1
|
Takamura H, Sugitani Y, Morishita R, Yorisue T, Kadota I. Total synthesis and structure-antifouling activity relationship of scabrolide F. Org Biomol Chem 2024; 22:5739-5747. [PMID: 38828517 DOI: 10.1039/d4ob00698d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
An efficient synthetic strategy for scabrolide F (7), a norcembranolide diterpene that was isolated from the Taiwanese soft coral Sinularia scabra, has only recently been reported by our group. Herein, we report details of the first total synthesis of 7. The tetrahydrofuran domain of 7 was stereoselectively constructed via the 5-endo-tet cyclization of a hydroxy vinyl epoxide. The reaction of alkyl iodide 30 with dithiane 38, followed by the introduction of an alkene moiety, afforded allylation precursor 41. The coupling of alkyl iodide 42 and allylic stannane 43 was examined as a model experiment of allylation. Because the desired allylated product 44 was not obtained, an alternative synthetic route toward 7 was investigated instead. In the second synthetic approach, fragment-coupling between alkyl iodide 56 and aldehyde 58, macrolactonization, and transannular ring-closing metathesis were used as the key steps to achieve the first total synthesis of 7. We hope that this synthetic strategy provides access to the total synthesis of other macrocyclic norcembranolides. We also evaluated the antifouling activity and toxicity of 7 and its synthetic intermediates toward the cypris larvae of the barnacle Amphibalanus amphitrite. This study is the first to report the antifouling activity of norcembranolides as well as the biological activity of 7.
Collapse
Affiliation(s)
- Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Yuki Sugitani
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Ryohei Morishita
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Takefumi Yorisue
- Institute of Natural and Environmental Sciences, University of Hyogo, 6 Yayoigaoka, Sanda 669-1546, Japan
- Division of Nature and Environmental Management, Museum of Nature and Human Activities, 6 Yayoigaoka, Sanda 669-1546, Japan
| | - Isao Kadota
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
2
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
Wang SC, Chang MY, Shiau JP, Farooqi AA, Huang YH, Tang JY, Chang HW. Antiproliferation- and Apoptosis-Inducible Effects of a Novel Nitrated [6,6,6]Tricycle Derivative (SK2) on Oral Cancer Cells. Molecules 2022; 27:1576. [PMID: 35268676 PMCID: PMC8911617 DOI: 10.3390/molecules27051576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 12/01/2022] Open
Abstract
The benzo-fused dioxabicyclo[3.3.1]nonane core is the central framework in several natural products. Using this core, we had developed a novel nitrated [6,6,6]tricycle-derived compound containing an n-butyloxy group, namely, SK2. The anticancer potential of SK2 was not assessed. This study aimed to determine the antiproliferative function and investigated possible mechanisms of SK2 acting on oral cancer cells. SK2 preferentially killed oral cancer cells but caused no harmful effect on non-malignant oral cells. After the SK2 exposure of oral cancer cells, cells in the sub-G1 phase accumulated. This apoptosis-like outcome of SK2 treatment was validated to be apoptosis via observing an increasing annexin V population. Mechanistically, apoptosis signalers such as pancaspase, caspases 8, caspase 9, and caspase 3 were activated by SK2 in oral cancer cells. SK2 induced oxidative-stress-associated changes. Furthermore, SK2 caused DNA damage (γH2AX and 8-hydroxy-2'-deoxyguanosine). In conclusion, a novel nitrated [6,6,6]tricycle-derived compound, SK2, exhibits a preferential antiproliferative effect on oral cancer cells, accompanied by apoptosis, oxidative stress, and DNA damage.
Collapse
Affiliation(s)
- Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jun-Ping Shiau
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan;
| | - Yu-Hsiang Huang
- Post-Graduate Year Training (PGY), Department of Clinical Education and Training, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
4
|
5- epi-Sinuleptolide from Soft Corals of the Genus Sinularia Exerts Cytotoxic Effects on Pancreatic Cancer Cell Lines via the Inhibition of JAK2/STAT3, AKT, and ERK Activity. Molecules 2021; 26:molecules26226932. [PMID: 34834023 PMCID: PMC8623039 DOI: 10.3390/molecules26226932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignancies: more than half of patients are diagnosed with a metastatic disease, which is associated with a five-year survival rate of only 3%. 5-epi-Sinuleptolide, a norditerpene isolated from Sinularia sp., has been demonstrated to possess cytotoxic activity against cancer cells. However, the cytotoxicity against pancreatic cancer cells and the related mechanisms are unknown. The aim of this study was to evaluate the anti-pancreatic cancer potential of 5-epi-sinuleptolide and to elucidate the underlying mechanisms. The inhibitory effects of 5-epi-sinuleptolide treatment on the proliferation of pancreatic cancer cells were determined and the results showed that 5-epi-sinuleptolide treatment inhibited cell proliferation, induced apoptosis and G2/M cell cycle arrest, and suppressed the invasion of pancreatic cancer cells. The results of western blotting further revealed that 5-epi-sinuleptolide could inhibit JAK2/STAT3, AKT, and ERK phosphorylation, which may account for the diverse cytotoxic effects of 5-epi-sinuleptolide. Taken together, our present investigation unveils a new therapeutic and anti-metastatic potential of 5-epi-sinuleptolide for pancreatic cancer treatment.
Collapse
|
5
|
Wang SC, Li RN, Lin LC, Tang JY, Su JH, Sheu JH, Chang HW. Comparison of Antioxidant and Anticancer Properties of Soft Coral-Derived Sinularin and Dihydrosinularin. Molecules 2021; 26:molecules26133853. [PMID: 34202721 PMCID: PMC8270243 DOI: 10.3390/molecules26133853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023] Open
Abstract
Marine natural products are abundant resources for antioxidants, but the antioxidant property of the soft corals-derived sinularin and dihydrosinularin were unknown. This study aimed to assess antioxidant potential and antiproliferation effects of above compounds on cancer cells, and to investigate the possible relationships between them. Results show that sinularin and dihydrosinularin promptly reacted with 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), and hydroxyl (•OH), demonstrating a general radical scavenger activity. Sinularin and dihydrosinularin also show an induction for Fe+3-reduction and Fe+2-chelating capacity which both strengthen their antioxidant activities. Importantly, sinularin shows higher antioxidant properties than dihydrosinularin. Moreover, 24 h ATP assays show that sinularin leads to higher antiproliferation of breast, lung, and liver cancer cells than dihydrosinularin. Therefore, the differential antioxidant properties of sinularin and dihydrosinularin may contribute to their differential anti-proliferation of different cancer cells.
Collapse
Affiliation(s)
- Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (R.-N.L.)
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (R.-N.L.)
| | - Li-Ching Lin
- Chi-Mei Foundation Medical Center, Department of Radiation Oncology, Tainan 71004, Taiwan;
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Jui-Hsin Su
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan;
- Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 90078, Taiwan
| | - Jyh-Horng Sheu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: (J.-H.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5030) (J.-H.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Ph.D. Program in Life Sciences, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-C.W.); (R.-N.L.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5030) (J.-H.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
6
|
Temiz E, Koyuncu I, Durgun M, Caglayan M, Gonel A, Güler EM, Kocyigit A, Supuran CT. Inhibition of Carbonic Anhydrase IX Promotes Apoptosis through Intracellular pH Level Alterations in Cervical Cancer Cells. Int J Mol Sci 2021; 22:6098. [PMID: 34198834 PMCID: PMC8201173 DOI: 10.3390/ijms22116098] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Carbonic anhydrase IX (CAIX) is a hypoxia-related protein that plays a role in proliferation in solid tumours. However, how CAIX increases proliferation and metastasis in solid tumours is unclear. The objective of this study was to investigate how a synthetic CAIX inhibitor triggers apoptosis in the HeLa cell line. The intracellular effects of CAIX inhibition were determined with AO/EB, AnnexinV-PI, and γ-H2AX staining; measurements of intracellular pH (pHi), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP); and analyses of cell cycle, apoptotic, and autophagic modulator gene expression (Bax, Bcl-2, caspase-3, caspase-8, caspase-9, caspase-12, Beclin, and LC3), caspase protein level (pro-caspase 3 and cleaved caspase-3, -8, -9), cleaved PARP activation, and CAIX protein level. Sulphonamide CAIX inhibitor E showed the lowest IC50 and the highest selectivity index in CAIX-positive HeLa cells. CAIX inhibition changed the morphology of HeLa cells and increased the ratio of apoptotic cells, dramatically disturbing the homeostasis of intracellular pHi, MMP and ROS levels. All these phenomena consequent to CA IX inhibition triggered apoptosis and autophagy in HeLa cells. Taken together, these results further endorse the previous findings that CAIX inhibitors represent an important therapeutic strategy, which is worth pursuing in different cancer types, considering that presently only one sulphonamide inhibitor, SLC-0111, has arrived in Phase Ib/II clinical trials as an antitumour/antimetastatic drug.
Collapse
Affiliation(s)
- Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa 63300, Turkey
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey; (I.K.); (A.G.)
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Sanliurfa 63290, Turkey
| | - Murat Caglayan
- Department of Medical Biochemistry, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara 06110, Turkey;
| | - Ataman Gonel
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey; (I.K.); (A.G.)
| | - Eray Metin Güler
- Department of Medical Biochemistry, Faculty of Hamidiye Medicine, University of Health Sciences Turkey, Istanbul 34668, Turkey;
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Turkey;
| | - Claudiu T. Supuran
- NEUROFARBA Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
7
|
Manoalide Shows Mutual Interaction between Cellular and Mitochondrial Reactive Species with Apoptosis in Oral Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6667355. [PMID: 33747349 PMCID: PMC7943270 DOI: 10.1155/2021/6667355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/04/2023]
Abstract
We previously found that marine sponge-derived manoalide induced antiproliferation and apoptosis of oral cancer cells as well as reactive species generations probed by dichloro-dihydrofluorescein diacetate (DCFH-DA) and MitoSOX Red. However, the sources of cellular and mitochondrial redox stresses and the mutual interacting effects between these redox stresses and apoptosis remain unclear. To address this issue, we examined a panel of reactive species and used the inhibitors of cellular reactive species (N-acetylcysteine (NAC)), mitochondrial reactive species (MitoTEMPO), and apoptosis (Z-VAD-FMK; ZVAD) to explore their interactions in manoalide-treated oral cancer Ca9-22 and CAL 27 cells. Hydroxyl (˙OH), nitrogen dioxide (NO2˙), nitric oxide (˙NO), carbonate radical-anion (CO3 ˙-), peroxynitrite (ONOO-), and superoxide (O2 ˙-) were increased in oral cancer cells following manoalide treatments in terms of fluorescence staining and flow cytometry. Cellular reactive species (˙OH, NO2 ·, ˙NO, CO3 ˙-, and ONOO-) as well as cellular and mitochondrial reactive species (O2 ˙-) were induced in oral cancer cells following manoalide treatment for 6 h. NAC, MitoTEMPO, and ZVAD inhibit manoalide-induced apoptosis in terms of annexin V and pancaspase activity assays. Moreover, NAC inhibits mitochondrial reactive species and MitoTEMPO inhibits cellular reactive species, suggesting that cellular and mitochondrial reactive species can crosstalk to regulate each other. ZVAD shows suppressing effects on the generation of both cellular and mitochondrial reactive species. In conclusion, manoalide induces reciprocally activation between cellular and mitochondrial reactive species and apoptosis in oral cancer cells.
Collapse
|
8
|
Yu TJ, Tang JY, Ou-Yang F, Wang YY, Yuan SSF, Tseng K, Lin LC, Chang HW. Low Concentration of Withaferin a Inhibits Oxidative Stress-Mediated Migration and Invasion in Oral Cancer Cells. Biomolecules 2020; 10:E777. [PMID: 32429564 PMCID: PMC7277689 DOI: 10.3390/biom10050777] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Withaferin A (WFA) has been reported to inhibit cancer cell proliferation based on high cytotoxic concentrations. However, the low cytotoxic effect of WFA in regulating cancer cell migration is rarely investigated. The purpose of this study is to investigate the changes in migration and mechanisms of oral cancer Ca9-22 cells after low concentrations of WFA treatment. WFA under 0.5 μM at 24 h treatment shows no cytotoxicity to oral cancer Ca9-22 cells (~95% viability). Under this condition, WFA triggers reactive oxygen species (ROS) production and inhibits 2D (wound healing) and 3D cell migration (transwell) and Matrigel invasion. Mechanically, WFA inhibits matrix metalloproteinase (MMP)-2 and MMP-9 activities but induces mRNA expression for a group of antioxidant genes, such as nuclear factor, erythroid 2-like 2 (NFE2L2), heme oxygenase 1 (HMOX1), glutathione-disulfide reductase (GSR), and NAD(P)H quinone dehydrogenase 1 (NQO1)) in Ca9-22 cells. Moreover, WFA induces mild phosphorylation of the mitogen-activated protein kinase (MAPK) family, including extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 expression. All WFA-induced changes were suppressed by the presence of ROS scavenger N-acetylcysteine (NAC). Therefore, these results suggest that low concentration of WFA retains potent ROS-mediated anti-migration and -invasion abilities for oral cancer cells.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Fu Ou-Yang
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Yen-Yun Wang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-Y.W.); (S.-S.F.Y.)
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Shyng-Shiou F. Yuan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-Y.W.); (S.-S.F.Y.)
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Kevin Tseng
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University Medical Technology, Tainan 71703, Taiwan
| | - Hsueh-Wei Chang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-Y.W.); (S.-S.F.Y.)
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Wang HR, Tang JY, Wang YY, Farooqi AA, Yen CY, Yuan SSF, Huang HW, Chang HW. Manoalide Preferentially Provides Antiproliferation of Oral Cancer Cells by Oxidative Stress-Mediated Apoptosis and DNA Damage. Cancers (Basel) 2019; 11:cancers11091303. [PMID: 31487907 PMCID: PMC6770486 DOI: 10.3390/cancers11091303] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/31/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Marine sponge-derived manoalide has a potent anti-inflammatory effect, but its potential application as an anti-cancer drug has not yet been extensively investigated. The purpose of this study is to evaluate the antiproliferative effects of manoalide on oral cancer cells. MTS assay at 24 h showed that manoalide inhibited the proliferation of six types of oral cancer cell lines (SCC9, HSC3, OC2, OECM-1, Ca9-22, and CAL 27) but did not affect the proliferation of normal oral cell line (human gingival fibroblasts (HGF-1)). Manoalide also inhibits the ATP production from 3D sphere formation of Ca9-22 and CAL 27 cells. Mechanically, manoalide induces subG1 accumulation in oral cancer cells. Manoalide also induces more annexin V expression in oral cancer Ca9-22 and CAL 27 cells than that of HGF-1 cells. Manoalide induces activation of caspase 3 (Cas 3), which is a hallmark of apoptosis in oral cancer cells, Ca9-22 and CAL 27. Inhibitors of Cas 8 and Cas 9 suppress manoalide-induced Cas 3 activation. Manoalide induces higher reactive oxygen species (ROS) productions in Ca9-22 and CAL 27 cells than in HGF-1 cells. This oxidative stress induction by manoalide is further supported by mitochondrial superoxide (MitoSOX) production and mitochondrial membrane potential (MitoMP) destruction in oral cancer cells. Subsequently, manoalide-induced oxidative stress leads to DNA damages, such as γH2AX and 8-oxo-2’-deoxyguanosine (8-oxodG), in oral cancer cells. Effects, such as enhanced antiproliferation, apoptosis, oxidative stress, and DNA damage, in manoalide-treated oral cancer cells were suppressed by inhibitors of oxidative stress or apoptosis, or both, such as N-acetylcysteine (NAC) and Z-VAD-FMK (Z-VAD). Moreover, mitochondria-targeted superoxide inhibitor MitoTEMPO suppresses manoalide-induced MitoSOX generation and γH2AX/8-oxodG DNA damages. This study validates the preferential antiproliferation effect of manoalide and explores the oxidative stress-dependent mechanisms in anti-oral cancer treatment.
Collapse
Affiliation(s)
- Hui-Ru Wang
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Yen-Yun Wang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan.
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan.
| | - Shyng-Shiou F Yuan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
10
|
Tang JY, Peng SY, Cheng YB, Wang CL, Farooqi AA, Yu TJ, Hou MF, Wang SC, Yen CH, Chan LP, Ou-Yang F, Chang HW. Ethyl acetate extract of Nepenthes adrianii x clipeata induces antiproliferation, apoptosis, and DNA damage against oral cancer cells through oxidative stress. ENVIRONMENTAL TOXICOLOGY 2019; 34:891-901. [PMID: 31157515 DOI: 10.1002/tox.22748] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 03/10/2019] [Accepted: 03/14/2019] [Indexed: 05/27/2023]
Abstract
Nepenthes plants are regarded as a kind of Traditional Chinese Medicine for several diseases but its anticancer activity remain unclear. The subject of this study is to evaluate the antiproliferation effects on oral cancer cells by Nepenthes plants using ethyl acetate extract of Nepenthes adrianii x clipeata (EANA). Cell viability was detected using MTS assay. Its detailed mechanisms including cell cycle, apoptosis, oxidative stress, and DNA damage were explored by flow cytometry or western blotting. For 24 hours EANA treatment, five kinds of oral cancer cells (CAL 27, Ca9-22, OECM-1, HSC-3, and SCC9) show IC50 values of cell viability ranging from 8 to 17 μg/mL but the viability of normal oral cells (HGF-1) remains over 80%. Subsequently, CAL 27 and Ca9-22 cells with high sensitivity to EANA were chosen to investigate the detailed mechanism. EANA displays the time course and concentration effects for inducing apoptosis based on flow cytometry (subG1 and annexin V analyses) and western blotting [cleaved poly (ADP-ribose) polymerase (c-PARP)]. Oxidative stress and DNA damage were induced by EANA treatments in oral cancer cells through reactive oxygen species (ROS), mitochondrial membrane potential disruption, mitochondrial superoxide, and γH2AX. All these changes of EANA treatments in oral cancer cells were reverted by the ROS scavenger N-acetylcysteine pretreatment. Therefore, EANA induces preferential killing, apoptosis, and DNA damage against oral cancer cells through oxidative stress.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Faculty of Medicine, Department of Radiation Oncology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sheng-Yao Peng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Lin Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | | | - Tzu-Jung Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Chieh Wang
- College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Leong-Perng Chan
- Department of Otolaryngology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Otorhinolaryngology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fu Ou-Yang
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Tang JY, Xu YH, Lin LC, Ou-Yang F, Wu KH, Tsao LY, Yu TJ, Huang HW, Wang HR, Liu W, Chang HW. LY303511 displays antiproliferation potential against oral cancer cells in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2019; 34:958-967. [PMID: 31115172 DOI: 10.1002/tox.22767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
LY303511 was developed as a negative control of LY294002 without pan-phosphoinositide 3-kinase (PI3K) inhibition. We hypothesize LY303511 generate reactive oxygen species (ROS) to induce apoptosis for killing oral cancer cells. In MTS assay, LY303511 dose-responsively decreases survival in three kinds of oral cancer cells but little damage to normal oral cells (HGF-1). Two oral cancer cells (CAL 27 and SCC-9) with highly sensitivity to LY303511 were used. In 7-aminoactinomycin D (7AAD) assay, LY303511 slightly increases subG1 population in oral cancer cells. In annexin V/7AAD and/or pancaspase assays, LY303511 induces apoptosis in oral cancer cells but HGF-1 cells remains in basal level. In oxidative stress, LY303511 induces ROS and mitochondrial superoxide in oral cancer cells. In 8-oxo-2'-deoxyguanosine assay, LY303511 induces oxidative DNA damage in oral cancer cells. In zebrafish model, LY303511 inhibits CAL 27-xenografted tumor growth. Therefore, LY303511 displays antiproliferation potential against oral cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yi-Hua Xu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan, Taiwan
- School of Medicine, Taipei Medical University, Taipei, Taiwan
- Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Fu Ou-Yang
- Division of Breast Surgery and Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuang-Han Wu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Yi Tsao
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Jung Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hui-Ru Wang
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Tang JY, Yu TJ, Lin LC, Peng SY, Wang CL, Ou-Yang F, Cheng YB, Chang HW. Ethyl acetate extracts of Nepenthes ventricosa x sibuyanensis leaves cause growth inhibition against oral cancer cells via oxidative stress. Onco Targets Ther 2019; 12:5227-5239. [PMID: 31308694 PMCID: PMC6614826 DOI: 10.2147/ott.s190460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/11/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction: The genus Nepenthes of the pitcher plants contains several natural and hybrid species that are commonly used in herbal medicine in several countries, but its possible use in cancer applications remains unknown as yet. Methods: In this study, we investigated the antioral cancer properties using ethyl acetate extracts of the Nepenthes hybrid (Nepenthes ventricosa x sibuyanensis), namely EANS. The bioactivity was detected by a MTS-based cell proliferation assay and flow cytometric or Western blot analysis for apoptosis, oxidative stress, and DNA damage. Results: Treatment for 24 hrs of EANS inhibited all three types of oral cancer cells that were tested (Ca9-22, CAL 27, and SCC9), with just a small difference to normal oral cells (HGF-1). This antiproliferation was inhibited by pretreatments with the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC), and the apoptosis inhibitor (Z-VAD). EANS treatment increased the subG1 population and it also dose- and time-dependently induced annexin V- and pancaspase-detected apoptosis as well as cleaved caspases 3 and 9 overexpressions in the oral cancer cells (Ca9-22). After EANS treatment of Ca9-22 cells, intracellular ROS and mitochondrial superoxide (MitoSOX) were overexpressed and mitochondrial membrane potential (MMP) was disrupted. Moreover, DNA damages such as γH2AX and 8-oxo-2ʹ-deoxyguanosine (8-oxodG) were increased after EANS treatment to Ca9-22 cells. The EANS-induced effects (namely, oxidative stress, apoptosis, and DNA damage) were suppressed by ROS scavenger. Conclusion: Our findings demonstrated that EANS inhibits ROS-mediated proliferation against oral cancer cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Tzu-Jung Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan.,School of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Sheng-Yao Peng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Lin Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Fu Ou-Yang
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.,Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
13
|
Keyvanloo Shahrestanaki M, Bagheri M, Ghanadian M, Aghaei M, Jafari SM. Centaurea cyanus
extracted 13‐O‐acetylsolstitialin A decrease Bax/Bcl‐2 ratio and expression of cyclin D1/Cdk‐4 to induce apoptosis and cell cycle arrest in MCF‐7 and MDA‐MB‐231 breast cancer cell lines. J Cell Biochem 2019; 120:18309-18319. [DOI: 10.1002/jcb.29141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Mohammad Keyvanloo Shahrestanaki
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan I.R. Iran
| | - Mahboobeh Bagheri
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan I.R. Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy Isfahan University of Medical Sciences Isfahan I.R. Iran
- National Center for Natural Products Research, School of Pharmacy Mississippi University Oxford Mississippi
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan I.R. Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center Golestan University of Medical Sciences Gorgan I.R. Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine Golestan University of Medical Sciences Gorgan I.R. Iran
| |
Collapse
|
14
|
Koyuncu I, Gonel A, Kocyigit A, Temiz E, Durgun M, Supuran CT. Selective inhibition of carbonic anhydrase-IX by sulphonamide derivatives induces pH and reactive oxygen species-mediated apoptosis in cervical cancer HeLa cells. J Enzyme Inhib Med Chem 2018; 33:1137-1149. [PMID: 30001631 PMCID: PMC6052416 DOI: 10.1080/14756366.2018.1481403] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/07/2023] Open
Abstract
Selective inhibition with sulphonamides of carbonic anhydrase (CA) IX reduces cell proliferation and induces apoptosis in human cancer cells. The effect on CA IX expression of seven previously synthesised sulphonamide inhibitors, with high affinity for CA IX, as well as their effect on the proliferation/apoptosis of cancer/normal cell lines was investigated. Two normal and three human cancer cell lines were used. Treatment resulted in dose- and time-dependent inhibition of the growth of various cancer cell lines. One compound showed remarkably high toxicity towards CA IX-positive HeLa cells. The mechanisms of apoptosis induction were determined with Annexin-V and AO/EB staining, cleaved caspases (caspase-3, caspase-8, caspase-9) and cleaved PARP activation, reactive oxygen species production (ROS), mitochondrial membrane potential (MMP), intracellular pH (pHi), extracellular pH (pHe), lactate level and cell cycle analysis. The autophagy induction mechanisms were also investigated. The modulation of apoptotic and autophagic genes (Bax, Bcl-2, caspase-3, caspase-8, caspase-9, caspase-12, Beclin and LC3) was measured using real time PCR. The positive staining using γ-H2AX and AO/EB dye, showed increased cleaved caspase-3, caspase-8, caspase-9, increased ROS production, MMP and enhanced mRNA expression of apoptotic genes, suggesting that anticancer effects are also exerted through its apoptosis-inducing properties. Our results show that such sulphonamides might have the potential as new leads for detailed investigations against CA IX-positive cervical cancers.
Collapse
Affiliation(s)
- Ismail Koyuncu
- Department of Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ataman Gonel
- Department of Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Abdurrahim Kocyigit
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ebru Temiz
- Department of Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Sanliurfa, Turkey
| | - Claudiu T. Supuran
- Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Polo Scientifico, Sesto Fiorentino, Florence, Italy
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
15
|
Tang JY, Wu CY, Shu CW, Wang SC, Chang MY, Chang HW. A novel sulfonyl chromen-4-ones (CHW09) preferentially kills oral cancer cells showing apoptosis, oxidative stress, and DNA damage. ENVIRONMENTAL TOXICOLOGY 2018; 33:1195-1203. [PMID: 30256521 DOI: 10.1002/tox.22625] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Several functionalized chromones, the key components of naturally occurring oxygenated heterocycles, have anticancer effects but their sulfone compounds are rarely investigated. In this study, we installed a sulfonyl substituent to chromen-4-one skeleton and synthesized CHW09 to evaluate its antioral cancer effect in terms of cell viability, cell cycle, apoptosis, oxidative stress, and DNA damage. In cell viability assay, CHW09 preferentially kills two oral cancer cells (Ca9-22 and CAL 27), less affecting normal oral cells (HGF-1). Although CHW09 does not change the cell cycle distribution significantly, CHW09 induces apoptosis validated by flow cytometry for annexin V and by western blotting for cleaved poly(ADP-ribose) polymerase (PARP), and caspases 3/8/9. These apoptosis signaling expressions are partly decreased by apoptosis inhibitor (Z-VAD-FMK) or free radical scavenger (N-acetylcysteine). Furthermore, CHW09 induces oxidative stress validated by flow cytometry for the generations of reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX), and the suppression of mitochondrial membrane potential (MMP). CHW09 also induces DNA damage validated by flow cytometry for the increases of DNA double strand break marker γH2AX and oxidative DNA damage marker 8-oxo-2'-deoxyguanosine (8-oxodG). Therefore, our newly synthesized CHW09 induces apoptosis, oxidative stress, and DNA damage, which may lead to preferential killing of oral cancer cells compared with normal oral cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Sheng-Chieh Wang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Sinularin Selectively Kills Breast Cancer Cells Showing G2/M Arrest, Apoptosis, and Oxidative DNA Damage. Molecules 2018; 23:molecules23040849. [PMID: 29642488 PMCID: PMC6017762 DOI: 10.3390/molecules23040849] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/31/2023] Open
Abstract
The natural compound sinularin, isolated from marine soft corals, is antiproliferative against several cancers, but its possible selective killing effect has rarely been investigated. This study investigates the selective killing potential and mechanisms of sinularin-treated breast cancer cells. In 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolium, inner salt (MTS) assay, sinularin dose-responsively decreased the cell viability of two breast cancer (SKBR3 and MDA-MB-231) cells, but showed less effect on breast normal (M10) cells after a 24 h treatment. According to 7-aminoactinomycin D (7AAD) flow cytometry, sinularin dose-responsively induced the G2/M cycle arrest of SKBR3 cells. Sinularin dose-responsively induced apoptosis on SKBR3 cells in terms of a flow cytometry-based annexin V/7AAD assay and pancaspase activity, as well as Western blotting for cleaved forms of poly(ADP-ribose) polymerase (PARP), caspases 3, 8, and 9. These caspases and PARP activations were suppressed by N-acetylcysteine (NAC) pretreatment. Moreover, sinularin dose-responsively induced oxidative stress and DNA damage according to flow cytometry analyses of reactive oxygen species (ROS), mitochondrial membrane potential (MitoMP), mitochondrial superoxide, and 8-oxo-2'-deoxyguanosine (8-oxodG)). In conclusion, sinularin induces selective killing, G2/M arrest, apoptosis, and oxidative DNA damage of breast cancer cells.
Collapse
|
17
|
Tang JY, Huang HW, Wang HR, Chan YC, Haung JW, Shu CW, Wu YC, Chang HW. 4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:295-304. [PMID: 29165875 DOI: 10.1002/tox.22516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Ru Wang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ya-Ching Chan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jo-Wen Haung
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Genç H, Barutca B, Koparal AT, Özöğüt U, Şahin Y, Suvacı E. Biocompatibility of designed MicNo-ZnO particles: Cytotoxicity, genotoxicity and phototoxicity in human skin keratinocyte cells. Toxicol In Vitro 2017; 47:238-248. [PMID: 29223573 DOI: 10.1016/j.tiv.2017.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/31/2017] [Accepted: 12/05/2017] [Indexed: 11/30/2022]
Abstract
Recently, designed platelet shaped micron particles that are composed of nano primary particles, called MicNo (=Micron+naNo) particles, have been developed to exploit the benefits of nano size, while removing the adverse effects of nanoparticles. It has been shown that MicNo-ZnO particles exhibit both micron and nanosized particle characteristics. Although physical and chemical properties of MicNo-ZnO particles have been studied, their biocompatibility has not yet been evaluated. Accordingly, the research objective of this study was to evaluate in vitro cytotoxicity, genotoxicity and phototoxicity behaviors of designed MicNo-ZnO particles over human epidermal keratinocyte (HaCaT) cells. MicNo-ZnO particles exhibit much less cytotoxicity with IC50 concentrations between 40 and 50μg/ml, genotoxicity above 40μg/ml and lower photo genotoxicity under UVA on HaCaT than the ZnO nanoparticles. Although their chemistries are the same, the source of this difference in toxicity values may be attributed to size differences between the particles that are probably due to their ability to penetrate into the cells. In the present study, the expansive and detailed in vitro toxicity tests show that the biocompatibility of MicNo-ZnO particles is much better than that of the ZnO nanoparticles. Consequently, MicNo-ZnO particles can be considered an important active ingredient alternative for sunscreen applications due to their safer characteristics with respect to ZnO nanoparticles.
Collapse
Affiliation(s)
- Hatice Genç
- Anadolu University, Faculty of Science, Department of Biology, 26470 Eskişehir, Turkey
| | - Banu Barutca
- Anadolu University, Faculty of Science, Department of Biology, 26470 Eskişehir, Turkey
| | - A Tansu Koparal
- Anadolu University, Faculty of Science, Department of Biology, 26470 Eskişehir, Turkey.
| | - Uğurcan Özöğüt
- Anadolu University, Department of Materials Science and Engineering, 26470 Eskisehir, Turkey
| | - Yücel Şahin
- Anadolu University, Faculty of Science, Department of Chemistry, 26470 Eskişehir, Turkey
| | - Ender Suvacı
- Anadolu University, Department of Materials Science and Engineering, 26470 Eskisehir, Turkey.
| |
Collapse
|
19
|
Morretta E, Esposito R, Festa C, Riccio R, Casapullo A, Monti MC. Discovering the Biological Target of 5-epi-Sinuleptolide Using a Combination of Proteomic Approaches. Mar Drugs 2017; 15:md15100312. [PMID: 29027931 PMCID: PMC5666420 DOI: 10.3390/md15100312] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022] Open
Abstract
Sinuleptolide and its congeners are diterpenes with a norcembranoid skeleton isolated from the soft coral genus Sinularia. These marine metabolites are endowed with relevant biological activities, mainly associated with cancer development. 5-epi-sinuleptolide has been selected as a candidate for target discovery studies through the application of complementary proteomic approaches. Specifically, a combination of conventional chemical proteomics based on affinity chromatography, coupled with high-resolution mass spectrometry and bioinformatics, as well as drug affinity responsive target stability (DARTS), led to a clear identification of actins as main targets for 5-epi-sinuleptolide. Subsequent in-cell assays, performed with cytochalasin D as reference compound, gave information on the ability of 5-epi-sinuleptolide to disrupt the actin cytoskeleton by loss of actin fibers and formation of F-actin amorphous aggregates. These results suggest the potential application of 5-epi-sinuleptolide as a useful tool in the study of the molecular processes impaired in several disorders in which actin is thought to play an essential role.
Collapse
Affiliation(s)
- Elva Morretta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
- PhD Program in Drug Discovery and Development; University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Roberta Esposito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy.
| | - Raffaele Riccio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| |
Collapse
|
20
|
Chang HW, Li RN, Wang HR, Liu JR, Tang JY, Huang HW, Chan YH, Yen CY. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells. Front Physiol 2017; 8:634. [PMID: 28936177 PMCID: PMC5594071 DOI: 10.3389/fphys.2017.00634] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/14/2017] [Indexed: 12/18/2022] Open
Abstract
Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells.
Collapse
Affiliation(s)
- Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University HospitalKaohsiung, Taiwan.,Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical UniversityKaohsiung, Taiwan.,Research Center for Natural Products and Drug Development, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen UniversityKaohsiung, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Hui-Ru Wang
- Institute of Biomedical Science, National Sun Yat-Sen UniversityKaohsiung, Taiwan
| | - Jing-Ru Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University HospitalKaohsiung, Taiwan.,Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung HospitalKaohsiung, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen UniversityKaohsiung, Taiwan
| | - Yu-Hsuan Chan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical CenterTainan, Taiwan.,School of Dentistry, Taipei Medical UniversityTaipei, Taiwan
| |
Collapse
|
21
|
Chang YT, Wu CY, Tang JY, Huang CY, Liaw CC, Wu SH, Sheu JH, Chang HW. Sinularin induces oxidative stress-mediated G2/M arrest and apoptosis in oral cancer cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2124-2132. [PMID: 28548367 DOI: 10.1002/tox.22425] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/21/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Soft corals-derived natural product, sinularin, was antiproliferative against some cancers but its effect and detailed mechanism on oral cancer cells remain unclear. The subject of this study is to examine the antioral cancer effects and underlying detailed mechanisms in terms of cell viability, oxidative stress, cell cycle analysis, and apoptosis analyses. In MTS assay, sinularin dose-responsively decreased cell viability of three oral cancer cells (Ca9-22, HSC-3, and CAL 27) but only little damage to oral normal cells (HGF-1). This cell killing effect was rescued by the antioxidant N-acetylcysteine (NAC) pretreatment. Abnormal cell morphology and induction of reactive oxygen species (ROS) were found in sinularin-treated oral cancer Ca9-22 cells, however, NAC pretreatment also recovered these changes. Sinularin arrested the Ca9-22 cells at G2/M phase and dysregulated the G2/M regulatory proteins such as cdc2 and cyclin B1. Sinularin dose-responsively induced apoptosis on Ca9-22 cells in terms of flow cytometry (annexin V and pancaspase analyses) and western blotting (caspases 3, 8, 9) and poly (ADP-ribose) polymerase (PARP). These apoptotic changes of sinularin-treated Ca9-22 cells were rescued by NAC pretreatment. Taken together, sinularin induces oxidative stress-mediated antiproliferation, G2/M arrest, and apoptosis against oral cancer cells and may be a potential marine drug for antioral cancer therapy.
Collapse
Affiliation(s)
- Yung-Ting Chang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, 80145, Taiwan
| | - Chiung-Yao Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chih-Chuang Liaw
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Shih-Hsiung Wu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11524, Taiwan
| | - Jyh-Horng Sheu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Center for Research Resources and Development of Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
- Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
22
|
Cheng MF, Lin CS, Chen YH, Sung PJ, Lin SR, Tong YW, Weng CF. Inhibitory Growth of Oral Squamous Cell Carcinoma Cancer via Bacterial Prodigiosin. Mar Drugs 2017; 15:md15070224. [PMID: 28714874 PMCID: PMC5532666 DOI: 10.3390/md15070224] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/02/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy drugs for oral cancers always cause side effects and adverse effects. Currently natural sources and herbs are being searched for treated human oral squamous carcinoma cells (OSCC) in an effort to alleviate the causations of agents in oral cancers chemotherapy. This study investigates the effect of prodigiosin (PG), an alkaloid and natural red pigment as a secondary metabolite of Serratia marcescens, to inhibit human oral squamous carcinoma cell growth; thereby, developing a new drug for the treatment of oral cancer. In vitro cultured human OSCC models (OECM1 and SAS cell lines) were used to test the inhibitory growth of PG via cell cytotoxic effects (MTT assay), cell cycle analysis, and Western blotting. PG under various concentrations and time courses were shown to effectively cause cell death and cell-cycle arrest in OECM1 and SAS cells. Additionally, PG induced autophagic cell death in OECM1 and SAS cells by LC3-mediated P62/LC3-I/LC3-II pathway at the in vitro level. These findings elucidate the role of PG, which may target the autophagic cell death pathways as a potential agent in cancer therapeutics.
Collapse
Affiliation(s)
- Ming-Fang Cheng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 10086, Taiwan.
- Division of Histology and Clinical Pathology, Hualian Army Forces General Hospital, Hualien 97144, Taiwan.
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 10086, Taiwan.
| | - Yu-Hsin Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan.
| | - Ping-Jyun Sung
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan.
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
| | - Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Yi-Wen Tong
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 94450, Taiwan.
| |
Collapse
|
23
|
Chang YT, Huang CY, Tang JY, Liaw CC, Li RN, Liu JR, Sheu JH, Chang HW. Reactive oxygen species mediate soft corals-derived sinuleptolide-induced antiproliferation and DNA damage in oral cancer cells. Onco Targets Ther 2017; 10:3289-3297. [PMID: 28740404 PMCID: PMC5505647 DOI: 10.2147/ott.s138123] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We previously reported that the soft coral-derived bioactive substance, sinuleptolide, can inhibit the proliferation of oral cancer cells in association with oxidative stress. The functional role of oxidative stress in the cell-killing effect of sinuleptolide on oral cancer cells was not investigated as yet. To address this question, we introduced the reactive oxygen species (ROS) scavenger (N-acetylcysteine [NAC]) in a pretreatment to evaluate the sinuleptolide-induced changes to cell viability, morphology, intracellular ROS, mitochondrial superoxide, apoptosis, and DNA damage of oral cancer cells (Ca9-22). After sinuleptolide treatment, antiproliferation, apoptosis-like morphology, ROS/mitochondrial superoxide generation, annexin V-based apoptosis, and γH2AX-based DNA damage were induced. All these changes were blocked by NAC pretreatment at 4 mM for 1 h. This showed that the cell-killing mechanism of oral cancer cells of sinuleptolide is ROS dependent.
Collapse
Affiliation(s)
- Yung-Ting Chang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Chiung-Yao Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chih-Chuang Liaw
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jing-Ru Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyh-Horng Sheu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.,Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
24
|
Chen CY, Yen CY, Wang HR, Yang HP, Tang JY, Huang HW, Hsu SH, Chang HW. Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage. Toxins (Basel) 2016; 8:toxins8110319. [PMID: 27827950 PMCID: PMC5127116 DOI: 10.3390/toxins8110319] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 10/11/2016] [Accepted: 10/19/2016] [Indexed: 12/13/2022] Open
Abstract
The development of drugs that selectively kill oral cancer cells but are less harmful to normal cells still provide several challenges. In this study, the antioral cancer effects of tenuifolide B (TFB), extracted from the stem of the plant Cinnamomum tenuifolium are evaluated in terms of their effects on cancer cell viability, cell cycle analysis, apoptosis, oxidative stress, and DNA damage. Cell viability of oral cancer cells (Ca9-22 and CAL 27) was found to be significantly inhibited by TFB in a dose-responsive manner in terms of ATP assay, yielding IC50 = 4.67 and 7.05 μM (24 h), but are less lethal to normal oral cells (HGF-1). Dose-responsive increases in subG1 populations as well as the intensities of flow cytometry-based annexin V/propidium iodide (PI) analysis and pancaspase activity suggested that apoptosis was inducible by TFB in these two types of oral cancer cells. Pretreatment with the apoptosis inhibitor (Z-VAD-FMK) reduced the annexin V intensity of these two TFB-treated oral cancer cells, suggesting that TFB induced apoptosis-mediated cell death to oral cancer cells. Cleaved-poly (ADP-ribose) polymerase (PARP) and cleaved-caspases 3, 8, and 9 were upregulated in these two TFB-treated oral cancer cells over time but less harmful for normal oral HGF-1 cells. Dose-responsive and time-dependent increases in reactive oxygen species (ROS) and decreases in mitochondrial membrane potential (MitoMP) in these two TFB-treated oral cancer cells suggest that TFB may generate oxidative stress as measured by flow cytometry. N-acetylcysteine (NAC) pretreatment reduced the TFB-induced ROS generation and further validated that ROS was relevant to TFB-induced cell death. Both flow cytometry and Western blotting demonstrated that the DNA double strand marker γH2AX dose-responsively increased in TFB-treated Ca9-22 cells and time-dependently increased in two TFB-treated oral cancer cells. Taken together, we infer that TFB can selectively inhibit cell proliferation of oral cancer cells through apoptosis, ROS generation, mitochondrial membrane depolarization, and DNA damage.
Collapse
Affiliation(s)
- Chung-Yi Chen
- Department of Nutrition and Health Sciences, School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan.
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery Chi-Mei Medical Center, Tainan 71004, Taiwan.
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan.
| | - Hui-Ru Wang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hui-Ping Yang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan.
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Cancer Center, Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Center for Research Resources and Development of Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
25
|
Comet assay: an essential tool in toxicological research. Arch Toxicol 2016; 90:2315-36. [DOI: 10.1007/s00204-016-1767-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|