1
|
Song D, He J, Cheng T, Jin L, Li S, Chen B, Li Y, Liao C. Cystathionine γ-lyase contributes to exacerbation of periodontal destruction in experimental periodontitis under hyperglycemia. J Periodontol 2024. [PMID: 38937859 DOI: 10.1002/jper.23-0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Diabetes is one of the major inflammatory comorbidities of periodontitis via 2-way interactions. Cystathionine γ-lyase (CTH) is a pivotal endogenous enzyme synthesizing hydrogen sulfide (H2S), and CTH/H2S is crucially implicated in modulating inflammation in various diseases. This study aimed to explore the potential role of CTH in experimental periodontitis under a hyperglycemic condition. METHODS CTH-silenced and normal human periodontal ligament cells (hPDLCs) were cultured in a high glucose and Porphyromonas gingivalis lipopolysaccharide (P.g-LPS) condition. The effects of CTH on hPDLCs were assessed by Cell Counting Kit 8 (CCK8), real-time quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA). The model of experimental periodontitis under hyperglycemia was established on both Cth-/- and wild-type (WT) mice, and the extent of periodontal destruction was assessed by micro-CT, histology, RNA-Seq, Western blot, tartrate-resistant acid phosphatase (TRAP) staining and immunostaining. RESULTS CTH mRNA expression increased in hPDLCs in response to increasing concentration of P.g-LPS stimulation in a high glucose medium. With reference to WT mice, Cth-/- mice with experimental periodontitis under hyperglycemia exhibited reduced bone loss, decreased leukocyte infiltration and hindered osteoclast formation, along with reduced expression of proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in periodontal tissue. RNA-seq-enriched altered NF-κB pathway signaling in healthy murine gingiva with experimental periodontitis mice under hyperglycemia. Accordingly, phosphorylation of p65 (P-p65) was alleviated in CTH-silenced hPDLCs, leading to decreased expression of IL6 and TNF. CTH knockdown inhibited activation of nuclear factor kappa-B (NF-κB) pathway and decreased production of proinflammatory cytokines under high glucose and P.g-LPS treatment. CONCLUSION The present findings suggest the potential of CTH as a therapeutic target for tackling periodontitis in diabetic patients.
Collapse
Affiliation(s)
- Danni Song
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Jiangfeng He
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Tianfan Cheng
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Lijian Jin
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Sijin Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Beibei Chen
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Yongming Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Chongshan Liao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Li S, Hua Y, Liao C. Weakening of M1 macrophage and bone resorption in periodontitis cystathionine γ-lyase-deficient mice. Oral Dis 2024; 30:769-779. [PMID: 36097830 DOI: 10.1111/odi.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cystathionine-γ-lyase (CTH) has been proved to involve in inflammation and bone remolding, implying its potential role in the progression of periodontitis. This study was aimed to investigate the function of CTH and its relation to the macrophage polarization in periodontitis. MATERIALS AND METHODS Bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Cth knockout (Cth-/- ) mice were stimulated with lipopolysaccharide (LPS) in vitro and pro-inflammatory cytokines were analyzed by qRT-PCR. Ligature-induced periodontitis was established on WT and Cth-/- mice. Histological analysis, tartrate-resistant acid phosphatase staining, immunostaining, and Western blot were performed to analyze the periodontium destruction and M1 macrophage polarization. RESULTS Cth expression in BMDMs was upregulated upon increasing LPS stimulation. Deletion of Cth suppressed BMDMs inflammatory response with decreased Il1b, Il6, and Tnf mRNA. Cth-/- mice with periodontitis showed attenuated bone loss and impaired osteoclast differentiation compared with WT. Moreover, Cth knockout hindered M1 macrophage polarization, reduced the expression of IL-1β, IL-6, and TNF-α in periodontally diseased tissue. CONCLUSION This study demonstrated that CTH played an important role in regulating the inflammatory responses and periodontitis tissue destruction. Importantly, Cth knockout suppressed M1 macrophages polarization in periodontitis.
Collapse
Affiliation(s)
- Sijin Li
- Department of Orthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yongmei Hua
- Department of Orthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chongshan Liao
- Department of Orthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
3
|
Shaposhnikov MV, Gorbunova AA, Zemskaya NV, Ulyasheva NS, Pakshina NR, Yakovleva DV, Moskalev A. Simultaneous activation of the hydrogen sulfide biosynthesis genes (CBS and CSE) induces sex-specific geroprotective effects in Drosophila melanogaster. Biogerontology 2023; 24:275-292. [PMID: 36662374 DOI: 10.1007/s10522-023-10017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Hydrogen sulfide (H2S) is one of the most important gasotransmitters that affect lifespan and provide resistance to adverse environmental conditions. Here we investigated geroprotective effects of the individual and simultaneous overexpression of genes encoding key enzymes of H2S biosynthesis - cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) on D. melanogaster model. Simultaneous overexpression of CBS and CSE resulted in additive (in males) and synergistic (in females) beneficial effects on median lifespan. Individual overexpression of CBS was associated with increased thermotolerance and decreased transcription level of genes encoding stress-responsive transcription factors HIF1 and Hsf, while individual overexpression of CSE was associated with increased resistance to paraquat. Simultaneous overexpression of both genes increased resistance to hyperthermia in old females or paraquat in old males. The obtained results suggest sex-specific epistatic interaction of CBS and CSE overexpression effects on longevity and stress resistance.
Collapse
Affiliation(s)
- Mikhail V Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation, 119991
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Anastasia A Gorbunova
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Natalia S Ulyasheva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Natalya R Pakshina
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Daria V Yakovleva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation, 119991.
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982.
| |
Collapse
|
4
|
On-demand therapeutic delivery of hydrogen sulfide aided by biomolecules. J Control Release 2022; 352:586-599. [PMID: 36328076 DOI: 10.1016/j.jconrel.2022.10.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Hydrogen sulfide (H2S), known as the third gasotransmitter, exerts various physiological functions including cardiac protection, angiogenesis, anti-inflammatory, and anti-cancer capability. Given its promising therapeutic potential as well as severe perniciousness if improper use, the sustained and tunable H2S delivery systems are highly required for H2S-based gas therapy with enhanced bioactivity and reduced side effects. To this end, a series of stimuli-responsive compounds capable of releasing H2S (termed H2S donors) have been designed over the past two decades to mimic the endogenous generation of H2S and elucidate the biological functions. Further to improve the stability of H2S donors and achieve the targeted delivery, various delivery systems have been constructed. In this review, we focus on the recent advances of an emerging subset, biomolecular-based H2S delivery systems, which combine H2S donors with biomolecular vectors including polysaccharide, peptide, and protein. We demonstrated their basic structures, building strategies, and therapeutic applications respectively to unfold their inherent merits endued by biomolecules including biocompatibility, biodegradability as well as expansibility. The varied development potentials of biomolecular-based H2S delivery systems based on their specific properties are also discussed. At the end, brief future outlooks and upcoming challenges are presented as well.
Collapse
|
5
|
Ascenção K, Szabo C. Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biol 2022; 53:102331. [PMID: 35618601 PMCID: PMC9168780 DOI: 10.1016/j.redox.2022.102331] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The expression of the reverse transsulfuration enzyme cystathionine-β-synthase (CBS) is markedly increased in many forms of cancer, including colorectal, ovarian, lung, breast and kidney, while in other cancers (liver cancer and glioma) it becomes downregulated. According to the clinical database data in high-CBS-expressor cancers (e.g. colon or ovarian cancer), high CBS expression typically predicts lower survival, while in the low-CBS-expressor cancers (e.g. liver cancer), low CBS expression is associated with lower survival. In the high-CBS expressing tumor cells, CBS, and its product hydrogen sulfide (H2S) serves as a bioenergetic, proliferative, cytoprotective and stemness factor; it also supports angiogenesis and epithelial-to-mesenchymal transition in the cancer microenvironment. The current article reviews the various tumor-cell-supporting roles of the CBS/H2S axis in high-CBS expressor cancers and overviews the anticancer effects of CBS silencing and pharmacological CBS inhibition in various cancer models in vitro and in vivo; it also outlines potential approaches for biomarker identification, to support future targeted cancer therapies based on pharmacological CBS inhibition.
Collapse
|
6
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
7
|
Peng Q, Zhao B, Lin J, Liu H, Zhou R, Lan D, Yao C, Cong S, Tao S, Zhu Y, Wang R, Qi S. SPRC Suppresses Experimental Periodontitis by Modulating Th17/Treg Imbalance. Front Bioeng Biotechnol 2022; 9:737334. [PMID: 35087796 PMCID: PMC8787365 DOI: 10.3389/fbioe.2021.737334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
Object: The aims of the study were to explore the protective effects of S-propargyl-cysteine (SPRC) on periodontitis and to determine the underlying mechanisms. Methods: A rat periodontitis model was constructed by injecting LPS and SPRC (0, 25, and 50 mg/kg/d) was administered intraperitoneally. H2S and CSE level were detected. The alveolar bone level was evaluated by micro-CT, HE staining and methylene blue staining analysis. Inflammation-related factors, Treg and Th17 cells were detected by immunohistochemistry, RT-PCR, immunofluorescence, Western blot and flow cytometry. Phosphorylation levels of ERK1/2 and CREB were analysed. Results: The administration of SPRC significantly increased the expression of CSE in the gingival tissue and the concentration of endogenous H2S in the peripheral blood. Simultaneously, SPRC significantly inhibited the resorption of alveolar bone based on the H&E staining, micro-CT and methylene blue staining analysis. Compared with the periodontitis group, the levels of IL-17A, IL-10 were downregulated and IL-6,TGF-β1 were upregulated in the SPRC groups. In the SPRC group, the percentage of TH17 cells and the expression of ROR-γt were downregulated, while the percentage of Tregs and the expression of Foxp3 were upregulated accompanied with inhibition of phosphorylation ERK1/2 and CREB. Conclusion: SPRC can prevent the progression of periodontitis by regulating the Th17/Treg balance by inhibition of the ERK/CREB signalling pathway.
Collapse
Affiliation(s)
- Qian Peng
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Bingkun Zhao
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Lin
- Pharmacy Department, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Haixia Liu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rong Zhou
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongmei Lan
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Chao Yao
- Medical College of Anhui University of Science and Technology, Huainan, China
| | - Shaohua Cong
- Jiading Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shen Tao
- The First People's Hospital of KunShan, Kunshan, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Raorao Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Prothodontics, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Wu DD, Ngowi EE, Zhai YK, Wang YZ, Khan NH, Kombo AF, Khattak S, Li T, Ji XY. Role of Hydrogen Sulfide in Oral Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1886277. [PMID: 35116090 PMCID: PMC8807043 DOI: 10.1155/2022/1886277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Oral diseases are among the most common human diseases yet less studied. These diseases affect both the physical, mental, and social health of the patients resulting in poor quality of life. They affect all ages, although severe stages are mostly observed in older individuals. Poor oral hygiene, genetics, and environmental factors contribute enormously to the development and progression of these diseases. Although there are available treatment options for these diseases, the recurrence of the diseases hinders their efficiency. Oral volatile sulfur compounds (VSCs) are highly produced in oral cavity as a result of bacteria activities. Together with bacteria components such as lipopolysaccharides, VSCs participate in the progression of oral diseases by regulating cellular activities and interfering with the immune response. Hydrogen sulfide (H2S) is a gaseous neurotransmitter primarily produced endogenously and is involved in the regulation of cellular activities. The gas is also among the VSCs produced by oral bacteria. In numerous diseases, H2S have been reported to have dual effects depending on the cell, concentration, and donor used. In oral diseases, high production and subsequent utilization of this gas have been reported. Also, this high production is associated with the progression of oral diseases. In this review, we will discuss the production of H2S in oral cavity, its interaction with cellular activities, and most importantly its role in oral diseases.
Collapse
Affiliation(s)
- Dong-Dong Wu
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Yuan-Kun Zhai
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ahmad Fadhil Kombo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
9
|
Hao YM, He DW, Gao Y, Fang LN, Zhang PP, Lu K, Lu RZ, Li C. Association of Hydrogen Sulfide with Femoral Bone Mineral Density in Osteoporosis Patients: A Preliminary Study. Med Sci Monit 2021; 27:e929389. [PMID: 33714972 PMCID: PMC7970661 DOI: 10.12659/msm.929389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Accumulated evidence has suggested that hydrogen sulfide (H2S) has a role in bone formation and bone tissue regeneration. However, it is unknown whether the H2S content is associated with bone mineral density (BMD) in patients with osteopenia/osteoporosis. Material/Methods In the present study, we aimed to explore the changes of serum H2S in osteopenia and osteoporosis patients. We analyzed femur expression of cystathionine β synthase (CBS), cystathionine γ lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST), which are key enzymes for generating H2S. Results Sixteen (16%) patients had osteopenia, 9 (9%) had osteoporosis, and 75 (75%) had normal BMD. In comparison with patients with normal BMD (controls), the serum levels of H2S were unexpectedly increased in patients with osteopenia and osteoporosis. This increase was much higher in patients with osteoporosis than in those with osteopenia. Serum H2S levels were negatively correlated with femoral BMD, but not lumbar BMD. Interestingly, the expression of CBS and CSE were downregulated in femur tissues in patients with osteoporosis, whereas the expression of 3-MST remained unchanged. Serum phosphorus levels, alkaline phosphatase, hemoglobin, and triglycerides were found to be closely associated with CBS and CSE scores in femur tissues. Conclusions Serum H2S levels and femur CBS and CSE expression may be involved in osteoporosis pathogenesis.
Collapse
Affiliation(s)
- Yan-Ming Hao
- Department of Joint Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| | - Da-Wei He
- Laboratory Center, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| | - Yan Gao
- Department of Joint Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| | - Ling-Na Fang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| | - Pan-Pan Zhang
- Department of Medical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| | - Ke Lu
- Department of Joint Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| | - Rong-Zhu Lu
- Laboratory Center, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| | - Chong Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
10
|
Zhang S, Zhou H, Kong N, Wang Z, Fu H, Zhang Y, Xiao Y, Yang W, Yan F. l-cysteine-modified chiral gold nanoparticles promote periodontal tissue regeneration. Bioact Mater 2021; 6:3288-3299. [PMID: 33778205 PMCID: PMC7970259 DOI: 10.1016/j.bioactmat.2021.02.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 01/01/2023] Open
Abstract
Gold nanoparticles (AuNPs) with surface-anchored molecules present tremendous potential in tissue regeneration. However, little is known about chiral-modified AuNPs. In this study, we successfully prepared L/D-cysteine-anchored AuNPs (L/D-Cys-AuNPs) and studied the effects of chiral-modified AuNPs on osteogenic differentiation and autophagy of human periodontal ligament cells (hPDLCs) and periodontal tissue regeneration. In vitro, more L-Cys-AuNPs than D-Cys-AuNPs tend to internalize in hPDLCs. L-Cys-AuNPs also significantly increased the expression of alkaline phosphatase, collagen type 1, osteocalcin, runt-related transcription factor 2, and microtubule-associated protein light chain 3 II and decreased the expression of sequestosome 1 in hPDLCs compared to the expression levels in the hPDLCs treated by D-Cys-AuNPs. In vivo tests in a rat periodontal-defect model showed that L-Cys-AuNPs had the greatest effect on periodontal-tissue regeneration. The activation of autophagy in L-Cys-AuNP-treated hPDLCs may be responsible for the cell differentiation and tissue regeneration. Therefore, compared to D-Cys-AuNPs, L-Cys-AuNPs show a better performance in cellular internalization, regulation of autophagy, cell osteogenic differentiation, and periodontal tissue regeneration. This demonstrates the immense potential of L-Cys-AuNPs for periodontal regeneration and provides a new insight into chirally modified bioactive nanomaterials. L/D-Cys-AuNPs exert a chirality-dependent effect on hPDLCs. L-Cys-AuNPs efficiently induced osteogenic differentiation in hPDLCs. L-Cys-AuNPs significantly improved periodontal tissue regeneration.
Collapse
Affiliation(s)
- Shuang Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Na Kong
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Zezheng Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Huangmei Fu
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4059, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Australia
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Australia
| |
Collapse
|
11
|
Hegedűs O, Juriga D, Sipos E, Voniatis C, Juhász Á, Idrissi A, Zrínyi M, Varga G, Jedlovszky-Hajdú A, Nagy KS. Free thiol groups on poly(aspartamide) based hydrogels facilitate tooth-derived progenitor cell proliferation and differentiation. PLoS One 2019; 14:e0226363. [PMID: 31856233 PMCID: PMC6922333 DOI: 10.1371/journal.pone.0226363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
Cell-based tissue reconstruction is an important field of regenerative medicine. Stem and progenitor cells derived from tooth-associated tissues have strong regeneration potential. However, their in vivo application requires the development of novel scaffolds that will provide a suitable three-dimensional (3D) environment allowing not only the survival of the cells but eliciting their proliferation and differentiation. Our aim was to study the viability and differentiation capacity of periodontal ligament cells (PDLCs) cultured on recently developed biocompatible and biodegradable poly(aspartamide) (PASP)-based hydrogels. Viability and behavior of PDLCs were investigated on PASP-based hydrogels possessing different chemical, physical and mechanical properties. Based on our previous results, the effect of thiol group density in the polymer matrix on cell viability, morphology and differentiation ability is in the focus of our article. The chemical composition and 3D structures of the hydrogels were determined by FT Raman spectroscopy and Scanning Electron Microscopy. Morphology of the cells was examined by phase contrast microscopy. To visualize cell growth and migration patterns through the hydrogels, two-photon microscopy were utilized. Cell viability analysis was performed according to a standardized protocol using WST-1 reagent. PDLCs were able to attach and grow on PASP-based hydrogels. An increase in gel stiffness enhanced adhesion and proliferation of the cells. However, the highest population of viable cells was observed on the PASP gels containing free thiol groups. The presence of thiol groups does not only enhance viability but also facilitates the osteogenic direction of the differentiating cells. These cell-gel structures seem to be highly promising for cell-based tissue reconstruction purposes in the field of regenerative medicine.
Collapse
Affiliation(s)
- Orsolya Hegedűs
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Dávid Juriga
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Evelin Sipos
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Constantinos Voniatis
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Ákos Juhász
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- University of Lille, Faculty of Science and Technology, Villeneuve d’Ascq Cedex, France
| | - Abdenaccer Idrissi
- University of Lille, Faculty of Science and Technology, Villeneuve d’Ascq Cedex, France
| | - Miklós Zrínyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Angéla Jedlovszky-Hajdú
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Krisztina S. Nagy
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Hydrogen Sulfide in Bone Tissue Regeneration and Repair: State of the Art and New Perspectives. Int J Mol Sci 2019; 20:ijms20205231. [PMID: 31652532 PMCID: PMC6834365 DOI: 10.3390/ijms20205231] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
The importance of hydrogen sulfide (H2S) in the regulation of multiple physiological functions has been clearly recognized in the over 20 years since it was first identified as a novel gasotransmitter. In bone tissue H2S exerts a cytoprotective effect and promotes bone formation. Just recently, the scientific community has begun to appreciate its role as a therapeutic agent in bone pathologies. Pharmacological administration of H2S achieved encouraging results in preclinical studies in the treatment of systemic bone diseases, such as osteoporosis; however, a local delivery of H2S at sites of bone damage may provide additional opportunities of treatment. Here, we highlight how H2S stimulates multiple signaling pathways involved in various stages of the processes of bone repair. Moreover, we discuss how material science and chemistry have recently developed biomaterials and H2S-donors with improved features, laying the ground for the development of H2S-releasing devices for bone regenerative medicine. This review is intended to give a state-of-the-art description of the pro-regenerative properties of H2S, with a focus on bone tissue, and to discuss the potential of H2S-releasing scaffolds as a support for bone repair.
Collapse
|
13
|
Castelblanco M, Nasi S, Pasch A, So A, Busso N. The role of the gasotransmitter hydrogen sulfide in pathological calcification. Br J Pharmacol 2019; 177:778-792. [PMID: 31231793 DOI: 10.1111/bph.14772] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Calcification is the deposition of minerals, mainly hydroxyapatite, inside the cell or in the extracellular matrix. Physiological calcification is central for many aspects of development including skeletal and tooth growth; conversely, pathological mineralization occurs in soft tissues and is significantly associated with malfunction and impairment of the tissue where it is located. Various mechanisms have been proposed to explain calcification. However, this research area lacks a more integrative, systemic, and global perspective that could explain both physiological and pathological processes. In this review, we propose such an integrated explanation. Hydrogen sulfide (H2 S) is a newly recognized multifunctional gasotransmitters and tis actions have been studied in different physiological and pathological contexts, but little is known about its potential role on calcification. Interestingly, we found that H2 S promotes calcification under physiological conditions and has an inhibitory effect on pathological processes. This makes H2 S a potential therapy for diseases related to pathological calcification. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Mariela Castelblanco
- Service of Rheumatology, DAL, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, DAL, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | - Alexander So
- Service of Rheumatology, DAL, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Nathalie Busso
- Service of Rheumatology, DAL, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Behera J, Tyagi SC, Tyagi N. Role of hydrogen sulfide in the musculoskeletal system. Bone 2019; 124:33-39. [PMID: 30928641 PMCID: PMC6570498 DOI: 10.1016/j.bone.2019.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Hydrogen sulfide (H2S) has been known as a gasotransmitter, and it contributes to various physiological and pathological processes. Multiple enzymes such as cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-Mercaptopyruvate sulfurtransferase (MST) produce endogenous H2S, and these are differentially expressed in the various tissue systems including the skeletal system. However, abnormal H2S production is associated with deregulation of the signaling cascade and imbalanced tissue homeostasis. Several studies have previously provided evidence showing the essential regulatory action of H2S in skeletal homeostasis. In this review, we have emphasized the novel function of H2S in both bone and skeletal muscle anabolism, in particular. Additionally, we also reviewed the molecular and epigenetic basis of H2S signaling in bone development and skeletal muscle function.
Collapse
Affiliation(s)
- Jyotirmaya Behera
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|