1
|
Zhang P, Chen SG, Wang JT, Wang JD, Chen ZH, Lin HS. A study on the impact of gargling with compound Scutellaria baicalensis Georgi on oral health and microflora changes in fixed orthodontic patients: An experimental study. Medicine (Baltimore) 2024; 103:e39397. [PMID: 39183390 PMCID: PMC11346836 DOI: 10.1097/md.0000000000039397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/12/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
PURPOSE To investigate the effect of Scutellaria baicalensis Georgi gargle on oral health and changes in oral bacteria among orthodontic patients. METHODS About 110 cases of oral fixed orthodontic patients were screened from January 2020 to June 2022 at Taizhou Hospital in Zhejiang Province. They were randomly divided into the experimental group (receiving compound S. baicalensis Georgi gargle once a day) and the control group (receiving 0.9% NS gargle once a day), with 55 cases in each group. Gingival samples were collected from both groups before and 3 months after the orthodontic surgery for bacterial culture, and the differences between the 2 groups of patients in Plaque Index (PLI), gingival bleeding index (sBl), and periodontal depth (PD) before and after the operation were compared. Results: The detection levels of PLI, PD, and sBI in the experimental group were lower than those in the control group (P < .05) 3 months after orthodontic surgery (P < .05); after orthodontic correction for 3 months, there was a significant difference in coccus, bacillus, Campylobacter, Clostridium, Helicobacter, and filamentous bacteria between the experimental group and the control group (P < .05); and Porphyromonas gingivalis, Fusobacterium nucleatum, Bacteroides forsythus (B.f), and Agglomerata actinomycetes in the 2 groups were statistically significant after 3 months of orthodontic treatment (P < .05). CONCLUSION SUBSECTIONS In fixed orthodontic treatment, S. baicalensis Georgi gargle can effectively inhibit oral pathogens and maintain periodontal health.
Collapse
Affiliation(s)
- Peng Zhang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Lin Hai, Zhejiang, China
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Shen Guo Chen
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Lin Hai, Zhejiang, China
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Jia Ting Wang
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Jin Dong Wang
- Enze Hospital, Taizhou Enze Medical Center (Group), Taizhou, Zhejiang, China
| | - Zai Hong Chen
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Lin Hai, Zhejiang, China
| | - Hai Sheng Lin
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Lin Hai, Zhejiang, China
| |
Collapse
|
2
|
Carneiro BT, de Castro FNAM, Benetti F, Nima G, Suzuki TYU, André CB. Flavonoids effects against bacteria associated to periodontal disease and dental caries: a scoping review. BIOFOULING 2024; 40:99-113. [PMID: 38425046 DOI: 10.1080/08927014.2024.2321965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
This scoping review focused on exploring the efficacy of flavonoids against bacteria associated with dental caries and periodontal diseases. Inclusion criteria comprise studies investigating the antibacterial effects of flavonoids against bacteria linked to caries or periodontal diseases, both pure or diluted in vehicle forms. The search, conducted in August 2023, in databases including PubMed/MEDLINE, Scopus, Web of Science, Embase, LILACS, and Gray Literature. Out of the initial 1125 studies, 79 met the inclusion criteria, majority in vitro studies. Prominent flavonoids tested included epigallocatechin-gallate, apigenin, quercetin, and myricetin. Predominant findings consistently pointed to bacteriostatic, bactericidal, and antibiofilm activities. The study primarily investigated bacteria associated with dental caries, followed by periodontopathogens. A higher number of publications presented positive antibacterial results against Streptococcus mutans in comparison to Porphyromonas gingivalis. These encouraging findings underline the potential applicability of commercially available flavonoids in materials or therapies, underscoring the need for further exploration in this field.
Collapse
Affiliation(s)
- Bruna Tavares Carneiro
- Departament of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Francine Benetti
- Departament of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Nima
- Departament of Biomaterials, School of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Thais Yumi Umeda Suzuki
- Departament of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carolina Bosso André
- Departament of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Sharma A, Anurag, Kaur J, Kesharwani A, Parihar VK. Antimicrobial Potential of Polyphenols: An Update on Alternative for Combating Antimicrobial Resistance. Med Chem 2024; 20:576-596. [PMID: 38584534 DOI: 10.2174/0115734064277579240328142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
The last decade has encountered an increasing demand for plant-based natural antibiotics. This demand has led to more research-based investigations for natural sources of antimicrobial agents and published reports demonstrating that plant extracts are widely applied in modern medicine, reporting potential activity that may be due to polyphenol compounds. Interestingly, the effects of polyphenols on the sensitivity of bacteria to antibiotics have not been well-studied. Hence, the current review encompasses the prospective application of plant-based phenolic extracts from plants of Indian origin. The emergence of resistance to antimicrobial agents has increased the inefficacy of many antimicrobial drugs. Several strategies have been developed in recent times to overcome this issue. A combination of antimicrobial agents is employed for the failing antibiotics, which restores the desirable effect but may have toxicity-related issues. Phytochemicals such as some polyphenols have demonstrated their potent activity as antimicrobial agents of natural origin to work against resistance issues. These agents alone or in combination with certain antibiotics have been shown to enhance the antimicrobial activity against a spectrum of microbes. However, the information regarding the mechanisms and structure-activity relationships remains elusive. The present review also focuses on the possible mechanisms of natural compounds based on their structure- activity relationships for incorporating polyphenolic compounds in the drug-development processes. Besides this work, polyphenols could reduce drug dosage and may diminish the unhidden or hidden side effects of antibiotics. Pre-clinical findings have provided strong evidence that polyphenolic compounds, individually and in combination with already approved antibiotics, work well against the development of resistance. However, more studies must focus on in vivo results, and clinical research needs to specify the importance of polyphenol-based antibacterials in clinical trials.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Anurag
- Department of Pharmaceutical Technology, MIET, Meerut (UP), 250005, India
| | - Jasleen Kaur
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, 226002, UP, India
| | - Anuradha Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Hajipur, 844102, Hajipur, India
| |
Collapse
|
4
|
Guo Y, Li Z, Chen F, Chai Y. Polyphenols in Oral Health: Homeostasis Maintenance, Disease Prevention, and Therapeutic Applications. Nutrients 2023; 15:4384. [PMID: 37892459 PMCID: PMC10610286 DOI: 10.3390/nu15204384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Polyphenols, a class of bioactive compounds with phenolic structures, are abundant in human diets. They have gained attention in biomedical fields due to their beneficial properties, including antioxidant, antibacterial, and anti-inflammatory activities. Therefore, polyphenols can prevent multiple chronic or infectious diseases and may help in the prevention of oral diseases. Oral health is crucial to our well-being, and maintaining a healthy oral microbiome is essential for preventing various dental and systemic diseases. However, the mechanisms by which polyphenols modulate the oral microbiota and contribute to oral health are still not fully understood, and the application of polyphenol products lies in different stages. This review provides a comprehensive overview of the advancements in understanding polyphenols' effects on oral health: dental caries, periodontal diseases, halitosis, and oral cancer. The mechanisms underlying the preventive and therapeutic effects of polyphenols derived from dietary sources are discussed, and new findings from animal models and clinical trials are included, highlighting the latest achievements. Given the great application potential of these natural compounds, novel approaches to dietary interventions and oral disease treatments may emerge. Moreover, investigating polyphenols combined with different materials presents promising opportunities for developing innovative therapeutic strategies in the treatment of oral diseases.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yujuan Chai
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
| |
Collapse
|
5
|
Zhang C, Lei D, Zhou Y, Zhong T, Li X, Ai W, Zheng B, Liu J, Piao Y, Yan Z, Lai Z. Identifying a baicalein-related prognostic signature contributes to prognosis prediction and tumor microenvironment of pancreatic cancer. Front Immunol 2023; 14:1223650. [PMID: 37575248 PMCID: PMC10416623 DOI: 10.3389/fimmu.2023.1223650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant and lethal human cancers in the world due to its high metastatic potential, and patients with PDAC have a poor prognosis, yet quite little is understood regarding the underlying biological mechanisms of its high metastatic capacity. Baicalein has a dramatic anti-tumor function in the treatment of different types of cancer. However, the therapeutic effects of baicalein on human PDAC and its mechanisms of action have not been extensively understood. In order to explore the biological characteristic, molecular mechanisms, and potential clinical value of baicalein in inhibiting the metastatic capacity of PDAC. We performed several in vitro, in vivo, and in silico studies. We first examined the potential regulation of baicalein in the metastatic capacity of PDAC cells. We showed that baicalein could dramatically suppress liver metastasis of PDAC cells with highly metastatic potential in mice model. The high-throughput sequencing analysis was employed to explore the biological roles of baicalein in PDAC cells. We found that baicalein might be involved in the infiltration of Cancer-Associated Fibroblasts (CAF) in PDAC. Moreover, a baicalein-related risk model and a lncRNA-related model were built by Cox analysis according to the data set of PDAC from TCGA database which suggested a clinical value of baicalein. Finally, we revealed a potential downstream target of baicalein in PDAC, we proposed that baicalein might contribute to the infiltration of CAF via FGFBP1. Thus, we uncovered a novel role for baicalein in regulation of PDAC liver metastasis that may contribute to its anti-cancer effect. We proposed that baicalein might suppress PDAC liver metastasis via regulation of FGFBP1-mediated CAF infiltration. Our results provide a new perspective on clinical utility of baicalein and open new avenues for the inhibition of liver-metastasis of PDAC.
Collapse
Affiliation(s)
- Citing Zhang
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| | - Defeng Lei
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yan Zhou
- Department of Obstetrics & Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, China
| | - Tongning Zhong
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xuefei Li
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Weipeng Ai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| | - Biao Zheng
- Department of Surgery, The First Dongguan Affiliated Hospital, Guangdong Medical University. Dongguan, Guangdong, China
| | - Jikui Liu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yicui Piao
- Department of Critical Care Medicine, National Cancer Center, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Zilong Yan
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Wang Y, Su J, Zhou Z, Yang J, Liu W, Zhang Y, Zhang P, Guo T, Li G. Baicalein Resensitizes Multidrug-Resistant Gram-Negative Pathogens to Doxycycline. Microbiol Spectr 2023; 11:e0470222. [PMID: 37070985 PMCID: PMC10269726 DOI: 10.1128/spectrum.04702-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
As multidrug-resistant pathogens emerge and spread rapidly, novel antibiotics urgently need to be discovered. With a dwindling antibiotic pipeline, antibiotic adjuvants might be used to revitalize existing antibiotics. In recent decades, traditional Chinese medicine has occupied an essential position in adjuvants of antibiotics. This study found that baicalein potentiates doxycycline against multidrug-resistant Gram-negative pathogens. Mechanism studies have shown that baicalein causes membrane disruption by attaching to phospholipids on the Gram-negative bacterial cytoplasmic membrane and lipopolysaccharides on the outer membrane. This process facilitates the entry of doxycycline into bacteria. Through collaborative strategies, baicalein can also increase the production of reactive oxygen species and inhibit the activities of multidrug efflux pumps and biofilm formation to potentiate antibiotic efficacy. Additionally, baicalein attenuates the lipopolysaccharide-induced inflammatory response in vitro. Finally, baicalein can significantly improve doxycycline efficacy in mouse lung infection models. The present study showed that baicalein might be considered a lead compound, and it should be further optimized and developed as an adjuvant that helps combat antibiotic resistance. IMPORTANCE Doxycycline is an important broad-spectrum tetracycline antibiotic used for treating multiple human infections, but its resistance rates are recently rising globally. Thus, new agents capable of boosting the effectiveness of doxycycline need to be discovered. In this study, it was found that baicalein potentiates doxycycline against multidrug-resistant Gram-negative pathogens in vitro and in vivo. Due to its low cytotoxicity and resistance, the combination of baicalein and doxycycline provides a valuable clinical reference for selecting more effective therapeutic strategies for treating infections caused by multidrug-resistant Gram-negative clinical isolates.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
| | - Junfeng Su
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Ziyan Zhou
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
| | - Jie Yang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wenjuan Liu
- Laboratory Department, Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Yafen Zhang
- Laboratory Department, Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Pengyu Zhang
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
| | - Tingting Guo
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Guocai Li
- Department of Microbiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Laboratory Department, Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
7
|
Weng Y, Hu P, Hu L. Baicalein Inhibits Plasmid-Mediated Horizontal Transmission of the blaKPC Multidrug Resistance Gene from Klebsiella pneumoniae to Escherichia coli. Biol Pharm Bull 2023; 46:394-398. [PMID: 36543225 DOI: 10.1248/bpb.b22-00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carbapenem-resistant bacterial infections pose an urgent threat to public health worldwide. Horizontal transmission of the β-lacatamase Klebsiella pneumoniae carbapenemase (blaKPC) multidrug resistance gene is a major mechanism for global dissemination of carbapenem resistance. Here, we investigated the effects of baicalein, an active ingredient of a Chinese herbal medicine, on plasmid-mediated horizontal transmission of blaKPC from a meropenem-resistant K. pneumoniae strain (JZ2157) to a meropenem-sensitive Escherichia coli strain (E600). Baicalein showed no direct effects on the growth of JZ2157 or E600. Co-cultivation of JZ2157 and E600 caused the spread of meropenem resistance from JZ2157 to E600. Baicalein at 40 and 400 µg/mL significantly inhibited the spread of meropenem resistance. Co-cultivation also resulted in plasmid-mediated transmission of blaKPC from JZ2157 to E600, which was inhibited by baicalein. Therefore, baicalein may be used in clinical practice to prevent or contain outbreaks of carbapenem-resistant infections by inhibiting the horizontal transfer of resistance genes across bacteria species.
Collapse
Affiliation(s)
- Yuesong Weng
- Department of Laboratory Medicine, Ningbo First Hospital
| | - Pingyi Hu
- Department of Laboratory Medicine, Ningbo First Hospital.,School of Laboratory Medicine and Life Science, Wenzhou Medical University
| | - Liqing Hu
- Department of Laboratory Medicine, Ningbo First Hospital
| |
Collapse
|
8
|
Promising Role of the Scutellaria baicalensis Root Hydroxyflavone-Baicalein in the Prevention and Treatment of Human Diseases. Int J Mol Sci 2023; 24:ijms24054732. [PMID: 36902160 PMCID: PMC10003701 DOI: 10.3390/ijms24054732] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Plant roots, due to a high content of natural antioxidants for many years, have been used in herbal medicine. It has been documented that the extract of Baikal skullcap (Scutellaria baicalensis) has hepatoprotective, calming, antiallergic, and anti-inflammatory properties. Flavonoid compounds found in the extract, including baicalein, have strong antiradical activity, which improves overall health and increases feelings of well-being. Plant-derived bioactive compounds with antioxidant activity have for a long time been used as an alternative source of medicines to treat oxidative stress-related diseases. In this review, we summarized the latest reports on one of the most important aglycones with respect to the pharmacological activity and high content in Baikal skullcap, which is 5,6,7-trihydroxyflavone (baicalein).
Collapse
|
9
|
Cui H, You Y, Cheng GW, Lan Z, Zou KL, Mai QY, Han YH, Chen H, Zhao YY, Yu GT. Advanced materials and technologies for oral diseases. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2156257. [PMID: 36632346 PMCID: PMC9828859 DOI: 10.1080/14686996.2022.2156257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Oral disease, as a class of diseases with very high morbidity, brings great physical and mental damage to people worldwide. The increasing burden and strain on individuals and society make oral diseases an urgent global health problem. Since the treatment of almost all oral diseases relies on materials, the rapid development of advanced materials and technologies has also promoted innovations in the treatment methods and strategies of oral diseases. In this review, we systematically summarized the application strategies in advanced materials and technologies for oral diseases according to the etiology of the diseases and the comparison of new and old materials. Finally, the challenges and directions of future development for advanced materials and technologies in the treatment of oral diseases were refined. This review will guide the fundamental research and clinical translation of oral diseases for practitioners of oral medicine.
Collapse
Affiliation(s)
- Hao Cui
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhou Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Long Zou
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Qiu-Ying Mai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Hua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Yue Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Guang-Tao Yu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Liang J, Huang X, Ma G. Antimicrobial activities and mechanisms of extract and components of herbs in East Asia. RSC Adv 2022; 12:29197-29213. [PMID: 36320733 PMCID: PMC9554739 DOI: 10.1039/d2ra02389j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Antibacterial drugs face increasing challenges due to drug resistance and adverse reactions, which has created a pressing need for the discovery and development of novel antibacterial drugs. Herbs have played an important role in the treatment of infectious diseases. This review aims to summarize, analyze and evaluate the antibacterial activities and mechanisms of components from popular herbs in East Asia. In this review, we have searched and summarized the scientific papers published during the past twenty-year period from electronic databases such as PubMed, ScienceDirect, and Web of Science. These herbs and their components, including alkaloids, flavonoids, essential oils, terpenes, organic acids, coumarins and lignans, display potential antimicrobial effects. Herbal medicine formulas (HMFs) usually show stronger antibacterial activity than single herbs. Herbs and HMFs bring forth antibacterial activities by damaging cell membranes and walls, inhibiting nucleic acid and protein synthesis, and increasing intracellular osmotic pressure. These herbs and their components can be developed as potential and promising novel antibacterial herbal products.
Collapse
Affiliation(s)
- Jingru Liang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China +86-21-5198-0025
| | - Xuan Huang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China +86-21-5198-0025
| | - Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China +86-21-5198-0025
| |
Collapse
|
11
|
Vaou N, Stavropoulou E, Voidarou C(C, Tsakris Z, Rozos G, Tsigalou C, Bezirtzoglou E. Interactions between Medical Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. Antibiotics (Basel) 2022; 11:antibiotics11081014. [PMID: 36009883 PMCID: PMC9404952 DOI: 10.3390/antibiotics11081014] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
It is accepted that the medicinal use of complex mixtures of plant-derived bioactive compounds is more effective than purified bioactive compounds due to beneficial combination interactions. However, synergy and antagonism are very difficult to study in a meticulous fashion since most established methods were designed to reduce the complexity of mixtures and identify single bioactive compounds. This study represents a critical review of the current scientific literature on the combined effects of plant-derived extracts/bioactive compounds. A particular emphasis is provided on the identification of antimicrobial synergistic or antagonistic combinations using recent metabolomics methods and elucidation of approaches identifying potential mechanisms that underlie their interactions. Proven examples of synergistic/antagonistic antimicrobial activity of bioactive compounds are also discussed. The focus is also put on the current challenges, difficulties, and problems that need to be overcome and future perspectives surrounding combination effects. The utilization of bioactive compounds from medicinal plant extracts as appropriate antimicrobials is important and needs to be facilitated by means of new metabolomics technologies to discover the most effective combinations among them. Understanding the nature of the interactions between medicinal plant-derived bioactive compounds will result in the development of new combination antimicrobial therapies.
Collapse
Affiliation(s)
- Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
- Correspondence: (N.V.); or (E.S.)
| | - Elisavet Stavropoulou
- Centre Hospitalier Universitaire Vaudois (CHUV), 1101 Lausanne, Switzerland
- Correspondence: (N.V.); or (E.S.)
| | - Chrysoula (Chrysa) Voidarou
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.); (G.R.)
| | - Zacharias Tsakris
- Laboratory of Microbiology, Department of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgios Rozos
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.); (G.R.)
| | - Christina Tsigalou
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| |
Collapse
|
12
|
Zhao S, Hua F, Yan J, Yang H, Huang C. Effects of Plant Extracts on Dentin Bonding Strength: A Systematic Review and Meta-Analysis. Front Bioeng Biotechnol 2022; 10:836042. [PMID: 35284411 PMCID: PMC8908204 DOI: 10.3389/fbioe.2022.836042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Objective: To systematically review in vitro studies that evaluated the effects of plant extracts on dentin bonding strength. Materials and Methods: Six electronic databases (PubMed, Embase, VIP, CNKI, Wanfang and The Cochrane Library) were searched from inception to September 2021 in accordance with the Preferred Reporting Items for Systematic Reviews (PRISMA). In vitro studies that compared the performance of dental adhesives with and without the plant extracts participation were included. The reference lists of the included studies were manually searched. Two researchers carried out study screening, data extraction and risk of bias assessment, independently and in duplicate. Meta-analysis was conducted using Review Manager 5.3. Results: A total of 62 studies were selected for full-text analysis. 25 articles used the plant extracts as primers, while five added the plant extracts into adhesives. The meta-analysis included 14 articles of in vitro studies investigating the effects of different plant extract primers on dentin bonding strength of etch-and-rinse and self-etch adhesives, respectively. The global analysis showed statistically significant difference between dental adhesives with and without plant extract primers. It showed that the immediate bond strength of dental adhesives was improved with the application of plant extract primers. Conclusion: The application of proanthocyanidin (PA) primers have positive effect on the in vitro immediate bonding strength of dental adhesives irrespective of etch-and-rinse or self-etch modes.
Collapse
Affiliation(s)
- Shikai Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fang Hua
- Department of Orthodontics, Center for Evidence-Based Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jiarong Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Hongye Yang, ; Cui Huang,
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Hongye Yang, ; Cui Huang,
| |
Collapse
|
13
|
Khameneh B, Eskin NAM, Iranshahy M, Fazly Bazzaz BS. Phytochemicals: A Promising Weapon in the Arsenal against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2021; 10:1044. [PMID: 34572626 PMCID: PMC8472480 DOI: 10.3390/antibiotics10091044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
The extensive usage of antibiotics and the rapid emergence of antimicrobial-resistant microbes (AMR) are becoming important global public health issues. Many solutions to these problems have been proposed, including developing alternative compounds with antimicrobial activities, managing existing antimicrobials, and rapidly detecting AMR pathogens. Among all of them, employing alternative compounds such as phytochemicals alone or in combination with other antibacterial agents appears to be both an effective and safe strategy for battling against these pathogens. The present review summarizes the scientific evidence on the biochemical, pharmacological, and clinical aspects of phytochemicals used to treat microbial pathogenesis. A wide range of commercial products are currently available on the market. Their well-documented clinical efficacy suggests that phytomedicines are valuable sources of new types of antimicrobial agents for future use. Innovative approaches and methodologies for identifying plant-derived products effective against AMR are also proposed in this review.
Collapse
Affiliation(s)
- Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
| | - N. A. Michael Eskin
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
14
|
Liu Z, Zhang L, Wang J, Li Y, Chang Y, Huang X, Duan J, Ai Y, Zeng X, Guo J. Virtual Screening and Biological Evaluation of Anti-Biofilm Agents Targeting LuxS in the Quorum Sensing System. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211019625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Biofilm formation is considered as a crucial factor in various oral diseases, such as dental caries. The quorum sensing (QS) signaling system was proved to have a crucial role in the microbial dental plaque biofilm formation of Streptococcus mutans ( S. mutans). LuxS was critical to regulating the QS system and survival of the bacterium, and, therefore, compounds which target LuxS may be a potential therapy for dental caries. The binding activities of 37,170 natural compounds to LuxS were virtually screened in this study. Baicalein and paeonol were chosen for further research of the binding mode and ΔG values with LuxS. Both baicalein and paeonol inhibited the biofilm formation without influence on the growth of S. mutans. Baicalein also distinctly reduced the production of both rhamnolipids and acids. The results provide us with a new approach to combat dental caries instead of the traditional use of antibacterial chemicals.
Collapse
Affiliation(s)
- Zheng Liu
- Foshan Stomatology Hospital & School of Medicine, Foshan University, China
| | - Lihua Zhang
- Foshan Stomatology Hospital & School of Medicine, Foshan University, China
| | - Jincai Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanping Li
- Foshan Stomatology Hospital & School of Medicine, Foshan University, China
| | - Yiqun Chang
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Xiaoling Huang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jun Duan
- Foshan Stomatology Hospital & School of Medicine, Foshan University, China
| | - Yilong Ai
- Foshan Stomatology Hospital & School of Medicine, Foshan University, China
| | - Xuxin Zeng
- Foshan Stomatology Hospital & School of Medicine, Foshan University, China
| | - Jialiang Guo
- Foshan Stomatology Hospital & School of Medicine, Foshan University, China
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Engineering Research Centre of Digital Stomatology & Foshan Engineering Research Centre of Digital Stomatology Medicine, Foshan, China
| |
Collapse
|
15
|
Howard KC, Gonzalez OA, Garneau-Tsodikova S. Porphyromonas gingivalis: where do we stand in our battle against this oral pathogen? RSC Med Chem 2021; 12:666-704. [PMID: 34124669 PMCID: PMC8152699 DOI: 10.1039/d0md00424c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontal diseases, such as gingivitis and periodontitis, are inflammatory diseases triggered by pathogenic bacteria that lead to damage of the soft tissue and bone supporting the teeth. Amongst the identified oral periodontopathogenic bacteria, Porphyromonas gingivalis is able to enhance oral dysbiosis, which is an imbalance in the beneficial commensal and periodontal pathogenic bacteria that induces chronic inflammation. Given the critical role of oral pathogenic bacteria like P. gingivalis in the pathogenesis of periodontitis, local and/or systemic antibacterial therapy has been suggested to treat this disease, especially in its severe or refractory forms. Nevertheless, the majority of the antibacterial agents currently used for the treatment of periodontal diseases are broad-spectrum, which harms beneficial bacterial species that are critical in health, inhibit the growth of pathogenic bacteria, contribute in protecting the periodontal tissues to damage and aid in its healing. Thus, the development of more effective and specific antibacterial agents is needed to control oral pathogens in a polymicrobial environment. The strategies for the development of novel antibacterial agents include natural product isolation as well as synthetic and semi-synthetic methodologies. This review presents an overview of the periodontal diseases gingivitis and periodontitis along with current antibacterial treatment options (i.e., classes of antibacterial agents and the mechanism(s) of resistance that hinder their usage) used in periodontal diseases that specifically target oral pathogens such as P. gingivalis. In addition, to help medicinal chemists gain a better understanding of potentially promising scaffolds, this review provides an in-depth coverage of the various families of small molecules that have been investigated as potential anti-P. gingivalis agents, including novel families of compounds, repositioned drugs, as well as natural products.
Collapse
Affiliation(s)
- Kaitlind C Howard
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky Lexington KY 40536-0596 USA +1 859 218 1686
| | - Octavio A Gonzalez
- College of Dentistry, Center for Oral Health Research and Division of Periodontics, University of Kentucky Lexington KY 40536-0305 USA
| | - Sylvie Garneau-Tsodikova
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky Lexington KY 40536-0596 USA +1 859 218 1686
| |
Collapse
|
16
|
Zhou X, Fu L, Wang P, Yang L, Zhu X, Li CG. Drug-herb interactions between Scutellaria baicalensis and pharmaceutical drugs: Insights from experimental studies, mechanistic actions to clinical applications. Biomed Pharmacother 2021; 138:111445. [PMID: 33711551 DOI: 10.1016/j.biopha.2021.111445] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Whilst the popular use of herbal medicine globally, it poses challenges in managing potential drug-herb interaction. There are two folds of the drug-herb interaction, a beneficial interaction that may improve therapeutic outcome and minimise the toxicity of drug desirably; by contrast, negative interaction may evoke unwanted clinical consequences, especially with drugs of narrow therapeutic index. Scutellaria baicalensis Georgi is one of the most popular medicinal plants used in Asian countries. It has been widely used for treating various diseases and conditions such as cancer, diabetes, inflammation, and oxidative stress. Studies on its extract and bioactive compounds have shown pharmacodynamic and pharmacokinetic interactions with a wide range of pharmaceutical drugs as evidenced by plenty of in vitro, in vivo and clinical studies. Notably, S. baicalensis and its bioactives including baicalein, baicalin and wogonin exhibited synergistic interactions with many pharmaceutical drugs to enhance their efficacy, reduce toxicity or overcome drug resistance to combat complex diseases such as cancer, diabetes and infectious diseases. On the other hand, S. baicalensis and its bioactives also affected the pharmacokinetic profile of many drugs in absorption, distribution, metabolism and elimination via the regulatory actions of the efflux pumps and cytochrome P450 enzymes. This review provides comprehensive references of the observed pharmacodynamic and pharmacokinetic drug interactions of Scutellaria baicalensis and its bioactives. We have elucidated the interaction with detailed mechanistic actions, identified the knowledge gaps for future research and potential clinical implications. Such knowledge is important for the practice of both conventional and complementary medicines, and it is essential to ensure the safe use of related herbal medicines. The review may be of great interest to practitioners, consumers, clinicians who require comprehensive information on the possible drug interactions with S. baicalensis and its bioactives.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ling Fu
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, People's Republic of China; The Second Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Second Chinese Medicine Hospital), Nanjing, Jiangsu 210017, People's Republic of China
| | - Pengli Wang
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia; School of Chinese Medicine, School of Integrated Chinese & Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lan Yang
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia; School of Chinese Medicine, School of Integrated Chinese & Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xiaoshu Zhu
- Chinese Medicine Centre, School of Health Sciences, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
17
|
Ishfaq M, Chen C, Bao J, Zhang W, Wu Z, Wang J, Liu Y, Tian E, Hamid S, Li R, Ding L, Li J. Baicalin ameliorates oxidative stress and apoptosis by restoring mitochondrial dynamics in the spleen of chickens via the opposite modulation of NF-κB and Nrf2/HO-1 signaling pathway during Mycoplasma gallisepticum infection. Poult Sci 2020; 98:6296-6310. [PMID: 31376349 PMCID: PMC8913776 DOI: 10.3382/ps/pez406] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Mycoplasma gallisepticum (MG) infection produces a profound inflammatory response in the respiratory tract and evade birds' immune recognition to establish a chronic infection. Previous reports documented that the flavonoid baicalin possess potent anti-inflammatory, and antioxidant activities. However, whether baicalin prevent immune dysfunction is largely unknown. In the present study, the preventive effects of baicalin were determined on oxidative stress generation and apoptosis in the spleen of chickens infected with MG. Histopathological examination showed abnormal morphological changes including cell hyperplasia, lymphocytes depletion, and the red and white pulp of spleen were not clearly visible in the model group. Oxidative stress-related parameters were significantly (P < 0.05) increased in the model group. However, baicalin treatment significantly (P < 0.05) ameliorated oxidative stress and partially alleviated the abnormal morphological changes in the chicken spleen compared to model group. Terminal deoxynucleotidyl transferase–mediated dUTP nick endlabeling assay results, mRNA, and protein expression levels of mitochondrial apoptosis-related genes showed that baicalin significantly attenuated apoptosis. Moreover, baicalin restored the mRNA expression of mitochondrial dynamics-related genes and maintain the balance between mitochondrial inner and outer membranes. Intriguingly, the protective effects of baicalin were associated with the upregulation of nuclear factor erythroid 2–related factor 2 (Nrf2)/Heme oxygenase-1 (HO-1) pathway and suppression of nuclear factor-kappa B (NF-κB) pathway in the spleen of chicken. In summary, these findings indicated that baicalin promoted mitochondrial dynamics imbalance and effectively prevents oxidative stress and apoptosis in the splenocytes of chickens infected with MG.
Collapse
Affiliation(s)
- Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Chunli Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jiaxin Bao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Wei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Zhiyong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jian Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Yuhao Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Erjie Tian
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Sattar Hamid
- Department of Animal health, The University of Agriculture, Peshawar 25130, Pakistan
| | - Rui Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Liangjun Ding
- College of life Science, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, P. R. China
| |
Collapse
|
18
|
Mo F, Ma J, Zhang P, Zhang D, Fan H, Yang X, Zhi L, Zhang J. Solubility and thermodynamic properties of baicalein in water and ethanol mixtures from 283.15 to 328.15 K. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1700116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Fei Mo
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Jia Ma
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Peipei Zhang
- Biobank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P. R. China
| | - Dawei Zhang
- Department of Psychiatry and Psychology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P. R. China
| | - Huihui Fan
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Xin Yang
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P. R. China
| | - Liqiang Zhi
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, P. R. China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, P. R. China
| |
Collapse
|
19
|
Yi L, Yu J, Han L, Li T, Yang H, Huang C. Combination of baicalein and ethanol-wet-bonding improves dentin bonding durability. J Dent 2019; 90:103207. [PMID: 31586587 DOI: 10.1016/j.jdent.2019.103207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the potential of baicalein combined with ethanol-wet bonding (EWB) in improving dentin bonding durability. METHODS Sixty caries-free human third molars were randomly allocated into four groups and pretreated with solutions after sectioning and polishing. The pretreatments were prepared via dissolving baicalein in ethanol at concentrations of 0, 0.01%, 0.05% and 0.1% (w/v). Microtensile bond strength (MTBS) test, failure mode analysis and interfacial nanoleakage evaluation were conducted immediately or after thermocycling or 1 month of collagenase aging. In situ zymography, contact angle, antibacterial activity and bioactivity were comprehensively assessed. RESULTS Results demonstrated that the three experimental groups exhibited higher MTBS and lower nanoleakage expression regardless of aging. MMP activity within hybrid layer and Streptococcus. mutans biofilm formation were inhibited in the experimental groups in a dose-dependent manner. Baicalein also reduced reactive oxygen species (ROS) expression in human dental pulp cells and resisted adhesive-induced cytotoxicity. Baicalein exhibited remarkable capabilities at concentrations higher than 0.05% (w/v). CONCLUSION Baicalein is a prospective candidate as bioactive dentin bonding agent. Combined with EWB, baicalein may form a functional bonding interface, thereby enhancing dentin bond strength and durability. SIGNIFICANCE Joint efforts by baicalein and EWB provides a novel therapeutic strategy for obtaining ideal adhesive-dentin interface and prolonging the longevity of restorations.
Collapse
Affiliation(s)
- Luyao Yi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin Han
- CR&WISCO General Hospital, Wuhan, China
| | - Tingting Li
- Lanzhou Hospital of Stomatology, Lanzhou, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Optimization of on-chip bacterial culture conditions using the Box-Behnken design response surface methodology for faster drug susceptibility screening. Talanta 2019; 194:627-633. [DOI: 10.1016/j.talanta.2018.10.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/25/2023]
|
21
|
Tang L, Hong B, Li T, Huang B. Development of bilayer films based on shellac and esterified cellulose nanocrystals for buccal drug delivery. CELLULOSE 2019; 26:1157-1167. [DOI: 10.1007/s10570-018-2114-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/07/2018] [Indexed: 01/03/2025]
|
22
|
Shen H, Liu Y, Zhang H, Ding P, Zhang L, Zhang L, Ju J. Enhancing the oral bioavailability of baicalein via Solutol ® HS15 and Poloxamer 188 mixed micelles system. ACTA ACUST UNITED AC 2018; 71:765-773. [PMID: 30549042 DOI: 10.1111/jphp.13058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To increase the solubility of baicalein (BAI) by preparing BAI-micelles (BAI-M) with Solutol HS15 (HS15) and Poloxamer 188 (F68), thereby improving its oral bioavailability. METHODS Baicalein micelles were prepared with HS15 and F68 by thin-film dispersion method and optimized by central composite design (CCD) approach. Physicochemical, in vitro release, Caco-2 cell transport and pharmacokinetic studies of BAI-M were performed. KEY FINDINGS The optimal formulation showed spherical shape by characterization of the transmission electron microscope with average small size (23.14 ± 1.46 nm) and high entrapment efficiency (92.78±0.98%) and drug loading (6.45±1.54%). The in vitro release study of BAI-M showed a significantly sustained release pattern compared with free BAI. Caco-2 cell transport study demonstrated that high permeability of BAI was achieved after loading it into micelles. Meanwhile, pharmacokinetics study of BAI-M showed a 3.02-fold increase in relative oral bioavailability compared with free BAI. CONCLUSIONS Based on our findings, we concluded that HS15 can be used as a carrier in this drug delivery system that includes F68, and BAI-M has great potential in improving solubility and oral bioavailability.
Collapse
Affiliation(s)
- Hongxue Shen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.,Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yi Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Huanhuan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Pinggang Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Lan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Liefeng Zhang
- Jiangsu Key Laboratory for Moleculer and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Antimicrobial Activity of Piper marginatum Jacq and Ilex guayusa Loes on Microorganisms Associated with Periodontal Disease. Int J Microbiol 2018; 2018:4147383. [PMID: 30356383 PMCID: PMC6176333 DOI: 10.1155/2018/4147383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
Background Chronic periodontitis is a multifactorial infectious disease, where multiple bacteria, such as Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum are implicated. The main purpose of researching natural products is to find substances or compounds with antimicrobial activity. Aim The objective of this work was to determine antimicrobial activity from extracts and obtained fractions from Piper marginatum Jacq and Ilex guayusa Loes on P. gingivalis ATCC 33277, F. nucleatum ATCC 25586, and P. intermedia ATCC 25611. Methods Total ethanol extracts were obtained from both plants. Fractions were obtained from total ethanol extracts with amberlite as a stationary phase employing hexane, acetone, and ethanol-water as solvents. Qualitative and quantitative phytochemical characterization was performed on total ethanol extracts from both plants. Antimicrobial activity from total ethanol extracts and fractions from both plants were evaluated on P. gingivalis ATCC 33277, F. nucleatum ATCC 25586, and P. intermedia ATCC by the well diffusion method with Wilkins-Chalgren agar. Results Piper marginatum Jacq total ethanol extract presented antimicrobial activity against all three bacteria, whereas Ilex guayusa Loes was only efficient against P. gingivalis ATCC 33277 and P. intermedia ATCC 25611, with inhibition halos from 9.3 to 30 mm. Ilex guayusa Loes obtained fractions presented antimicrobial activity against all three microorganisms evaluated, with inhibition halos ranging from 9.7 to 18.7 mm. In regards to Piper marginatum Jacq fractions, inhibition halos were between 8.3 and 19 mm, against all three microorganisms evaluated; only hexane fraction did not present antimicrobial activity against F. nucleatum ATCC 25586. Conclusion Piper marginatum Jacq and Ilex guayusa Loes total ethanol extracts and fractions presented outstanding antimicrobial activity against P. gingivalis ATCC 33277, P. intermedia ATCC 25611, and F. nucleatum ATCC 25586.
Collapse
|
24
|
Lee KY, Cha SM, Choi SM, Cha JD. Antibacterial and synergistic effects of the n-BuOH fraction of Sophora flavescens root against oral bacteria. J Oral Sci 2018; 59:77-86. [PMID: 28367902 DOI: 10.2334/josnusd.16-0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The antibacterial activity of an extract and several fractions of Sophora flavescens (S. flavescens) root alone and in combination with antibiotics against oral bacteria was investigated by checkerboard assay and time-kill assay. The minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) values for all examined bacteria were 0.313-2.5/0.625-2.5 μg/mL for the n-BuOH fraction, 0.625-5/1.25-10 μg/mL for the EtOAc fraction, 0.25-8/0.25-16 μg/mL for ampicillin, 0.5-256/1-512 μg/mL for gentamicin, 0.008-32/0.016-64 μg/mL for erythromycin, and 0.25-64/0.5-128 μg/mL for vancomycin. The n-butanol (n-BuOH) and ethyl acetate (EtOAc) fractions exhibited stronger antibacterial activity against oral bacteria than other fractions and extracts. The MICs and MBCs were reduced to between one half and one quarter when the n-BuOH and EtOAc fractions were combined with antibiotics. After 24 h of incubation, combination of 1/2 MIC of the n-BuOH fraction with antibiotics increased the degree of bactericidal activity. The present results suggest that n-BuOH and EtOAc extracts of S. flavescens root might be applicable as new natural antimicrobial agents against oral pathogens.
Collapse
Affiliation(s)
- Kyung-Yeol Lee
- Department of Oral Microbiology, School of Dentistry, Chonbuk National University
| | | | | | | |
Collapse
|
25
|
Cha JD, Jung EK, Choi SM, Lee KY, Kang SW. Antimicrobial activity of the chloroform fraction of Drynaria fortunei against oral pathogens. J Oral Sci 2018; 59:31-38. [PMID: 28367899 DOI: 10.2334/josnusd.16-0150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Drynaria fortunei (D. fortunei), widely used in traditional Korean medicine, is reportedly effective in treating inflammation, hyperlipidemia, bone fractures, oxidative damage, arteriosclerosis, rheumatism, and gynecological diseases. The objective of this study was to evaluate the antibacterial effects of the chloroform fraction of D. fortunei (DFCF) and assess the synergistic effects of DFCF with antibiotics against bacterial pathogens. This was carried out by calculating the minimal inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) and performing checkerboard dilution test and time-kill assays. The MICs/MBCs for DFCF, ampicillin, and gentamicin against all oral strains were >39-2,500/5,000 μg/mL, 0.25-64/0.25-64 µg/mL, and 0.5-256/1-512 µg/mL, respectively. DFCF exhibited the highest activity against the periodontic pathogens Prevotella intermedia and Porphylomonas gingivalis. DFCF in combination with ampicillin showed a strong synergistic effect against oral bacteria (fractional inhibitory concentration (FIC) index ≤0.5), whereas on combining with gentamicin, it reduced the on half-eighth times than used alone (FICI ≤ 0.5). DFCF combined with ampicillin or gentamicin killed 100% of most tested bacteria within 3-4 h. The results of this study demonstrate the antimicrobial and synergistic activity of DFCF and antibiotics against oral pathogens.
Collapse
Affiliation(s)
- Jeong-Dan Cha
- Department of Oral Microbiology and Institute of Oral Bioscience, Chonbuk National University
| | | | | | | | | |
Collapse
|
26
|
Wang YF, Tang ZH, Li T, Xu XH, Chen X, Wang Y, Wang YT, Lu JJ. Baicalein protects tert‑butyl hydroperoxide‑induced hepatotoxicity dependent of reactive oxygen species removal. Mol Med Rep 2017; 16:8392-8398. [PMID: 28944883 DOI: 10.3892/mmr.2017.7592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 03/30/2017] [Indexed: 11/05/2022] Open
Abstract
Baicalein (BA), one of the major bioactive flavonoids isolated from Scutellariae Radix, possesses various pharmacological activities. The present study aimed to investigate the protective effects of BA on tert‑butyl hydroperoxide (t‑BHP)‑induced hepatotoxicity, and to investigate the potential mechanisms in LO2 cells. BA was demonstrated to possess protective properties against t‑BHP injury in LO2 cells, as evidenced by MTT and lactate dehydrogenase assays. BA significantly prevented t‑BHP‑induced depolarization of mitochondrial membrane potential (MMP), decreased the percentage of apoptotic cells caused by t‑BHP, and prevented intracellular reactive oxygen species (ROS) generation in LO2 cells. Furthermore, BA slightly triggered autophagy in LO2 cells, as evidenced by the elevation of LC3‑II expression, while BA combined treatment with an autophagy inhibitor (chloroquine) or activator (rapamycin) did not alter the hepatoprotective properties. In conclusion, BA may possess a hepatoprotective effect against t‑BHP‑induced liver cell injury, dependent on ROS removal. Therefore, BA may represent a potential drug candidate in protecting hepatotoxicity.
Collapse
Affiliation(s)
- Ya-Fang Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Zheng-Hai Tang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Xiao-Huang Xu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| |
Collapse
|
27
|
Application of Soluplus to Improve the Flowability and Dissolution of Baicalein Phospholipid Complex. Molecules 2017; 22:molecules22050776. [PMID: 28492487 PMCID: PMC6153996 DOI: 10.3390/molecules22050776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 11/16/2022] Open
Abstract
In this study, a novel ternary complex system (TCS) composed of baicalein, phospholipids, and Soluplus was prepared to improve the flowability and dissolution for baicalein phospholipid complex (BPC). TCS was characterized using differential scanning calorimetry (DSC), infrared spectroscopy (IR), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The flowability, solubility, oil–water partition coefficient, in vitro dissolution, and in vivo pharmacokinetics of the system were also evaluated. DSC, IR, PXRD, and SEM data confirmed that the crystal form of baicalein disappeared in BPC and TCS. Furthermore, the angle of repose of TCS of 35° indicated an improvement in flowability, and solubility increased by approximately eight-fold in distilled water when TCS was compared with BPC (41.00 ± 4.89 μg/mL vs. 5.00 ± 0.16 μg/mL). Approximately 91.24% of TCS was released at the end of 60 min in 0.5% SDS (pH = 6.8), which suggested that TCS could improve the dissolution velocity and extent. Moreover, TCS exhibited a considerable enhancement in bioavailability with higher peak plasma concentration (25.55 μg/mL vs. 6.05 μg/mL) and increased AUC0–∞ (62.47 μg·h/mL vs. 50.48 μg·h/mL) with 123.75% relative bioavailability compared with BPC. Thus, Soluplus achieved the purpose of improving the flowability and solubility of baicalein phospholipid complexes. The application of Soluplus to phospholipid complexes has great potential.
Collapse
|
28
|
Yu M, Qi B, Xiaoxiang W, Xu J, Liu X. Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomed Pharmacother 2017; 90:677-685. [PMID: 28415048 DOI: 10.1016/j.biopha.2017.04.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 01/07/2023] Open
Abstract
Baicalein, a bioactive flavonoid, exhibits anti-inflammatory and anti-cancer activities. However, few studies reported the interaction of baicalein with chemotherapeutic agents. Our study showed that baicalein significantly enhanced the chemosensitivity of cisplatin (CDDP) in vivo and in vitro. We found that A549/CDDP (resistant to CDDP) cells not only acquired epithelial-mesenchymal transition (EMT) phenotype, but also showed increased NF-κB activity compared with A549 cells (sensitive to CDDP). Our study further demonstrated that PI3K/Akt/NF-κB pathway controlled CDDP resistance via EMT and NF-κB-mediated apoptosis. Baicalein significantly suppressed the PI3K/Akt/NF-κB pathway, leading to conversion of EMT to mesenchymal-epithelial transition (MET, the reciprocal mesenchymal to epithelial transition), and inhibition of NF-κB-mediated antiapoptotic proteins in A549/CDDP cells. In conclusion, our study demonstrated that baicalein reversed the resistance of human A549 lung adenocarcinoma cells to cisplatin by inhibiting EMT and attenuating apoptosis via PI3K/Akt/NF-κB pathway.
Collapse
Affiliation(s)
- Meiling Yu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, PR China
| | - Benquan Qi
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, PR China
| | - Wu Xiaoxiang
- Department of Pharmacy, The Second Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, PR China
| | - Jian Xu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, PR China
| | - Xiaolin Liu
- Department of Neurology, Bengbu Medical College, Anhui, Bengbu, 233030, PR China.
| |
Collapse
|
29
|
Fernández-Calienes Valdés A, Monzote Fidalgo L, Sariego Ramos I, Marrero Delange D, Morales Rico CL, Mendiola Martínez J, Cuéllar AC. Antiprotozoal screening of the Cuban native plant Scutellaria havanensis. PHARMACEUTICAL BIOLOGY 2016; 54:3197-3202. [PMID: 27564587 DOI: 10.1080/13880209.2016.1216130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/21/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Scutellaria havanensis Jacq. (Lamiaceae) is a native medicinal herb with a history of use in Cuba. OBJECTIVE This study screens the antiprotozoal activity of S. havanensis. MATERIALS AND METHODS Chloroform and methanol extracts from leaves and stems were evaluated in vitro at doses between 0.015 and 200 μg/mL against protozoan parasites: Plasmodium berghei, Trichomonas vaginalis and Leishmania amazonensis. Chloroform and methanol extracts were characterized by GC/MS. Cytotoxicity against mouse peritoneal macrophages was tested in parallel. RESULTS Scutellaria havanensis extracts exhibited IC50 values between 7.7 and 32.2 μg/mL against trophozoites of P. berghei and T. vaginalis; while the extracts were inactive against L. amazonensis promastigotes. Trichomonicidal activity of methanol extract exhibited the best selectivity but chloroform extract showed the highest antiplasmodial, trichomonicidal and cytotoxic activity. The majority of compounds in the chloroform extract were hydroxy and/or methoxyflavones (77.96%), in particular, wogonin (48.27%). In methanol extract, wogonin (5.89%) was detected. Trichomonicidal effect of wogonin was moderate (IC50 = 56 μM) and unspecific with respect to macrophages (SI = 2). On the contrary, antiplasmodial activity of wogonin were particularly active (IC50 = 15 μM) demonstrating a higher selectivity index (SI = 7.4). CONCLUSIONS Wogonin is an active principle compound of the chloroform extract of S. havanensis against P. berghei and T. vaginalis trophozoites, whereas the methanol extract of S. havanensis should be investigated more deeply as a trichomonicide. Our findings suggest that wogonin is potentially useful for the development of antimalarial alternative treatments.
Collapse
Affiliation(s)
| | - Lianet Monzote Fidalgo
- a Department of Parasitology , Institute of Tropical Medicine "Pedro Kourí" , La Lisa , Havana , Cuba
| | - Idalia Sariego Ramos
- a Department of Parasitology , Institute of Tropical Medicine "Pedro Kourí" , La Lisa , Havana , Cuba
| | | | | | - Judith Mendiola Martínez
- a Department of Parasitology , Institute of Tropical Medicine "Pedro Kourí" , La Lisa , Havana , Cuba
| | - Armando Cuéllar Cuéllar
- c Department of Pharmacy , Institute of Pharmacy and Foods, University of Havana , Havana , Cuba
| |
Collapse
|
30
|
Cai W, Fu Y, Zhang W, Chen X, Zhao J, Song W, Li Y, Huang Y, Wu Z, Sun R, Dong C, Zhang F. Synergistic effects of baicalein with cefotaxime against Klebsiella pneumoniae through inhibiting CTX-M-1 gene expression. BMC Microbiol 2016; 16:181. [PMID: 27502110 PMCID: PMC4977660 DOI: 10.1186/s12866-016-0797-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/02/2016] [Indexed: 02/28/2023] Open
Abstract
Background Generation of extended- spectrum β- lactamases is one of the major mechanisms by which clinical Klebsiella pneumoniae develop resistance to antibiotics. Combined antibiotics prove to be a relatively effective method of controlling such resistant strains. Some of Chinese herbal active ingredients are known to have synergistic antibacterial effects. This study is aimed to investigate synergistic effects of Chinese herbal active ingredients with cefotaxime on the extended- spectrum β- lactamase positive strains of Klebsiella pneumoniae, and to analyze mechanism of synergistic action, providing experimental evidence for clinical application of antimicrobial drugs. Results For total sixteen strains including fifteen strains of cefotaxime resistant K. pneumoniae and one extended- spectrum β- lactamase positive standard strain, the synergy rates of cefotaxime with baicalein, matrine, and clavulanic acid were 56.3 %, 0 %, and 100 %, respectively. The fractional inhibitory concentration index of combined baicalein and cefotaxime was correlated with the percentage decrease of cefotaxime MIC of all the strains (r = −0.78, p <0.01). In the group of synergy baicalein and cefotaxime, the transcribed mRNA level of CTX-M-1 after treatment of baicalein was decreased significantly (p <0.05). Moreover, the CTX-M-1 mRNA expression percentage inhibition (100 %, 5/5) was significantly higher than non- synergy group (25 %, 1/4) (p <0.05). Conclusions Our study demonstrated that baicalein exhibited synergistic activity when combined with cefotaxime against some of extended- spectrum β- lactamases positive K. pneumoniae strains by inhibiting CTX-M-1 mRNA expression. However, no direct bactericidal or bacteriostatic activity was involved in the synergistic action. Baicalein seems to be a promising novel effective synergistic antimicrobial agent. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0797-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenhui Cai
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China.,Department of Microbiology and Immunology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yingmei Fu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Wenli Zhang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China
| | - Xiaobei Chen
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Jizi Zhao
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Wuqi Song
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Yujun Li
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Ying Huang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China
| | - Zheng Wu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China
| | - Rui Sun
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China
| | - Chunping Dong
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China
| | - Fengmin Zhang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 157, Baojian Road, Nangang District, Harbin, 150081, China. .,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China.
| |
Collapse
|
31
|
Qiu F, Meng L, Chen J, Jin H, Jiang L. In vitro activity of five flavones from Scutellaria baicalensisin combination with Cefazolin against methicillin resistant Staphylococcus aureus (MRSA). Med Chem Res 2016. [DOI: 10.1007/s00044-016-1685-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Zhou X, Seto SW, Chang D, Kiat H, Razmovski-Naumovski V, Chan K, Bensoussan A. Synergistic Effects of Chinese Herbal Medicine: A Comprehensive Review of Methodology and Current Research. Front Pharmacol 2016; 7:201. [PMID: 27462269 PMCID: PMC4940614 DOI: 10.3389/fphar.2016.00201] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/24/2016] [Indexed: 12/26/2022] Open
Abstract
Traditional Chinese medicine (TCM) is an important part of primary health care in Asian countries that has utilized complex herbal formulations (consisting 2 or more medicinal herbs) for treating diseases over thousands of years. There seems to be a general assumption that the synergistic therapeutic effects of Chinese herbal medicine (CHM) derive from the complex interactions between the multiple bioactive components within the herbs and/or herbal formulations. However, evidence to support these synergistic effects remains weak and controversial due to several reasons, including the very complex nature of CHM, misconceptions about synergy and methodological challenges to study design. In this review, we clarify the definition of synergy, identify common errors in synergy research and describe current methodological approaches to test for synergistic interaction. We discuss the strengths and weaknesses of these models in the context of CHM and summarize the current status of synergy research in CHM. Despite the availability of some scientific data to support the synergistic effects of multi-herbal and/or herb-drug combinations, the level of evidence remains low, and the clinical relevancy of most of these findings is undetermined. There remain significant challenges in the development of suitable methods for synergistic studies of complex herbal combinations.
Collapse
Affiliation(s)
- Xian Zhou
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University Penrith, NSW, Australia
| | - Sai Wang Seto
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University Penrith, NSW, Australia
| | - Dennis Chang
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University Penrith, NSW, Australia
| | - Hosen Kiat
- Faculty of Medicine, University of New South WalesSydney, NSW, Australia; School of Medicine, Western Sydney UniversityCampbelltown, NSW, Australia; Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Valentina Razmovski-Naumovski
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney UniversityPenrith, NSW, Australia; Faculty of Medicine, University of New South WalesSydney, NSW, Australia
| | - Kelvin Chan
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney UniversityPenrith, NSW, Australia; School of Pharmacy and Biomolecular Sciences, Liverpool John Moores UniversityLiverpoor, UK; Faculty of Science, TCM Division, University of TechnologySydney, NSW, Australia
| | - Alan Bensoussan
- School of Science and Health, National Institute of Complementary Medicine, Western Sydney University Penrith, NSW, Australia
| |
Collapse
|
33
|
Bae JY, Park SN. Evaluation of anti-microbial activities of ZnO, citric acid and a mixture of both againstPropionibacterium acnes. Int J Cosmet Sci 2016; 38:550-557. [DOI: 10.1111/ics.12318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/01/2016] [Indexed: 12/18/2022]
Affiliation(s)
- J. Y. Bae
- Department of Fine Chemistry; Cosmetic R&D Center; College of Energy and Biotechnology; Seoul National University of Science and Technology; 232 Gongneung-ro Nowon-gu Seoul 139-743 Korea
| | - S. N. Park
- Department of Fine Chemistry; Cosmetic R&D Center; College of Energy and Biotechnology; Seoul National University of Science and Technology; 232 Gongneung-ro Nowon-gu Seoul 139-743 Korea
| |
Collapse
|
34
|
Leung KCF, Seneviratne CJ, Li X, Leung PC, Lau CBS, Wong CH, Pang KY, Wong CW, Wat E, Jin L. Synergistic Antibacterial Effects of Nanoparticles Encapsulated with Scutellaria baicalensis and Pure Chlorhexidine on Oral Bacterial Biofilms. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E61. [PMID: 28335189 PMCID: PMC5302556 DOI: 10.3390/nano6040061] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 11/17/2022]
Abstract
Scutellariabaicalensis (SB) is a traditional Chinese medicine for treating infectious and inflammatory diseases. Our recent study shows potent antibacterial effects of nanoparticle-encapsulated chlorhexidine (Nano-CHX). Herein, we explored the synergistic effects of the nanoparticle-encapsulated SB (Nano-SB) and Nano-CHX on oral bacterial biofilms. Loading efficiency of Nano-SB was determined by thermogravimetric analysis, and its releasing profile was assessed by high-performance liquid chromatographyusing baicalin (a flavonoid compound of SB) as the marker. The mucosal diffusion assay on Nano-SB was undertaken in a porcine model. The antibacterial effects of the mixed nanoparticles (Nano-MIX) of Nano-SB and Nano-CHX at 9:1 (w/w) ratio were analyzed in both planktonic and biofilm modes of representative oral bacteria. The Nano-MIX was effective on the mono-species biofilms of Streptococcus (S.) mutans, S. sobrinus, Fusobacterium (F.) nucleatum, and Aggregatibacter (A.) actinomycetemcomitans (MIC 50 μg/mL) at 24 h, and exhibited an enhanced effect against the multi-species biofilms such as S. mutans, F. nucleatum, A. actinomycetemcomitans, and Porphyromonas (P.) gingivalis (MIC 12.5 μg/mL) at 24 h that was supported by the findings of both scanning electron microscopy (SEM) and confocal scanning laser microscopy (CLSM). This study shows enhanced synergistic antibacterial effects of the Nano-MIX on common oral bacterial biofilms, which could be potentially developed as a novel antimicrobial agent for clinical oral/periodontal care.
Collapse
Affiliation(s)
- Ken Cham-Fai Leung
- Department of Chemistry, Institute of Creativity, and Partner State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Kowloon, Hong Kong, China.
| | | | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, China.
| | - Ping Chung Leung
- Institute of Chinese Medicine and Partner State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, New Territories, Hong Kong, China.
| | - Clara Bik San Lau
- Institute of Chinese Medicine and Partner State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, New Territories, Hong Kong, China.
| | - Chi-Hin Wong
- Department of Chemistry, Institute of Creativity, and Partner State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Kowloon, Hong Kong, China.
| | - Ka Yan Pang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, China.
| | - Chun Wai Wong
- Institute of Chinese Medicine and Partner State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, New Territories, Hong Kong, China.
| | - Elaine Wat
- Institute of Chinese Medicine and Partner State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, New Territories, Hong Kong, China.
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, China.
| |
Collapse
|
35
|
Plants and other natural products used in the management of oral infections and improvement of oral health. Acta Trop 2016; 154:6-18. [PMID: 26522671 DOI: 10.1016/j.actatropica.2015.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/21/2015] [Accepted: 10/25/2015] [Indexed: 11/20/2022]
Abstract
Challenges of resistance to synthetic antimicrobials have opened new vistas in the search for natural products. This article rigorously reviews plants and other natural products used in oral health: Punica granatum L. (pomegranate), Matricaria recutita L. (chamomile), Camellia sinensis (L.) Kuntze (green tea), chewing sticks made from Diospyros mespiliformis Hochst. ex A.D.C., Diospyros lycioides Desf., and Salvadora persica L. (miswak), honey and propolis from the manuka tree (Leptospermum scoparium J.R. Forst. & G. Forst.), rhein from Rheum rhabarbarum L. (rhubarb), dried fruits of Vitis vinifera L. (raisins), essential oils, probiotics and mushrooms. Further, the review highlights plants from Africa, Asia, Brazil, Mexico, Europe, and the Middle East. Some of the plants' antimicrobial properties and chemical principles have been elucidated. While the use of natural products for oral health is prominent in resource-poor settings, antimicrobial testing is mainly conducted in the following countries (in decreasing order of magnitude): India, South Africa, Brazil, Japan, France, Egypt, Iran, Mexico, Kenya, Switzerland, Nigeria, Australia, Uganda, and the United Kingdom. While the review exposes a dire gap for more studies on clinical efficacy and toxicity, the following emerging trend was noted: basic research on plants for oral health is mainly done in Brazil, Europe and Australia. Brazil, China, India and New Zealand generally conduct value addition of natural products for fortification of toothpastes. African countries focus on bioprospecting and primary production of raw plants and other natural products with antimicrobial efficacies. The Middle East and Egypt predominantly research on plants used as chewing sticks. More research and funding are needed in the field of natural products for oral health, especially in Africa where oral diseases are fuelled by human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS).
Collapse
|
36
|
Zhao F, Fu L, Yang W, Dong Y, Yang J, Sun S, Hou Y. Cardioprotective effects of baicalein on heart failure via modulation of Ca(2+) handling proteins in vivo and in vitro. Life Sci 2015; 145:213-23. [PMID: 26706290 DOI: 10.1016/j.lfs.2015.12.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/25/2015] [Accepted: 12/15/2015] [Indexed: 12/31/2022]
Abstract
AIMS Baicalein is a widely used Chinese herbal medicine extracted from Labiatae plants Scutellaria baicalensis Georgi's dry root, which has multiple pharmacological activities. However, the precise mechanism of baicalein against myocardial remodeling remains poorly understood. The aim of our study was to investigate the underlying mechanism of baicalein treatment in rats model of heart failure (HF) and rat myocardial cells (H9C2). MAIN METHODS HF model was established by abdominal aorta constriction in rats and incubation with 50μM isoproterenol for 48h in H9C2 cells. Various molecular biological experiments were performed to assess the effects of baicalein on cardiac function, myocardial remodeling, apoptosis and Ca(2+) handling proteins. KEY FINDINGS In the present study, first we found that baicalein alleviated HF in vivo. Additionally, treatment with baicalein inhibited the myocardial fibrosis, restrained the expression and activity of MMP2 and MMP9, and suppressed apoptosis in heart tissue. Moreover, baicalein could inhibit the cardiac myocyte hypertrophy and apoptosis induced by isoproterenol in vitro. Finally we found that baicalein could modulate the expressions and activities of Ca(2+) handling proteins, including downregulation of phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and expression of Na(+)/Ca(2+)-exchangers (NCX1), upregulation of sarcoplasmic reticulum Ca(2+) ATPase 2 (SERCA2) and ryanodine receptor 2 (RYR2). Baicalein also restrained the decreased SERCA activity induced by aortic banding. SIGNIFICANCE Our studies suggested that baicalein alleviated myocardial remodeling and improved cardiac function via modulation of Ca(2+) handling proteins, which may be a potential phytochemical flavonoid for therapeutics of HF.
Collapse
Affiliation(s)
- Fali Zhao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Lu Fu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China.
| | - Wei Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yuhui Dong
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Jing Yang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Shoubin Sun
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yuling Hou
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
37
|
Dhanya SR, Kumar SN, Sankar V, Raghu KG, Kumar BSD, Nair MS. Nimbolide from Azadirachta indica and its derivatives plus first-generation cephalosporin antibiotics: a novel drug combination for wound-infecting pathogens. RSC Adv 2015. [DOI: 10.1039/c5ra16071e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We evaluate the in vitro efficacy of nimbolide, desacetylnimbin, and the amide derivatives of nimbolide in combination with first-generation cephalosporin antibiotics against major wound-associated bacterial pathogens.
Collapse
Affiliation(s)
- S. R. Dhanya
- Organic Chemistry Section
- Chemical Sciences and Technology Division
- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram-695019
- India
| | - S. Nishanth Kumar
- Agroprocessing and Natural Products Division
- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram-695019
- India
| | - Vandana Sankar
- Agroprocessing and Natural Products Division
- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram-695019
- India
| | - K. G. Raghu
- Agroprocessing and Natural Products Division
- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram-695019
- India
| | - B. S. Dileep Kumar
- Agroprocessing and Natural Products Division
- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram-695019
- India
| | - Mangalam S. Nair
- Organic Chemistry Section
- Chemical Sciences and Technology Division
- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram-695019
- India
| |
Collapse
|