecting HGFs. Incubation of HGFs with P. gingivalis led to a significant increase of TNF-α and IL-1β. In contrast, HGFs incubated with P. gingivalis exposed to cystatin C showed a decreased production of both cytokines, whereas IL-10 was enhanced. Incubation of HGFs with P. gingivalis led to an increase of nitric oxide (NO) and ROS production, which was reduced in the presence of the peptide. Conclusions Cystatin C inhibits the growth of P. gingivalis and decreases the inflammatory cytokines, ROS, and NO production during infection of HGFs with P. gingivalis. Knowledge on the antimicrobial and immunomodulatory properties of cystatin C could aid in the design of new therapeutic approaches to facilitate the elimination of this bacterium to improve the treatment of periodontal disease.
Collapse
Affiliation(s)
| | - Ingeborg Becker-Fauser
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - José Delgado-Domínguez
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Adriana Ruíz-Remigio
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Mexico City, México
| | - Elba Rosa Leyva-Huerta
- Departmento de Medicina Oral y Patología, División de Posgrado, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Javier Portilla-Robertson
- Departmento de Medicina Oral y Patología, División de Posgrado, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Mexico City, México,Centro de investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Mexico City, México
| |
Collapse
|
7
|
Assaf M, Rabi H. Assessment of vitamin C levels in periodontal patients: A cross-sectional study in palestine. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2022; 14:S903-S906. [PMID: 36110655 PMCID: PMC9469403 DOI: 10.4103/jpbs.jpbs_94_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Vitamin C is an essential nutrient for the health of gingival and periodontal tissues due to its antioxidant potential. Aim: To assess the levels of vitamin C in different stages and grades of periodontitis. Materials and Methods: The present study follows a cross-sectional study design and was conducted in a private dental clinic in Palestine. The present study involves the collection of serum to assess the vitamin C deficiency in patients with existing periodontal diseases. Mann–Whitney U test was used to compare the difference in the vitamin C levels in various stages and grades of periodontitis. P value <0.05 was considered significant. Results: There was a significantly lower vitamin C level in patients with Stage IV periodontitis as compared to the early stages of periodontitis. However, there was no difference between the other stages of periodontitis. Conclusion: Vitamin C deficiency might be considered as one of the risk factors in periodontitis.
Collapse
|
8
|
Madla-Cruz E, De la Garza-Ramos M, Romo-Sáenz CI, Tamez-Guerra P, Garza-Navarro MA, Urrutia-Baca V, Martínez-Rodríguez MA, Gomez-Flores R. Antimicrobial activity and inhibition of biofilm formation in vitro and on human dentine by silver nanoparticles/carboxymethyl-cellulose composites. Arch Oral Biol 2020; 120:104943. [PMID: 33147550 DOI: 10.1016/j.archoralbio.2020.104943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the antimicrobial activity of a silver nanoparticles/carboxymethyl-cellulose (AgNPs/CMC) composite on in vitro and dentine disc heterogeneous biofilms. DESIGN AgNPs/CMC composite effect on normal human gingival fibroblast cells (HGF) viability was determined by the MTT reduction assay. In addition, we evaluated the antimicrobial effect of AgNPs/CMC composite on Candida albicans, Enterococcus faecalis, and Fusobacterium nucleatum growth in vitro and heterogeneous biofilms, as well as dentine disc biofilms. RESULTS Quasi-spherical AgNPs/CMC composites, with a mean 22.3 nm particle-size were synthesized. They were not toxic to HGF cells at concentrations tested that were antimicrobial, however they caused significant cytotoxicity (89 %, p < 0.05) at concentrations > 15 μg/mL. In vitro, they inhibited up to 67 %, 66 %, and 96 % C. albicans, E. faecalis, and F. nucleatum growth at concentrations ranging from 1.2 μg/mL to 9.6 μg/mL, as compared with untreated control. We also demonstrated significant (p < 0.05) 58 % biofilm reduction by 4.8 μg/mL AgNPs/CMC composite on human dentine discs. CONCLUSION AgNPs/CMC composite showed anti biofilm activity on monocultures, heterogenous cultures, and dentine discs, resulting a potentially effective alternative to prevent and eliminate infections after endodontic treatment.
Collapse
Affiliation(s)
- Elizabeth Madla-Cruz
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, San Nicolas de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Myriam De la Garza-Ramos
- Universidad Autonoma de Nuevo Leon, Facultad de Odontología/Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Monterrey, Nuevo León, CP. 64460, Mexico
| | - César I Romo-Sáenz
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, San Nicolas de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Patricia Tamez-Guerra
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, San Nicolas de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Marco A Garza-Navarro
- Universidad Autonoma de Nuevo Leon, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Victor Urrutia-Baca
- CHRISTUS Excellence and Innovation Center, Monterrey, N.L., C.P. 66260, Mexico
| | - María A Martínez-Rodríguez
- Universidad Autonoma de Nuevo Leon, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - Ricardo Gomez-Flores
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, San Nicolas de los Garza, Nuevo León, C.P. 66455, Mexico.
| |
Collapse
|
9
|
Antimicrobial Effect of Natural Berry Juices on Common Oral Pathogenic Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9090533. [PMID: 32847029 PMCID: PMC7557983 DOI: 10.3390/antibiotics9090533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023] Open
Abstract
(1) Background: Antimicrobial agents such as chlorhexidine (CHX) are commonly used in oral plaque control. However, sometimes those agents lack antimicrobial efficiency or cause undesired side effects. To identify alternative anti-infective agents, the present study investigated the antibacterial activity of all-fruit juices derived from blackcurrant, redcurrant, cranberry and raspberry on common oral pathogenic gram-positive and gram-negative bacteria (Streptococcus mutans, Streptococcus gordonii, Streptococcus sobrinus, Actinomyces naeslundii, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Enterococcus faecalis). (2) Methods: Antibacterial efficiency was evaluated by agar diffusion assay and in direct contact with bacteria in planktonic culture. Furthermore, cytotoxicity on human gingival fibroblasts was determined. (3) Results: Blackcurrant juice was most efficient at suppressing bacteria; followed by the activity of redcurrant and cranberry juice. Raspberry juice only suppressed P. gingivalis significantly. Only high-concentrated blackcurrant juice showed minimal cytotoxic effects which were significantly less compared to the action of CHX. (4) Conclusion: Extracts from natural berry juices might be used for safe and efficient suppression of oral pathogenic bacterial species.
Collapse
|
10
|
Manosroi A, Pattamapun K, Chankhampan C, Kietthanakorn BO, Kitdamrongtham W, Zhang J, Manosroi J. A biological active artificial saliva formulation containing flower mucilage from Ceylon Spinach ( Basella alba Linn.). Saudi J Biol Sci 2020; 27:769-776. [PMID: 32127751 PMCID: PMC7042670 DOI: 10.1016/j.sjbs.2020.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 11/02/2022] Open
Abstract
Ceylon Spinach (Basella albe) is an edible perennial vine found in tropical Asia and Africa, known as vegetables containing mucilage. Its mucilage from flowers was extracted by microwaving and precipitated with 95% ethanol. Five artificial saliva formulations composing of mucilage from Ceylon Spinach, calcium chloride (CaCl2), potassium chloride (KCl) and sodium fluoride (NF) were developed. The best formulation No.5 containing 0.61% of the mucilage with the non-Newtonian pseudoplastic flow (8.9 ± 0.2 cP) and the wetting time (12.50 ± 2.24 min) similar to the normal human saliva was selected. This artificial saliva formulation exhibited biological activities including an antioxidative activity by DPPH free radical scavenging with the SC50 of 14.26 ± 2.00 mg/ml (0.05 folds of ascorbic acid), and the adhesion inhibition of S. mutans on hydroxyapatite beads at 17.01 ± 7.75%, while the natural human saliva exhibited an increase bacterial adhesion of 33.10 ± 9.70%. The safety of this formulation which gave no cytotoxicity on normal human gingival fibroblasts at 99.20 ± 21.09% cell viability was also demonstrated. The results from this study have indicated high biological activity and safety of the developed formulation containing mucilage from Ceylon Spinach which is potential to be used as artificial saliva for xerostomia patients.
Collapse
Affiliation(s)
- Aranya Manosroi
- Manose Health and Beauty Research Center, Mueang, Chiang Mai 50200, Thailand.,Faculty of Engineering and Technology, North-Chiang Mai University, Chiang Mai 50230, Thailand
| | | | - Charinya Chankhampan
- Manose Health and Beauty Research Center, Mueang, Chiang Mai 50200, Thailand.,Faculty of Engineering and Technology, North-Chiang Mai University, Chiang Mai 50230, Thailand
| | - Bang-On Kietthanakorn
- Thai - China Flavours and Fragrances Industry Co., Ltd (TCFF), Lad Bua Luang, Ayutthaya 13230, Thailand
| | - Worapong Kitdamrongtham
- Manose Health and Beauty Research Center, Mueang, Chiang Mai 50200, Thailand.,Faculty of Engineering and Technology, North-Chiang Mai University, Chiang Mai 50230, Thailand
| | - Jie Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 21198, PR China
| | - Jiradej Manosroi
- Manose Health and Beauty Research Center, Mueang, Chiang Mai 50200, Thailand.,Faculty of Engineering and Technology, North-Chiang Mai University, Chiang Mai 50230, Thailand
| |
Collapse
|
11
|
The Relationship between Vitamin C and Periodontal Diseases: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142472. [PMID: 31336735 PMCID: PMC6678404 DOI: 10.3390/ijerph16142472] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/08/2023]
Abstract
Vitamin C is important for preventing and slowing the progression of many diseases. There is significant evidence linking periodontal disease and vitamin C. We aimed to systematically review the studies addressing the relationship between vitamin C and periodontal disease, and the preventive ability of vitamin C against periodontal disease. Electric searches were performed using PubMed, EMBASE, Cochrane Library, and Web of Science. Studies addressing the relationships between periodontal disease and vitamin C in adults aged over 18 years were included. Quality assessment was done using the Critical Appraisal Skills Program guideline and GRADE-CERQual. There were 716 articles that were retrieved and 14 articles (seven cross-sectional studies, two case-control studies, two cohort studies, and three randomized controlled trials (RCT)) were selected after reviewing all of the articles. The vitamin C intake and blood levels were negatively related to periodontal disease in all seven cross-sectional studies. The subjects who suffer from periodontitis presented a lower vitamin C intake and lower blood-vitamin C levels than the subjects without periodontal disease in the two case-control studies. The patients with a lower dietary intake or lower blood level of vitamin C showed a greater progression of periodontal disease than the controls. The intervention using vitamin C administration improved gingival bleeding in gingivitis, but not in periodontitis. Alveolar bone absorption was also not improved. The present systematic review suggested that vitamin C contributes to a reduced risk of periodontal disease.
Collapse
|
12
|
Wang Y, Wu H, Shen M, Ding S, Miao J, Chen N. Role of human amnion-derived mesenchymal stem cells in promoting osteogenic differentiation by influencing p38 MAPK signaling in lipopolysaccharide -induced human bone marrow mesenchymal stem cells. Exp Cell Res 2016; 350:41-49. [PMID: 27832946 DOI: 10.1016/j.yexcr.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/15/2016] [Accepted: 11/02/2016] [Indexed: 12/29/2022]
Abstract
Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2'-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assaying reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling.
Collapse
Affiliation(s)
- Yuli Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing 210029, Jiangsu, the People's Republic of China
| | - Hongxia Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing 210029, Jiangsu, the People's Republic of China
| | - Ming Shen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing 210029, Jiangsu, the People's Republic of China
| | - Siyang Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing 210029, Jiangsu, the People's Republic of China
| | - Jing Miao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing 210029, Jiangsu, the People's Republic of China
| | - Ning Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing 210029, Jiangsu, the People's Republic of China.
| |
Collapse
|
13
|
Liu J, Tang X, Li C, Pan C, Li Q, Geng F, Pan Y. Porphyromonas gingivalis promotes the cell cycle and inflammatory cytokine production in periodontal ligament fibroblasts. Arch Oral Biol 2015; 60:1153-61. [PMID: 26043445 DOI: 10.1016/j.archoralbio.2015.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/23/2015] [Accepted: 05/11/2015] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The infection of Porphyromonas gingivalis (P. gingivalis) modulates host immune-inflammatory responses and destructs homeostasis of normal cell cycle, thereby leading to periodontal tissue destruction. Human periodontal ligament fibroblasts (PDLFs) are key players in the host immune responses and periodontal tissue regeneration. The aim of the present study was to discover the effects of P. gingivalis infection on the cell cycle and inflammatory cytokine production in PDLFs. DESIGN P. gingivalis infection model into PDLFs was established. The effect of P. gingivalis on the cell proliferation and cell cycle were detected by MTT and flow cytometry. The p21, cyclin D1 and cyclin E mRNA expression, p21 protein expression, as well as IL-6 and IL-8 protein levels were analyzed by RT-qPCR, Western blot and ELISA, respectively. RESULTS P. gingivalis promoted proliferation and G1 phase of PDLFs. G1 phase promotion was associated with the decreased level of p21 and the up-regulation of cyclin D1 at 6h, and with the increased level of cyclin E at 12h. Simultaneously, the immune-inflammatory response of PDLFs was initiated by P. gingivalis during the initial stage of infection, including the increased expressions of IL-6 and IL-8. CONCLUSION We confirmed that the infection of P. gingivalis could modulate the expression of PDLF genes, which control cell cycle and inflammatory cytokine production. Thus, P. gingivalis may contribute to the proliferation and inflammation of periodontal tissue.
Collapse
Affiliation(s)
- Junchao Liu
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, Liaoning Province, China.
| | - Xiaolin Tang
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, Liaoning Province, China.
| | - Chen Li
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, Liaoning Province, China.
| | - Chunling Pan
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, Liaoning Province, China.
| | - Qian Li
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, Liaoning Province, China.
| | - Fengxue Geng
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, Liaoning Province, China.
| | - Yaping Pan
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang 110002, Liaoning Province, China.
| |
Collapse
|
14
|
LPS from P. gingivalis and hypoxia increases oxidative stress in periodontal ligament fibroblasts and contributes to periodontitis. Mediators Inflamm 2014; 2014:986264. [PMID: 25374447 PMCID: PMC4211166 DOI: 10.1155/2014/986264] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/21/2014] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress is characterized by an accumulation of reactive oxygen species (ROS) and plays a key role in the progression of inflammatory diseases. We hypothesize that hypoxic and inflammatory events induce oxidative stress in the periodontal ligament (PDL) by activating NOX4. Human primary PDL fibroblasts were stimulated with lipopolysaccharide from Porphyromonas gingivalis (LPS-PG), a periodontal pathogen bacterium under normoxic and hypoxic conditions. By quantitative PCR, immunoblot, immunostaining, and a specific ROS assay we determined the amount of NOX4, ROS, and several redox systems. Healthy and inflamed periodontal tissues were collected to evaluate NOX4 and redox systems by immunohistochemistry. We found significantly increased NOX4 levels after hypoxic or inflammatory stimulation in PDL cells (P < 0.001) which was even more pronounced after combination of the stimuli. This was accompanied by a significant upregulation of ROS and catalase (P < 0.001). However, prolonged incubation with both stimuli induced a reduction of catalase indicating a collapse of the protective machinery favoring ROS increase and the progression of inflammatory oral diseases. Analysis of inflamed tissues confirmed our hypothesis. In conclusion, we demonstrated that the interplay of NOX4 and redox systems is crucial for ROS formation which plays a pivotal role during oral diseases.
Collapse
|
15
|
Dawson DR, Branch-Mays G, Gonzalez OA, Ebersole JL. Dietary modulation of the inflammatory cascade. Periodontol 2000 2013; 64:161-97. [DOI: 10.1111/j.1600-0757.2012.00458.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Bozchaloei SS, Gong SG, Dehpour AR, Farrokh P, Khoshayand MR, Oskoui M. Caffeine alters mitochondrial dehydrogenase and alkaline phosphatase activity of human gingival fibroblasts in vitro. ACTA ACUST UNITED AC 2012; 4:233-9. [DOI: 10.1111/jicd.12020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 06/30/2012] [Indexed: 11/26/2022]
Affiliation(s)
| | - Siew-Ging Gong
- Department of Orthodontics; Faculty of Dentistry, University of Toronto; Toronto ON Canada
| | - Ahmad R. Dehpour
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Parisa Farrokh
- Department of Microbiology; Pasteur Institute of Iran; Tehran Iran
| | - Mohammad R. Khoshayand
- Department of Food and Drug Control; School of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Mahvash Oskoui
- Department of Microbiology; Pasteur Institute of Iran; Tehran Iran
| |
Collapse
|
17
|
Netto BDM, Moreira EAM, Patiño JSR, Benincá JP, Jordão AA, Fröde TS. Influence of Roux-en-Y gastric bypass surgery on vitamin C, myeloperoxidase, and oral clinical manifestations: a 2-year follow-up study. Nutr Clin Pract 2012; 27:114-21. [PMID: 22307495 DOI: 10.1177/0884533611431462] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bariatric surgery influences the intake and absorption of nutrients, which, when associated with vomiting, can damage the oral cavity. The serum concentrations of vitamin C and myeloperoxidase (MPO) and oral clinical manifestations were examined in patients 2 years after Roux-en-Y gastric bypass (RYGB). METHODS Clinical prospective study with control group (CG; n = 26), assessed only once, and the bariatric group (BG; n = 26), assessed in the basal period and at 12 and 24 months after surgery. The mean ages in the CG and BG were 37.8 ± 1.51 and 39.6 ± 1.93 years, respectively, and their body mass indices were 22.07 ± 0.29 and 45.62 ± 1.46 kg/m(2), respectively. RESULTS At 12 months after surgery, increased episodes of vomiting (P < .001) and dental hypersensitivity (P = .012) were observed, with a reduction in the saliva-buffering capacity of 21.3% ± 2.9% (P = .004). At 24 months after RYGB, a significant reduction in serum vitamin C was detected (32.9% ± 5.3%, P < .001), and MPO values were higher than in the basal period (P = .032). With regard to oral hygiene habits, 92.3% of patients reported frequent tooth brushing and 96.1% used fluoride, which were similar across the 2 years. However, dental hypersensitivity (P = .048) was significantly increased than baseline. CONCLUSIONS The results demonstrated that vitamin C deficiency and increased vomiting after gastric bypass for morbid obesity may contribute to increased periodontal disease. The fact that it is impossible to determine which factor or factors (diet, poor compliance with supplementation, vomiting, poor oral hygiene) contributed to the dental problems in these patients is a shortcoming of the report.
Collapse
|
18
|
Yu JY, Lee SY, Son YO, Shi X, Park SS, Lee JC. Continuous presence of H₂O₂ induces mitochondrial-mediated, MAPK- and caspase-independent growth inhibition and cytotoxicity in human gingival fibroblasts. Toxicol In Vitro 2012; 26:561-70. [PMID: 22313676 DOI: 10.1016/j.tiv.2012.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 01/05/2012] [Accepted: 01/23/2012] [Indexed: 12/19/2022]
Abstract
The continuous generation of reactive oxygen species (ROS) is one of the most important events that occur during periodontal inflammation. Hydrogen peroxide (H(2)O(2)) is widely used in dental clinics. Many investigators have tried to elucidate the exact effect of H(2)O(2) on human gingival fibroblasts (HGFs). These studies have shown that H(2)O(2) induces growth inhibition and apoptosis in cells. However, the mechanisms involved in H(2)O(2)-induced cell death in HGFs are not completely understood. In this study, we examine how continuously generated H(2)O(2) affects the viability and proliferation of HGFs using glucose oxidase (GO). We also explored the mechanisms by which the continuous presence of H(2)O(2) induces cell death. GO treatment not only inhibited HGF growth and proliferation, but it also induced cell death in HGFs without typical apoptotic features such as nuclear DNA laddering. This GO-mediated cytotoxicity was proportional to the levels of intracellular ROS that were generated, rather than proportional to changes of cellular antioxidant activities. GO treatment also resulted in the loss of mitochondrial membrane potential and the relocation of mitochondrial apoptogenic factors. There was also an acute and severe depletion of cellular ATP levels. However, none of the pharmacological inhibitors specific for mitogen-activated protein kinases (MAPKs) or pancaspase prevented GO-induced cell death. Treatment with either catalase or acteoside significantly attenuated the GO-mediated cytotoxicity in the HGFs, thereby suggesting a protective effect of antioxidants against ROS-mediated gingival damage. Here we demonstrate that continuously generated H(2)O(2) not only inhibits the viability and proliferation of HGFs, but also causes pyknotic/necrotic cell death through mitochondrial stress-mediated, MAPK- and caspase-independent pathways.
Collapse
Affiliation(s)
- Ji-Yeon Yu
- Institute of Oral Biosciences (BK21 Program) and School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea
| | | | | | | | | | | |
Collapse
|
19
|
Bullon P, Cordero MD, Quiles JL, Morillo JM, del Carmen Ramirez-Tortosa M, Battino M. Mitochondrial dysfunction promoted by Porphyromonas gingivalis lipopolysaccharide as a possible link between cardiovascular disease and periodontitis. Free Radic Biol Med 2011; 50:1336-43. [PMID: 21354301 DOI: 10.1016/j.freeradbiomed.2011.02.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/03/2011] [Accepted: 02/15/2011] [Indexed: 11/22/2022]
Abstract
Oxidative stress is one of the factors that could explain the pathophysiological mechanism of inflammatory conditions that occur in cardiovascular disease (CVD) and periodontitis. Such inflammatory response is often evoked by specific bacteria, as the lipopolysaccharide (LPS) of Porphyromonas gingivalis is a key factor in this process. The aim of this research was to study the role of mitochondrial dysfunction in peripheral blood mononuclear cells (PBMCs) from periodontitis patients and to evaluate the influence of LPS on fibroblasts to better understand the pathophysiology of periodontitis and its relationship with CVD. PBMCs from patients showed lower CoQ10 levels and citrate synthase activity, together with high levels of ROS production. LPS-treated fibroblasts provoked increased oxidative stress and mitochondrial dysfunction by a decrease in mitochondrial protein expression, mitochondrial mass, and mitochondrial membrane potential. Our study supports the hypothesis that LPS-mediated mitochondrial dysfunction could be at the origin of oxidative stress in periodontal patients. Abnormal PBMC performance may promote oxidative stress and alter cytokine homeostasis. In conclusion, mitochondrial dysfunction could represent a possible link to understanding the interrelationships between two prominent inflammatory diseases: periodontitis and CVD.
Collapse
Affiliation(s)
- Pedro Bullon
- Department of Periodontology, Dental School, University of Sevilla, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Papastamou V, Nietzsch T, Staudte H, Orellana G, Sigusch B. Photoinactivation of F. nucleatum and P. gingivalis using the ruthenium-based RD3 sensitizer and a conventional halogen lamp. Arch Oral Biol 2011; 56:264-8. [DOI: 10.1016/j.archoralbio.2010.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 10/18/2022]
|