1
|
Shaw P, Vanraes P, Kumar N, Bogaerts A. Possible Synergies of Nanomaterial-Assisted Tissue Regeneration in Plasma Medicine: Mechanisms and Safety Concerns. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3397. [PMID: 36234523 PMCID: PMC9565759 DOI: 10.3390/nano12193397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Cold atmospheric plasma and nanomedicine originally emerged as individual domains, but are increasingly applied in combination with each other. Most research is performed in the context of cancer treatment, with only little focus yet on the possible synergies. Many questions remain on the potential of this promising hybrid technology, particularly regarding regenerative medicine and tissue engineering. In this perspective article, we therefore start from the fundamental mechanisms in the individual technologies, in order to envision possible synergies for wound healing and tissue recovery, as well as research strategies to discover and optimize them. Among these strategies, we demonstrate how cold plasmas and nanomaterials can enhance each other's strengths and overcome each other's limitations. The parallels with cancer research, biotechnology and plasma surface modification further serve as inspiration for the envisioned synergies in tissue regeneration. The discovery and optimization of synergies may also be realized based on a profound understanding of the underlying redox- and field-related biological processes. Finally, we emphasize the toxicity concerns in plasma and nanomedicine, which may be partly remediated by their combination, but also partly amplified. A widespread use of standardized protocols and materials is therefore strongly recommended, to ensure both a fast and safe clinical implementation.
Collapse
Affiliation(s)
- Priyanka Shaw
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Patrick Vanraes
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Naresh Kumar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati 781125, Assam, India
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
2
|
Omi M, Mishina Y. Roles of osteoclasts in alveolar bone remodeling. Genesis 2022; 60:e23490. [PMID: 35757898 PMCID: PMC9786271 DOI: 10.1002/dvg.23490] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Osteoclasts are large multinucleated cells from hematopoietic origin and are responsible for bone resorption. A balance between osteoclastic bone resorption and osteoblastic bone formation is critical to maintain bone homeostasis. The alveolar bone, also called the alveolar process, is the part of the jawbone that holds the teeth and supports oral functions. It differs from other skeletal bones in several aspects: its embryonic cellular origin, the form of ossification, and the presence of teeth and periodontal tissues; hence, understanding the unique characteristic of the alveolar bone remodeling is important to maintain oral homeostasis. Excessive osteoclastic bone resorption is one of the prominent features of bone diseases in the jaw such as periodontitis. Therefore, inhibiting osteoclast formation and bone resorptive process has been the target of therapeutic intervention. Understanding the mechanisms of osteoclastic bone resorption is critical for the effective treatment of bone diseases in the jaw. In this review, we discuss basic principles of alveolar bone remodeling with a specific focus on the osteoclastic bone resorptive process and its unique functions in the alveolar bone. Lastly, we provide perspectives on osteoclast-targeted therapies and regenerative approaches associated with bone diseases in the jaw.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| |
Collapse
|
3
|
Man QW, Li RF, Li SR, Wang J, Bu LL, Zhao Y, Liu B. Single-Cell RNA Sequencing Reveals CXCLs Enriched Fibroblasts Within Odontogenic Keratocysts. J Inflamm Res 2022; 14:7359-7369. [PMID: 34992422 PMCID: PMC8713881 DOI: 10.2147/jir.s342951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose We aimed to define cell subpopulations of odontogenic keratocyst (OKC), particularly relating to angiogenesis and explored the potential regulation mechanism for angiogenesis. Materials and Methods Single-cell RNA sequencing (scRNA-seq) analysis was investigated on 14,072 cells from 3 donors with OKC. The differential expressed genes, cell trajectory and intercellular communications were evaluated by bioinformatic analysis. Hydrostatic pressure (80 mmHg, 6h) was applied to the primary fibroblasts of OKC and the supernatant was collected for cytokines detection by cytokine antibody array. The chemokine (C-X-C motif) ligand 12 (CXCL12) and CD31 expressions were explored by immunohistochemistry in tissue microarray of OKC. Results Five different cell types were identified in the epithelium of OKC and 3 different cell types in the OKC fibroblasts were characterized, indicating high intra-lesional heterogeneity. CXCLs were highly enriched in the subset of fibroblasts and showed close interactions with endothelial cells. Hydrostatic pressure (80mmHg) significantly increased CXCL12 secretions in OKC fibroblasts. Stromal CXCL12 expressions were closely related to CD31 expressions of tissue microarray of OKC. Conclusion CXCLs enriched fibroblasts are crucial for angiogenesis of OKCs which could be partially regulated by hydrostatic pressure.
Collapse
Affiliation(s)
- Qi-Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.,Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Rui-Fang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Su-Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.,Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Yi Zhao
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.,Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
4
|
GDF15 Supports the Inflammatory Response of PdL Fibroblasts Stimulated by P. gingivalis LPS and Concurrent Compression. Int J Mol Sci 2021; 22:ijms222413608. [PMID: 34948405 PMCID: PMC8708878 DOI: 10.3390/ijms222413608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is characterized by bacterially induced inflammatory destruction of periodontal tissue. This also affects fibroblasts of the human periodontal ligaments (HPdLF), which play a coordinating role in force-induced tissue and alveolar bone remodeling. Excessive inflammation in the oral tissues has been observed with simultaneous stimulation by pathogens and mechanical forces. Recently, elevated levels of growth differentiation factor 15 (GDF15), an immuno-modulatory member of the transforming growth factor (TGFB) superfamily, were detected under periodontitis-like conditions and in force-stressed PdL cells. In view of the pleiotropic effects of GDF15 in various tissues, this study aims to investigate the role of GDF15 in P. gingivalis-related inflammation of HPdLF and its effect on the excessive inflammatory response to concurrent compressive stress. To this end, the expression and secretion of cytokines (IL6, IL8, COX2/PGE2, TNFα) and the activation of THP1 monocytic cells were analyzed in GDF15 siRNA-treated HPdLF stimulated with P. gingivalis lipopolysaccharides alone and in combination with compressive force. GDF15 knockdown significantly reduced cytokine levels and THP1 activation in LPS-stimulated HPdLF, which was less pronounced with additional compressive stress. Overall, our data suggest a pro-inflammatory role for GDF15 in periodontal disease and demonstrate that GDF15 partially modulates the force-induced excessive inflammatory response of PdLF under these conditions.
Collapse
|
5
|
Li M, Tang Z, Zhang C, Jin L, Matsuo K, Yang Y. Lipopolysaccharides affect compressed periodontal ligament cells via Eph-ephrin signaling. Oral Dis 2021; 28:1662-1673. [PMID: 33872438 PMCID: PMC9544889 DOI: 10.1111/odi.13875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of this study is to investigate the underlying mechanism of the recovery of periodontal ligament cells (PDLCs) sequentially exposed to inflammation and mechanical loading. MATERIALS AND METHODS We divided PDLCs into four groups: control; compressive force (CF) alone (2.0 g/cm2 ); lipopolysaccharides (LPS) pretreatment (0.1 μg/ml) followed by simultaneous LPS and CF stimulation, simulating uncontrolled periodontitis; and LPS pretreatment followed by CF exposure, simulating controlled periodontitis. The expression of EphB4-ephrinB2 and EphA2-ephrinA2, and the level of osteoclastogenesis and osteogenesis were evaluated. RESULTS Simultaneous stimulation by LPS and CF, compared with CF alone and sequential LPS and CF exposure, significantly suppressed EphB4 and enhanced ephrinA2 expression. Similarly, the most intense osteoclastic differentiation was observed under simultaneous LPS and CF stimulation, while sequential exposure to LPS and CF only slightly increased osteoclastic cell numbers. Both the activation of EphB4 signaling and ephrinA2 silencing lowered osteoclastic differentiation, which had previously been upregulated by simultaneous LPS and CF stimulation. These treatments also increased osteogenic differentiation. CONCLUSIONS Simultaneous LPS and CF stimulation critically enhances osteoclastogenesis in PDLCs through the suppression of EphB4 and the induction of ephrinA2 signaling. Sequential LPS and CF exposure partially abolishes the osteolytic effects of simultaneous stimulation.
Collapse
Affiliation(s)
- Minjie Li
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China.,Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhongyuan Tang
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Chengfei Zhang
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Lijian Jin
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | | | - Yanqi Yang
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Nakamura K, Yamamoto T, Ema R, Nakai K, Sato Y, Yamamoto K, Adachi K, Oseko F, Yamamoto Y, Kanamura N. Effects of mechanical stress on human oral mucosa-derived cells. Oral Dis 2020; 27:1184-1192. [PMID: 32890424 DOI: 10.1111/odi.13638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Placement of a denture results in the application of mechanical stress (MS), such as occlusal force, onto the oral mucosa beneath the denture. To better understand the molecular mechanism underlying MS-induced inflammation in the oral mucosa, we examined the impact of MS on human oral epithelial cells (HO-1-N-1) and human fibroblasts (HGFs) in this study. MATERIALS AND METHODS MS was applied on HO-1-N-1 and HGFs using a hydrostatic pressure apparatus. The expression and production of inflammatory cytokines and growth factors were examined by real-time RT-PCR and ELISA. MS-induced intracellular signal transduction via MAP kinase (MAPK) was also examined. RESULTS 1 MPa MS resulted in a significant increase in inflammatory cytokines, and 3 MPa MS resulted in a significant increase in FGF-2. MS also increased p-38 phosphorylation and the addition of a p-38 inhibitor significantly suppressed the production of inflammatory cytokines. DISCUSSION Our study suggested that MS applied through a denture increases the production of inflammatory cytokines from oral mucosal epithelial cells and fibroblasts via the p38 MAPK cascade. These responses to MS likely lead to inflammation of the mucosal tissue beneath dentures. On other hand, up-regulation of growth factors is likely a manifestation of the biological defense mechanism against excessive MS.
Collapse
Affiliation(s)
- Koya Nakamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryo Ema
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Nakai
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiki Sato
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenta Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiji Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumishige Oseko
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiaki Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Jia R, Yi Y, Liu J, Pei D, Hu B, Hao H, Wu L, Wang Z, Luo X, Lu Y. Cyclic compression emerged dual effects on the osteogenic and osteoclastic status of LPS-induced inflammatory human periodontal ligament cells according to loading force. BMC Oral Health 2020; 20:7. [PMID: 31907038 PMCID: PMC6945767 DOI: 10.1186/s12903-019-0987-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Appropriate mechanical stimulation is essential for bone homeostasis in healthy periodontal tissues. While the osteogenesis and osteoclast differentiation of inflammatory periodontal ligament cells under different dynamic loading has not been yet clear. The aim of this study is to clarify the inflammatory, osteogenic and pro-osteoclastic effects of different cyclic stress loading on the inflammatory human periodontal ligament cells (hPDLCs). METHODS hPDLCs were isolated from healthy premolars and cultured in alpha minimum Eagle's medium (α-MEM). Lipopolysaccharides (LPS) were used to induce the inflammation state of hPDLCs in vitro. Determination of LPS concentration for the model of inflammatory periodontium was based on MTT and genes expression analysis. Then the cyclic stress of 0, 0-50, 0-90 and 0-150 kPa was applied to the inflammatory hPDLCs for 5 days respectively. mRNA and protein levels of osteogenic, osteoclastic and inflammation-related markers were examined after the treatment. RESULTS MTT and RT-PCR results showed that 10 μg/ml LPS up-regulated TNF-α, IL-1β, IL-6, IL-8 and MCP-1 mRNA levels (P < 0.05) and did not affect the cell viability (P > 0.05). The excessive loading of stress (150 kPa) with or without LPS strongly increased the expression of inflammatory-related markers TNF-α, IL-1β, IL-6, IL-8, MCP-1 (P < 0.05) and osteoclastic markers RANKL, M-CSF, PTHLH and CTSK compared with other groups (P < 0.05), but had no significant effect on osteogenic genes. While 0-90 kPa cyclic pressure could up-regulate the expression of osteogenic genes ALP, COL-1, RUNX2, OCN, OPN and OSX in the healthy hPDLSCs. CONCLUSIONS Collectively, it could be concluded that 0-150 kPa was an excessive stress loading which accelerated both inflammatory and osteoclastic effects, while 0-90 kPa may be a positive factor for the osteogenic differentiation of hPDLCs in vitro.
Collapse
Affiliation(s)
- Ru Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Yingjie Yi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Jie Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Dandan Pei
- Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Bo Hu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Huanmeng Hao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Linyue Wu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Zhenzhen Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| | - Yi Lu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China. .,Department of Prosthodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, No. 98 Xiwu Road, Xi'an, 710004, Shaan Xi, China.
| |
Collapse
|
8
|
Takizawa S, Yamamoto T, Honjo KI, Sato Y, Nakamura K, Yamamoto K, Adachi T, Uenishi T, Oseko F, Amemiya T, Yamamoto Y, Kumagai W, Kita M, Kanamura N. Transplantation of dental pulp-derived cell sheets cultured on human amniotic membrane induced to differentiate into bone. Oral Dis 2019; 25:1352-1362. [PMID: 30912198 DOI: 10.1111/odi.13096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The usefulness of the amniotic membrane as a cell culture substrate has led to its use in the development of dental pulp-derived cell sheets. We induced osteoblastic differentiation of dental pulp-derived cell sheets and conducted histological and immunological examinations in addition to imaging assessments for regeneration of bone defects. METHODS Dental pulp cells were obtained by primary culture of the dental pulp tissue harvested from extracted wisdom teeth. These cells were maintained for three to four passages. Subsequently, the dental pulp cells were seeded onto an amniotic membrane to produce dental pulp-derived cell sheets. Following the induction of osteoblastic differentiation, the sheets were grafted into the subcutaneous tissue of the lower back and maxillary bone defect of a nude mouse. Histological and immunological examinations of both grafts were performed. RESULTS Dental pulp-derived cell sheets cultured on an osteoblast differentiation-inducing medium demonstrated resemblance to dental pulp tissue and produced calcified tissue. Mineralization was maintained following grafting of the sheets. Regeneration of the maxillary bone defect was observed. CONCLUSION Induction of osteoblastic differentiation of the dental pulp-derived cell sheets may be indicated for the regeneration of periodontal tissue.
Collapse
Affiliation(s)
- Shigeta Takizawa
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken-Ichi Honjo
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiki Sato
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koya Nakamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenta Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihiro Uenishi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumishige Oseko
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Amemiya
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiaki Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wataru Kumagai
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masakazu Kita
- Department of Laboratory Animal Center, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
9
|
Periodontal Ligament Stem Cells in the Periodontitis Microenvironment Are Sensitive to Static Mechanical Strain. Stem Cells Int 2017; 2017:1380851. [PMID: 28316629 PMCID: PMC5339497 DOI: 10.1155/2017/1380851] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023] Open
Abstract
During orthodontic treatment, periodontium remodeling of periodontitis patients under mechanical force was abnormal. We have previously confirmed the function impairment of periodontal ligament stem cells (PDLSCs) in the periodontitis microenvironment which might be involved in this pathological process. However, the response of PDLSCs in periodontitis microenvironment to mechanical force remains unclear. Therefore, in the present study, we introduced a Flexcell tension apparatus and investigated the response of PDLSCs obtained from periodontal tissues of periodontitis patients (PPDLSCs) and of those obtained from healthy periodontal tissues (HPDLSCs) to different magnitudes of static mechanical strain (SMS). PPDLSCs showed increased proliferation, decreased osteogenic activity, activated osteoclastogenesis, and greater secretion of inflammatory cytokines. Different magnitudes of SMS exerted distinct effects on HPDLSCs and PPDLSCs. An SMS of 12% induced optimal effects in HPDLSCs, including the highest proliferation, the best osteogenic ability, the lowest osteoclastogenesis, and the lowest secretion of inflammatory cytokines, while the optimal SMS for PPDLSCs was 8%. Excessive SMS damaged PPDLSCs function, including decreased proliferation, an imbalance between osteogenesis and osteoclastogenesis, and an activated inflammatory response. Our data suggest that PPDLSCs are more sensitive and less tolerant to SMS, and this may explain why mechanical force results in undesirable effects in periodontitis patients.
Collapse
|
10
|
Kirschneck C, Fanghänel J, Wahlmann U, Wolf M, Roldán JC, Proff P. Interactive effects of periodontitis and orthodontic tooth movement on dental root resorption, tooth movement velocity and alveolar bone loss in a rat model. Ann Anat 2016; 210:32-43. [PMID: 27838559 DOI: 10.1016/j.aanat.2016.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/05/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Many adult orthodontic patients suffer from chronic periodontitis with recurrent episodes of active periodontal inflammation. As their number is steadily increasing, orthodontists are more and more frequently challenged by respective treatment considerations. However, little is currently known regarding interactive effects on undesired dental root resorption (DRR), tooth movement velocity, periodontal bone loss and the underlying cellular and tissue reactions. MATERIAL AND METHODS A total of 63 male Fischer344 rats were used in three consecutive experiments employing 21 animals each (A/B/C), randomly assigned to 3 experimental groups (n=7, 1/2/3), respectively: (A) CBCT; (B) histology/serology; (C) RT-qPCR-(1) control; (2) orthodontic tooth movement (OTM) of the first/second upper left molars (NiTi coil spring, 0.25N); (3) OTM with experimentally induced periodontitis (cervical silk ligature). After 14days of OTM, we quantified blood leukocyte level, DRR, osteoclast activity and relative gene expression of inflammatory and osteoclast marker genes within the dental-periodontal tissue as well as tooth movement velocity and periodontal bone loss after 14 and 28 days. RESULTS The experimentally induced periodontal bone loss was significantly increased by concurrent orthodontic force application. Periodontal inflammation during OTM on the other hand significantly augmented the extent of DRR, relative expression of inflammatory/osteoclast marker genes, blood leukocyte level and periodontal osteoclast activity. In addition, contrary to previous studies, we observed a significant increase in tooth movement velocity. CONCLUSIONS Although accelerated tooth movement would be favourable for orthodontic treatment, our results suggest that orthodontic interventions should only be performed after successful systematic periodontal therapy and paused in case of recurrent active inflammation.
Collapse
Affiliation(s)
- Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| | - Jochen Fanghänel
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| | - Ulrich Wahlmann
- Department of Maxillofacial Surgery, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| | - Michael Wolf
- Department of Orthodontics, Rheinische Friedrich Wilhelm University of Bonn, Welschnonnenstraße 17, D-53111 Bonn, Germany.
| | - J Camilo Roldán
- Director of the Division of Pediatric Facial Plastic Surgery and Craniofacial Anomalies, Catholic Children's Hospital Wilhelmstift, Liliencronstraße 130, D-22149 Hamburg, Germany; Lecturer at the Department of Cranio-Maxillofacial Surgery, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
11
|
Abstract
The impact of tooth mobility and occlusal trauma (OT) on periodontal bone loss and need for therapy has been debated for many years. This paper summarizes the relevant literature reported in three Dental Clinics of North America articles in the late 1990s, and adds newer information from the 2000s. Principle findings indicate that strong evidence of mobility and OT impacting tooth longevity is lacking, but reducing inflammation in the surrounding periodontium remains a critical treatment. Occlusal therapy when mobility is increasing, comfort or function are compromised, or periodontal regeneration procedures are planned should be considered.
Collapse
Affiliation(s)
- Richard A Reinhardt
- Department of Surgical Specialties, University of Nebraska Medical Center College of Dentistry, 4000 East Campus Loop South, Lincoln, NE 68583-0740, USA.
| | - Amy C Killeen
- Department of Surgical Specialties, University of Nebraska Medical Center College of Dentistry, 4000 East Campus Loop South, Lincoln, NE 68583-0740, USA
| |
Collapse
|
12
|
Biomechanical force induces the growth factor production in human periodontal ligament-derived cells. Odontology 2015; 104:27-34. [PMID: 25957627 DOI: 10.1007/s10266-015-0206-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
Although many reports have been published on the functional roles of periodontal ligament (PDL) cells, the mechanisms involved in the maintenance and homeostasis of PDL have not been determined. We investigated the effects of biomechanical force on growth factor production, phosphorylation of MAPKs, and intracellular transduction pathways for growth factor production in human periodontal ligament (hPDL) cells using MAPK inhibitors. hPDL cells were exposed to mechanical force (6 MPa) using a hydrostatic pressure apparatus. The levels of growth factor mRNA and protein were examined by real-time RT-PCR and ELISA. The phosphorylation of MAPKs was measured using BD™ CBA Flex Set. In addition, MAPKs inhibitors were used to identify specific signal transduction pathways. Application of biomechanical force (equivalent to occlusal force) increased the synthesis of VEGF-A, FGF-2, and NGF. The application of biomechanical force increased the expression levels of phosphorylated ERK and p38, but not of JNK. Furthermore, the levels of VEGF-A and NGF expression were suppressed by ERK or p38 inhibitor. The growth factors induced by biomechanical force may play a role in the mechanisms of homeostasis of PDL.
Collapse
|
13
|
Wu Y, Liu F, Zhang X, Shu L. Insulin modulates cytokines expression in human periodontal ligament cells. Arch Oral Biol 2014; 59:1301-6. [DOI: 10.1016/j.archoralbio.2014.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/07/2014] [Accepted: 07/13/2014] [Indexed: 10/25/2022]
|
14
|
Biomechanical loading modulates proinflammatory and bone resorptive mediators in bacterial-stimulated PDL cells. Mediators Inflamm 2014; 2014:425421. [PMID: 24976684 PMCID: PMC4058179 DOI: 10.1155/2014/425421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/26/2014] [Accepted: 04/29/2014] [Indexed: 01/20/2023] Open
Abstract
The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL) cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS) of low (CTSL) and high (CTSH) magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2) and prostaglandin E2 (PGE2) was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P < 0.05) increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.
Collapse
|
15
|
Gruber R, Leimer M, Fischer M, Agis H. Beta2-adrenergic receptor agonists reduce proliferation but not protein synthesis of periodontal fibroblasts stimulated with platelet-derived growth factor-BB. Arch Oral Biol 2013; 58:1812-7. [DOI: 10.1016/j.archoralbio.2013.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/10/2013] [Accepted: 09/24/2013] [Indexed: 11/15/2022]
|
16
|
Finoti LS, Corbi SCT, Anovazzi G, Teixeira SRL, Capela MV, Tanaka MH, Kim YJ, Orrico SRP, Cirelli JA, Mayer MPA, Scarel-Caminaga RM. Pathogen levels and clinical response to periodontal treatment in patients with Interleukin 8 haplotypes. Pathog Dis 2013; 69:21-28. [PMID: 23821559 DOI: 10.1111/2049-632x.12062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/14/2013] [Accepted: 06/15/2013] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the effect of non-surgical treatment of periodontitis on the levels of periodontopathogens and clinical parameters in patients with different genetic backgrounds produced by polymorphisms in the Interleukin ( IL8) gene. Thirty patients grouped according to IL8 ATC/TTC or AGT/TTC haplotypes were submitted to non-surgical periodontal treatment. Levels of Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola were determined in 240 subgingival plaque samples by qPCR. The association between IL8 haplotypes and the levels of periodontopathogens and clinical parameters was investigated by multilevel analysis accounting for the clustering of diseased sites analyzed within patients. It was observed that neither levels of periodontopathogens nor non-surgical treatment was associated with the IL8 haplotype. The clinical parameters after periodontal treatment were similar in diseased and healthy sites, independently of the IL8 haplotype. Nonetheless, in the same period, diseased sites of AGT/TTC patients harbored higher levels of P. gingivalis, T. denticola, T. forsythia, and red complex than those of ATC/TTC patients. However, the non-surgical periodontal therapy decreased the levels of these periodontopathogens and of the tested clinical parameters of diseased sites in both groups. Non-surgical therapy is equally effective in improving clinical parameters and decreasing the levels of periodontopathogens, independent of the genotype groups produced by the IL8 haplotype.
Collapse
Affiliation(s)
- Livia S Finoti
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Sâmia C T Corbi
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Giovana Anovazzi
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Silvia R L Teixeira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marisa V Capela
- Department of Physical Chemistry, Institute of Chemistry at Araraquara, UNESP- Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Márcia H Tanaka
- Department of Morphology, School of Dentistry at Araraquara, UNESP- Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Yeon J Kim
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Silvana R P Orrico
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Joni A Cirelli
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP- Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raquel M Scarel-Caminaga
- Department of Morphology, School of Dentistry at Araraquara, UNESP- Universidade Estadual Paulista, Araraquara, SP, Brazil
| |
Collapse
|
17
|
Finoti LS, Corbi SCT, Anovazzi G, Teixeira SRL, Steffens JP, Secolin R, Kim YJ, Orrico SRP, Cirelli JA, Mayer MPA, Scarel-Caminaga RM. Association between IL8 haplotypes and pathogen levels in chronic periodontitis. Eur J Clin Microbiol Infect Dis 2013; 32:1333-40. [PMID: 23660697 DOI: 10.1007/s10096-013-1884-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/09/2013] [Indexed: 12/15/2022]
Abstract
Chronic periodontitis (CP) is considered to be a multifactorial disease influenced by microbial and genetic factors. The aim of the present study was to investigate whether the genetic susceptibility to CP in individuals with the IL8 ATC/TTC haplotype is associated with subgingival levels of periodontopathogens. Sixty-five individuals, grouped according to the presence (n = 28) or absence (n = 37) of the IL8 haplotype, were evaluated. After clinical periodontal evaluation, each group was subdivided according to the presence (CP) or absence (H) of periodontitis. Four subgingival samples were obtained from CP and two samples per subject from H patients. The levels and proportions of Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola were analyzed using quantitative real-time polymerase chain reaction (q-PCR). No differences were found in the proportion of periodontopathogenic bacteria between groups with the presence or absence of the IL8 haplotype. However, in the CP groups, the levels of periodontopathogens were significantly higher in the individuals without the IL8 haplotype than in the individuals with the IL8 haplotype. These results suggest that periodontal destruction may occur in patients who are considered to be genetically susceptible to CP with a lower microbial challenge because of the presence of the IL8 ATC/TTC haplotype than in patients without this haplotype.
Collapse
Affiliation(s)
- L S Finoti
- Department of Oral Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nishigaki M, Yamamoto T, Ichioka H, Honjo KI, Yamamoto K, Oseko F, Kita M, Mazda O, Kanamura N. β-cryptoxanthin regulates bone resorption related-cytokine production in human periodontal ligament cells. Arch Oral Biol 2013; 58:880-6. [PMID: 23452546 DOI: 10.1016/j.archoralbio.2013.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE β-cryptoxanthin (β-cry) is a type of carotenoid found in certain fruits and vegetables. Although it has been shown that β-cry inhibits alveolar bone resorption, the molecular mechanisms for this have not yet been clarified. In the present study, we investigated the effects of β-cry on bone resorption related-cytokine production in human periodontal ligament (hPDL) cells. DESIGN hPDL cells were stimulated with β-cry (1×10(-7)mol/l), mechanical stress (1 or 6MPa), and P. gingivalis. The production of interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor (TNF)-α, osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL) were analyzed by RT-PCR and ELISA. RESULTS The production of IL-1β, IL-6, IL-8, and TNF-α was not induced in hPDL cells after stimulation with β-cry, although these cytokines were produced after stimulation with P. gingivalis. On the other hand, IL-6 and IL-8 were produced after exposure to 6MPa of mechanical stress. The production of IL-6 and IL-8 was significantly decreased by the addition of β-cry. Furthermore, β-cry up-regulated the production of OPG, but not RANKL. CONCLUSION β-cry inhibited the production of IL-6 and IL-8 induced by mechanical stress and periodontopathogenic bacteria in hPDL cells. Moreover, β-cry up-regulated OPG production. These results suggest that β-cry may prevent bone resorption in periodontitis.
Collapse
Affiliation(s)
- Masaru Nishigaki
- Department of Dental Medicine, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Römer P, Köstler J, Koretsi V, Proff P. Endotoxins potentiate COX-2 and RANKL expression in compressed PDL cells. Clin Oral Investig 2013; 17:2041-8. [PMID: 23392729 DOI: 10.1007/s00784-013-0928-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE This study aims to demonstrate in vitro the synergistic effect of orthodontic forces and periodontal pathogens on cyclooxygenase-2 regulation and the subsequent receptor activator of nuclear factor kappa-B ligand (RANKL) production from periodontal ligament (PDL) cells. MATERIALS AND METHODS In comparison to a control group, three experimental groups were formed from human primary PDL cells stressed with compressive forces, bacterial endotoxins, or a combination of both. Gene expression of cyclooxygenase-2 and RANKL was analysed with RT real-time PCR. The prostaglandin E2 production was determined with ELISA. A co-culture of PDL cells and an osteoclast-progenitor cell line was used in order to demonstrate the osteoclast formation effect caused by the simultaneous combined stress. RESULTS The simultaneous combined stress resulted in a 56-fold up-regulation of cyclooxygenase-2 gene expression with a subsequent noticeable rise in the prostaglandin E2 in the culture medium. The RANKL/osteoprotegerin gene expression ratio was 50-fold up-regulated and the osteoclast formation assay revealed 153.5 ± 15.7 tartrate-resistant acid phosphatase (TRAP)-positive cells per well compared with 42.3 ± 3.8 TRAP-positive cells per well of the control group. CONCLUSION The synergistic action of periodontal pathogens and orthodontic forces leads to an increased expression of cyclooxygenase-2 from PDL cells that intensify the RANKL production which in turn induces osteoclast differentiation and subsequent osteoclastogenesis. CLINICAL RELEVANCE The present study puts an emphasis on the detrimental effect of orthodontic forces on patients with an active periodontal disease by underlining the significance of cyclooxygenase-2 activity and RANKL binding on the osteoclastogenesis process.
Collapse
Affiliation(s)
- Piero Römer
- Department of Orthodontics, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany,
| | | | | | | |
Collapse
|
20
|
Liu H, Jiang H, Wang Y. The biological effects of occlusal trauma on the stomatognathic system - a focus on animal studies. J Oral Rehabil 2012; 40:130-8. [PMID: 23211044 DOI: 10.1111/joor.12017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2012] [Indexed: 12/19/2022]
Affiliation(s)
- H. Liu
- Department of Stomatology; Chinese PLA General Hospital; Beijing China
| | - H. Jiang
- Department of Stomatology; Chinese PLA General Hospital; Beijing China
| | - Y. Wang
- Department of Stomatology; Chinese PLA General Hospital; Beijing China
| |
Collapse
|
21
|
Williams BJ, Currimbhoy S, Silva A, O'Ryan FS. Complications Following Surgically Assisted Rapid Palatal Expansion: A Retrospective Cohort Study. J Oral Maxillofac Surg 2012; 70:2394-402. [DOI: 10.1016/j.joms.2011.09.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 10/28/2022]
|
22
|
Yamamoto K, Yamamoto T, Ichioka H, Akamatsu Y, Oseko F, Mazda O, Imanishi J, Kanamura N, Kita M. Effects of mechanical stress on cytokine production in mandible-derived osteoblasts. Oral Dis 2011; 17:712-9. [DOI: 10.1111/j.1601-0825.2011.01832.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|