1
|
Kharbot B, Bulgun N, Cölfen H, Paris S. Effect of calcium-coacervate infiltration of artificial enamel caries lesions in de- and remineralizing conditions. J Dent 2024; 142:104838. [PMID: 38211686 DOI: 10.1016/j.jdent.2024.104838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVES Calcium-coacervate emulsions (CC) might be considered as mineral precursors to foster remineralization of carious dental hard tissues. This study analyzed the instant effect of repeated infiltration of artificial caries lesions with a CC emulsion as well as the effects of subsequent exposure of CC-infiltrated lesions to demineralizing and remineralizing environments. METHODS Bovine enamel specimens were partly covered with varnish to leave three exposed windows. Artificial enamel caries lesions were created (pH 4.95, 17d). Baseline controls (BL) were obtained by preparing a thin section of each specimen. Specimens were allocated to five groups. In three groups lesions were etched with 37 % phosphoric acid gel, infiltrated with dipotassium hydrogen phosphate and subsequently with a calcium coacervate emulsion, prepared by mixing CaCl2 ⋅ 2H2O with polyacrylic acid sodium salt (PAA-Na). Subsequently, the infiltration effect was either analyzed immediately (Inf.) or after exposition to either de- (Inf.+DS) or remineralizing solution (Inf.+RS) for 10 or 20 days, respectively. In two control groups specimens were exposed to either DS or RS, respectively without prior CC infiltration. Integrated mineral loss [ΔZ(vol%×µm)] was analyzed using transverse microradiography (TMR). RESULTS Infiltration of enamel caries lesions with coacervate solution resulted in only subtle immediate mineral gain even if repeated. When exposed to demineralizing conditions, infiltrated lesions showed significantly less mineral loss compared to untreated controls (p < 0.05; Kruskal Wallis) and exhibited characteristic mineral depositions within the lesion body. CONCLUSIONS While immediate mineral gain by infiltration was only modest, the CC-emulsion might be able to prevent demineralization in acidic conditions. CLINICAL SIGNIFICANCE Calcium coacervates might act protective against further demineralization when infiltrated into enamel caries lesions.
Collapse
Affiliation(s)
- Basel Kharbot
- Department of Operative, Preventive and Pediatric Dentistry, Center for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Aßmannshauser Str. 4-6, Berlin 14197, Germany.
| | - Neziha Bulgun
- Department of Operative, Preventive and Pediatric Dentistry, Center for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Aßmannshauser Str. 4-6, Berlin 14197, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Sebastian Paris
- Department of Operative, Preventive and Pediatric Dentistry, Center for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Aßmannshauser Str. 4-6, Berlin 14197, Germany
| |
Collapse
|
2
|
Vilela HS, Resende MCA, Trinca RB, Scaramucci T, Sakae LO, Braga RR. Glass ionomer cement with calcium-releasing particles: Effect on dentin mineral content and mechanical properties. Dent Mater 2024; 40:236-243. [PMID: 37981512 DOI: 10.1016/j.dental.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVE to evaluate the effect a glass ionomer cement (GIC) containing hydroxyapatite (HAp) or calcium silicate (CaSi) particles on mineral content and mechanical properties of demineralized dentin. Ion release and compressive strength (CS) of the cements were also evaluated. METHODS GIC (Fuji 9 Gold Label, GC), GIC+ 5%HAp and GIC+ 5%CaSi (by mass) were evaluated. Ion release was determined by induced coupled plasma optical emission spectroscopy (Ca2+/Sr2+) or ion-specific electrode (F-) (n = 3). A composite (Filtek Z250, 3 M ESPE) was used as control in remineralization tests. Demineralized dentin discs were kept in contact with materials in simulated body fluid (SBF) at 37 °C for eight weeks. Mineral:matrix ratio (MMR) was determined by ATR-FTIR spectroscopy (n = 5). Dentin hardness (H) and elastic modulus (E) were determined by nanoindentation (n = 10). CS was tested after 24 h and 7d in deionized water (n = 12). Data were analyzed by ANOVA/Tukey test (α = 0.05). RESULTS Ca2+ and Sr2+ release was higher for the modified materials (p < 0.05). Only GIC+ 5%HAp showed higher F- release than the control (p < 0.05). All groups showed statistically significant increases in MMR, with no differences among them after 8 weeks (p > 0.05). No differences in dentin H or E were observed among groups (p > 0.05). HAp-modified GIC showed increased initial CS, while adding CaSi had the opposite effect (p < 0.05). After 7 days, GIC+ 5%CaSi presented lower CS in relation to control and GIC+ 5%HAp (p < 0.05). SIGNIFICANCE GIC modification with HAp or CaSi affected CS and increased ion release; however, none of the groups showed evidence of dentin remineralization in comparison to the negative control.
Collapse
Affiliation(s)
- Handially S Vilela
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Mariana C A Resende
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Rafael B Trinca
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Taís Scaramucci
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Leticia O Sakae
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Roberto R Braga
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Vilela HS, Trinca RB, Alves TVM, Scaramucci T, Sakae LO, Mariano FS, Giannini M, Silva FRO, Braga RR. Effect of a calcium silicate cement and experimental glass ionomer cements containing calcium orthophosphate particles on demineralized dentin. Clin Oral Investig 2024; 28:97. [PMID: 38225525 DOI: 10.1007/s00784-024-05489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
OBJECTIVE The study aims to evaluate the effect of a glass ionomer cement (GIC; Fuji 9 Gold Label, GC) with added calcium orthophosphate particles and a calcium silicate cement (CSC; Biodentine, Septodont) regarding ion release, degradation in water, mineral content, and mechanical properties of demineralized dentin samples. METHODS GIC, GIC + 5% DCPD (dicalcium phosphate dihydrate), GIC + 15% DCPD, GIC + 5% β-TCP (tricalcium phosphate), GIC + 15% β-TCP (by mass), and CSC were evaluated for Ca2+/Sr2+/F- release in water for 56 days. Cement mass loss was evaluated after 7-day immersion in water. Partially demineralized dentin disks were kept in contact with materials while immersed in simulated body fluid (SBF) at 37 °C for 56 days. The "mineral-to-matrix ratio" (MMR) was determined by ATR-FTIR spectroscopy. Dentin hardness and elastic modulus were obtained by nanoindentation. Samples were observed under scanning and transmission electron microscopy. Data were analyzed by ANOVA/Tukey test (α = 0.05). RESULTS Ca2+ release from CSC and GIC (μg/cm2) were 4737.0 ± 735.9 and 13.6 ± 1.6, respectively. In relation to the unmodified GIC, the addition of DCPD or β-TCP increased ion release (p < 0.001). Only the dentin disks in contact with CSC presented higher MMR (p < 0.05) and mechanical properties than those restored with a resin composite used as control (p < 0.05). Mass loss was similar for GIC and CSC; however, the addition of DCPD or β-TCP increased GIC degradation (p < 0.05). CONCLUSION Despite the increase in ion release, the additional Ca2+ sources did not impart remineralizing capability to GIC. Both unmodified GIC and CSC showed similar degradation in water. CLINICAL RELEVANCE CSC was able to promote dentin remineralization.
Collapse
Affiliation(s)
- Handially S Vilela
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, 05508-000, Brazil
| | - Rafael B Trinca
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, 05508-000, Brazil
| | - Tarsila V M Alves
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, 05508-000, Brazil
| | - Tais Scaramucci
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Leticia O Sakae
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Flávia S Mariano
- Department of Restorative Dentistry, School of Dentistry, University of Campinas, São Paulo, Brazil
| | - Marcelo Giannini
- Department of Restorative Dentistry, School of Dentistry, University of Campinas, São Paulo, Brazil
| | - Flávia R O Silva
- Institute of Energy and Nuclear Research, University of São Paulo, São Paulo, Brazil
| | - Roberto R Braga
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes, 2227, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
4
|
Xie Y, Chen R, Yao W, Ma L, Li B. Synergistic effect of ion-releasing fillers on the remineralization and mechanical properties of resin-dentin bonding interfaces. Biomed Phys Eng Express 2023; 9:062001. [PMID: 37832527 DOI: 10.1088/2057-1976/ad0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
In modern restorative dentistry, adhesive resin materials are vital for achieving minimally invasive, esthetic, and tooth-preserving restorations. However, exposed collagen fibers are found in the hybrid layer of the resin-dentin bonding interface due to incomplete resin penetration. As a result, the hybrid layer is susceptible to attack by internal and external factors such as hydrolysis and enzymatic degradation, and the durability of dentin bonding remains limited. Therefore, efforts have been made to improve the stability of the resin-dentin interface and achieve long-term clinical success. New ion-releasing adhesive resin materials are synthesized by introducing remineralizing ions such as calcium and phosphorus, which continuously release mineral ions into the bonding interface in resin-bonded restorations to achieve dentin biomimetic remineralization and improve bond durability. As an adhesive resin material capable of biomimetic mineralization, maintaining excellent bond strength and restoring the mechanical properties of demineralized dentin is the key to its function. This paper reviews whether ion-releasing dental adhesive materials can maintain the mechanical properties of the resin-dentin bonding interface by supplementing the various active ingredients required for dentin remineralization from three aspects: phosphate, silicate, and bioactive glass.
Collapse
Affiliation(s)
- Yimeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Ruhua Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Wei Yao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Liang Ma
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People's Republic of China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, People's Republic of China
| |
Collapse
|
5
|
Wang B, Han F, You R, Chen C, Xie H. Polyphenols Can Improve Resin-Dentin Bond Durability by Promoting Amorphous Calcium Phosphate Nanoparticles to Backfill the Dentin Matrix. Int J Nanomedicine 2023; 18:1491-1505. [PMID: 36998600 PMCID: PMC10046144 DOI: 10.2147/ijn.s395631] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
Objective To investigate the effects of proanthocyanidins (PA), myricetin, resveratrol, and kaempferol on the modification of dentin collagen and the inhibition of matrix metalloproteinase (MMP) activity, and to evaluate their contributions to the biomimetic remineralization and resin-dentin bonding performance. Methods Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and in situ zymography were applied to verify the collagen modification and MMP activity inhibition induced by these four polyphenols. Scanning electron microscopy/energy dispersive spectrometer (SEM/EDS) analysis, X-ray diffraction (XRD), ATR-FTIR, Vickers hardness numbers (VHN), and micro-computed tomography (micro-CT) were performed to characterize the remineralized dentin. Microtensile bond strength (μTBS) and nanoleakage were investigated to evaluate the effects of the four polyphenols on resin-dentin bonding durability. Results ATR-FTIR and in situ zymography confirmed that these four polyphenols could modify dentin collagen and inhibit MMP activity, respectively. Chemoanalytic characterization exhibited the efficacies of the four polyphenols in promoting dentin biomimetic remineralization. The surface hardness of PA-pretreated dentin was the greatest. Micro-CT results demonstrated that the PAs group possessed the highest amount of dentin surface minerals and the lowest amount of deep-layer minerals. The surface and deep-layer mineral contents of the Myr group were higher than Res and Kae groups. Treatment with these four polyphenols significantly increased the initial μTBS compared with the control group without primer conditioning. μTBS decreased significantly during aging, and the decrease was more severe in the PAs and Kae groups than in the Myr and Res groups. With or without aging, the polyphenol groups exhibited relatively less fluorescence. However, the Myr and Res groups showed less serious nanoleakage after aging. Conclusion PA, myricetin, resveratrol, and kaempferol can modify dentin collagen, inhibit MMP activity, promote biomimetic remineralization, and improve resin-dentin bond durability. Compared with PA and kaempferol, myricetin and resveratrol are more effective in improving resin-dentin bonding.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Prosthodontics, Affiliated Stomatology Hospital, Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Fei Han
- Department of Prosthodontics, Affiliated Stomatology Hospital, Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Ran You
- Department of Prosthodontics, Affiliated Stomatology Hospital, Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Chen Chen
- Department of Endodontics, Affiliated Stomatology Hospital, Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| | - Haifeng Xie
- Department of Prosthodontics, Affiliated Stomatology Hospital, Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, People’s Republic of China
| |
Collapse
|
6
|
Doyle ME, Dalgarno K, Masoero E, Ferreira AM. Advances in biomimetic collagen mineralisation and future approaches to bone tissue engineering. Biopolymers 2023; 114:e23527. [PMID: 36444710 PMCID: PMC10078151 DOI: 10.1002/bip.23527] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Abstract
With an ageing world population and ~20% of adults in Europe being affected by bone diseases, there is an urgent need to develop advanced regenerative approaches and biomaterials capable to facilitate tissue regeneration while providing an adequate microenvironment for cells to thrive. As the main components of bone are collagen and apatite mineral, scientists in the tissue engineering field have attempted in combining these materials by using different biomimetic approaches to favour bone repair. Still, an ideal bone analogue capable of mimicking the distinct properties (i.e., mechanical properties, degradation rate, porosity, etc.) of cancellous bone is to be developed. This review seeks to sum up the current understanding of bone tissue mineralisation and structure while providing a critical outlook on the existing biomimetic strategies of mineralising collagen for bone tissue engineering applications, highlighting where gaps in knowledge exist.
Collapse
Affiliation(s)
| | - Kenny Dalgarno
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
| | | | | |
Collapse
|
7
|
Zhang Q, Guo J, Huang Z, Mai S. Promotion Effect of Carboxymethyl Chitosan on Dental Caries via Intrafibrillar Mineralization of Collagen and Dentin Remineralization. MATERIALS 2022; 15:ma15144835. [PMID: 35888302 PMCID: PMC9319914 DOI: 10.3390/ma15144835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Objective: To observe ultrastructural changes during the process of carboxymethyl chitosan (CMC)-mediated intrafibrillar mineralization, we evaluated the biomimetic remineralization potential of CMC in type-I collagen fibrils and membranes, and further explored the bond strength as well as the bond interfacial integrity of the biomimetic remineralized artificial caries-affected dentin (ACAD). Methods: A mineralized solution containing 200 μg/mL CMC was used to induce type-I collagen biomimetic remineralization in ACAD, while traditional mineralization without CMC was used as a control. The process and pattern of mineralization were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) as well as structured illumination microscopy (SIM). The Vickers hardness test was used to quantify the dentin hardness, while the microtensile bond strength (µTBS) test was used to assess the bond strength and durability. The bond interfacial integrity was evaluated by a confocal laser scanning microscope (CLSM). Results: TEM, SEM, and SIM images showed that CMC had a positive effect on stabilizing amorphous calcium phosphate (ACP) and promoting intrafibrillar mineralization, while extrafibrillar mineralization was formed without CMC. Furthermore, hardness evaluation and µTBS proved that CMC significantly increased dentin hardness and bond strength. CLSM indicated that CMC could create a significantly better bond interfacial integrity with less of a micro-gap in ACAD. Significance: CMC possessed the ability to promote intrafibrillar mineralization and remineralization in demineralized caries dentin lesions, as well as improve bond performance, which implied its potential in carious dentin demineralization or dentin hypersensitivity and possibly even as a possible material for indirect pulp-capping, to deal with deep caries. Highlights: CMC possessed the ability to induce intrafibrillar mineralization effectively; the bond strength and bond durability of demineralized caries dentin were improved via CMC-induced remineralization; the CMC-induced remineralization complex is a potential material for indirect pulp-capping, to deal with deep caries.
Collapse
Affiliation(s)
- Qi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.Z.); (J.G.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou 510080, China;
| | - Jiaxin Guo
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.Z.); (J.G.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou 510080, China;
| | - Zihua Huang
- Institute of Stomatology, Sun Yat-sen University, Guangzhou 510080, China;
- Department of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
| | - Sui Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Q.Z.); (J.G.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou 510080, China;
- Correspondence:
| |
Collapse
|
8
|
Qin D, He Z, Li P, Zhang S. Liquid-Liquid Phase Separation in Nucleation Process of Biomineralization. Front Chem 2022; 10:834503. [PMID: 35186885 PMCID: PMC8854647 DOI: 10.3389/fchem.2022.834503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
Biomineralization is a typical interdisciplinary subject attracting biologists, chemists, and geologists to figure out its potential mechanism. A mounting number of studies have revealed that the classical nucleation theory is not suitable for all nucleation process of biominerals, and phase-separated structures such as polymer-induced liquid precursors (PILPs) play essential roles in the non-classical nucleation processes. These structures are able to play diverse roles biologically or pathologically, and could also give inspiring clues to bionic applications. However, a lot of confusion and dispute occurred due to the intricacy and interdisciplinary nature of liquid precursors. Researchers in different fields may have different opinions because the terminology and current state of understanding is not common knowledge. As a result, our team reviewed the most recent articles focusing on the nucleation processes of various biominerals to clarify the state-of-the-art understanding of some essential concepts and guide the newcomers to enter this intricate but charming field.
Collapse
Affiliation(s)
| | | | - Peng Li
- *Correspondence: Peng Li, ; Shutian Zhang,
| | | |
Collapse
|
9
|
Wang J, Liu Q, Guo Z, Pan H, Liu Z, Tang R. Progress on Biomimetic Mineralization and Materials for Hard Tissue Regeneration. ACS Biomater Sci Eng 2021; 9:1757-1773. [PMID: 34870411 DOI: 10.1021/acsbiomaterials.1c01070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biomineralization is a process in which natural organisms regulate the crystal growth of inorganic minerals, resulting in hierarchical structured biominerals with excellent properties. Typical biominerals in the human body are the bones and teeth, and damage to these hard tissues directly affect our daily lives. The repair of bones and teeth in a biomimetic way, either by using a biomimetic mineralization strategy or biomimetic materials, is the key for hard tissue regeneration. In this review, we briefly introduce the structure of bone and tooth, and highlight the fundamental role of collagen mineralization in tissue repair. The recent progress on intra-/extrafibrillar collagen mineralization by a biomimetic strategy or materials is presented, and their potential for tissue regeneration is discussed. Then, recent achievements on bone and tooth repair are summarized, and these works are discussed in the view of materials science and biological science, providing a broader vision for the future research of hard tissue repair techniques. Lastly, recent progress on hard tissue regeneration is concluded, and existing problems and future directions are prospected.
Collapse
Affiliation(s)
- Jie Wang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qiqi Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhengxi Guo
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haihua Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
10
|
Spencer P, Ye Q, Kamathewatta NJB, Woolfolk SK, Bohaty BS, Misra A, Tamerler C. Chemometrics-Assisted Raman Spectroscopy Characterization of Tunable Polymer-Peptide Hybrids for Dental Tissue Repair. FRONTIERS IN MATERIALS 2021; 8:681415. [PMID: 34113623 PMCID: PMC8186416 DOI: 10.3389/fmats.2021.681415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The interfaces that biological tissues form with biomaterials are invariably defective and frequently the location where failure initiates. Characterizing the phenomena that lead to failure is confounded by several factors including heterogeneous material/tissue interfaces. To seamlessly analyze across these diverse structures presents a wealth of analytical challenges. This study aims to develop a molecular-level understanding of a peptide-functionalized adhesive/collagen hybrid biomaterial using Raman spectroscopy combined with chemometrics approach. An engineered hydroxyapatite-binding peptide (HABP) was copolymerized in dentin adhesive and dentin was demineralized to provide collagen matrices that were partially infiltrated with the peptide-functionalized adhesive. Partial infiltration led to pockets of exposed collagen-a condition that simulates defects in adhesive/dentin interfaces. The spectroscopic results indicate that co-polymerizable HABP tethered to the adhesive promoted remineralization of the defects. The spatial distribution of collagen, adhesive, and mineral as well as crystallinity of the mineral across this heterogeneous material/tissue interface was determined using micro-Raman spectroscopy combined with chemometrics approach. The success of this combined approach in the characterization of material/tissue interfaces stems from its ability to extract quality parameters that are related to the essential and relevant portions of the spectral data, after filtering out noise and non-relevant information. This ability is critical when it is not possible to separate components for analysis such as investigations focused on, in situ chemical characterization of interfaces. Extracting essential information from complex bio/material interfaces using data driven approaches will improve our understanding of heterogeneous material/tissue interfaces. This understanding will allow us to identify key parameters within the interfacial micro-environment that should be harnessed to develop durable biomaterials.
Collapse
Affiliation(s)
- Paulette Spencer
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
- Correspondence: Paulette Spencer, , Qiang Ye,
| | - Qiang Ye
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Correspondence: Paulette Spencer, , Qiang Ye,
| | - Nilan J. B. Kamathewatta
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - Sarah K. Woolfolk
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| | - Brenda S. Bohaty
- Department of Pediatric Dentistry, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Anil Misra
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Civil Engineering, University of Kansas, Lawrence, KS, United States
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States
- Bioengineering Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
11
|
Babaie E, Bacino M, White J, Nurrohman H, Marshall GW, Saeki K, Habelitz S. Polymer-Induced Liquid Precursor (PILP) remineralization of artificial and natural dentin carious lesions evaluated by nanoindentation and microcomputed tomography. J Dent 2021; 109:103659. [PMID: 33836248 DOI: 10.1016/j.jdent.2021.103659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES The study evaluates the efficacy to remineralize artificial and natural dentin lesions through restorative dental procedures that include the Polymer-Induced Liquid Precursor (PILP) method comprising polyaspartic acid (pAsp). METHODS Novel ionomeric cement compositions based on bioglass 45S5 and pAsp mixtures, as well as conditioning solutions (conditioner) containing 5 mg/mL pAsp, were developed and tested on demineralized dentin blocks (3-4 mm thick) on shallow and deep lesions with the thickness of 140 μm ± 50 and 700 μm ± 50, respectively. In the first treatment group, 20 μL of conditioner was applied to demineralized shallow (n = 3) and deep (n = 3) lesion specimens for 20 s before restoration with glass ionomer cement (RMGIC). For the PILP cement treatment group, cement was applied onto the wet surface of the demineralized specimen for both shallow (n = 3) and deep (n = 3) artificial lesions after the application of the conditioner and before the final restoration. Sample groups were compared to RMGIC restoration, for both shallow and deep lesions (n = 3 each) and treatments in PILP-solution (n = 3 for deep lesions) without restoration for 4 weeks. All of the restored specimens were immersed in simulated body fluid (SBF) solution for 2 weeks and 4 weeks for shallow and deep lesions respectively to allow for remineralization. The artificial lesion specimens were evaluated for changes in the nanomechanical profile (E-modulus and hardness) using nanoindentation. Shallow lesions were analyzed by SEM under vacuum for changes in morphology caused by PILP treatments. Also, a pilot study on human third molars with moderate lesions in dentin (n = 3) was initiated to test the efficacy of treatments in natural lesions based on mineral densities using microcomputed tomography (μCT) at 0, 1, and 3 months. RESULTS This study showed that functional remineralization of artificial lesions using PILP-releasing restoratives occurred, indicated by an increase of the elastic modulus in shallow lesions and in the middle zone of deep artificial lesions. The mechanical improvement was significant when compared to RMGIC restoration without pAsp (P < 0.05). Nonetheless, recovery across artificial lesions was most significant when specimens were immersed into PILP-solution with restorative (P < 0.01). Furthermore, natural lesions increased in mineral volume content to a higher degree when the restorative treatment included the PILP-method (P < 0.05). However, none of the natural lesions recovered to full mineral degree regardless of the treatments. CLINICAL SIGNIFICANCE/CONCLUSION These findings indicate the benefit of PILP applications in the functional repair of dentin caries and illustrate the challenge to integrate the PILP-method into a restorative approach in minimally invasive dental procedures.
Collapse
Affiliation(s)
- Elham Babaie
- Department of Preventative and Restorative Dental Sciences, UCSF School of Dentistry, San Francisco, CA, USA
| | - Margôt Bacino
- Department of Preventative and Restorative Dental Sciences, UCSF School of Dentistry, San Francisco, CA, USA
| | - Joel White
- Department of Preventative and Restorative Dental Sciences, UCSF School of Dentistry, San Francisco, CA, USA
| | - Hamid Nurrohman
- Department of Preventative and Restorative Dental Sciences, UCSF School of Dentistry, San Francisco, CA, USA; Missouri School of Dentistry and Oral Health, A.T. Still University, Kirksville, MO, USA
| | - Grayson W Marshall
- Department of Preventative and Restorative Dental Sciences, UCSF School of Dentistry, San Francisco, CA, USA
| | - Kuniko Saeki
- Department of Preventative and Restorative Dental Sciences, UCSF School of Dentistry, San Francisco, CA, USA
| | - Stefan Habelitz
- Department of Preventative and Restorative Dental Sciences, UCSF School of Dentistry, San Francisco, CA, USA.
| |
Collapse
|
12
|
Abstract
In the pursuit of better treatments, the concept of a chemically-active material, responding to local conditions by causing reactions, or reacting to produce substances that are deemed beneficial, seems laudable. Ultimately, the goal appears to be to recruit natural biological processes such that a natural ‘repair’ is effected. This goal seems to be the reason for prefixing “bio-” to many terms with a view to advertising the desire, yet without presenting evidence that it has occurred, or indeed that it is capable of occurring, relying instead on non-biological processes to justify the claims. The dogma is such that all work where local ‘responsive’ chemistry is involved must receive the label “bioactive” to legitimize and promote. Nevertheless, the primary evidence adduced is flawed, and the claim must fail. A rethink to restore scientific sense and confidence in the endeavour is essential if real progress is to be made.
Collapse
|
13
|
Rodriguez-Sendra J, Torres I, Jimenez N, Sauro S, Camarena F. Ultrasonic Monitoring of Dentin Demineralization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:570-578. [PMID: 32776879 DOI: 10.1109/tuffc.2020.3015668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Demineralization is a process of loss of minerals in the dental hard tissue that affects seriously the health of the patients, as it diminishes the tooth resistance, generating chewing problems by altering the occlusal structure, hypersensitivity, and pulpal problems. Demineralization can be produced by pathological processes as erosion or caries, or by surgical processes as etching. Due to the complexity of natural demineralization processes, it is mandatory to provide quantitative and standardized tests to allow their study in controlled laboratory conditions. Ultrasonic techniques are suitable for this purpose as they are nondestructive, quick, and provide localized mechanical information about the tissue, which is related with its degree of demineralization. In the present work, we evaluate the complete process of demineralization of the human dentin under controlled laboratory conditions using a pulse-echo ultrasonic technique. Up to 15 human dentin teeth have been demineralized with phosphoric acid at 10%. The time-of-flight measurements using the pulse-echo system allows to obtain the speed of sound in healthy (3415 m/s) and demineralized dentin tissue (1710 m/s), as well as to characterize the dynamical process of the acid penetration, which generates well-defined boundaries between two media (demineralized and mineralized dentin), showing very different mechanical properties. These boundaries advance in depth at an initial rate of [Formula: see text]/min, decelerating at -9.3 nm/min2 until the whole demineralization of the sample is achieved. In addition, the technique allows to measure the relevance of the demineralization produced by the acid residues inside the tooth once it has been removed from the acidic solution. Beyond the assessment of artificial demineralization lesions under laboratory conditions, as demonstrated in this article, the proposed technique opens new approaches to the assessment of demineralization caused by natural caries in vivo.
Collapse
|
14
|
NURROHMAN H, HABELITZ S, SAEKI K, SADR A, GOWER LB, PAZDERNIK V, TAGAMI J, MARSHALL SJ, MARSHALL GW. Enhanced silver diamine fluoride therapy using the PILP method -A nanoindentation study. Dent Mater J 2020; 39:1009-1015. [PMID: 32624525 PMCID: PMC8376189 DOI: 10.4012/dmj.2019-273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of this study was to evaluate the feasibility of applying the polymer-induced liquid-precursor (PILP) method to enhance silver diamine fluoride (SDF) therapy. One hundred forty micrometer deep artificial caries lesions were treated with (A) 38% SDF solution and (B) 38% SDF containing poly-L-aspartic acid (pASP). Changes in the nanomechanical profile across the lesion were evaluated. Hydrated artificial lesions had a low reduced elastic modulus (0.3 GPa) and nanohardness (0.02 GPa) region extending about 100 μm into the lesion, with a gradual linear increase to about 168 μm where the values plateaued to around 18 GPa/1.0 GPa. Topical application of SDF resulted in significantly recovered properties (p<0.001). SDF containing pASP resulted in greater nanomechanical properties compared to SDF alone, showing similar sloped regions up to 96 μm, then SDF alone dropped while SDF containing pASP continued at a modest slope until reaching normal at 144 μm. This nanoindentation study shows enhanced SDF therapy using the PILP method.
Collapse
Affiliation(s)
- Hamid NURROHMAN
- Missouri School of Dentistry and Oral Health, A.T. Still University, 800 W. Jefferson St. Kirksville, MO, 63501, USA,Department of Preventive and Restorative Dental Sciences, University of California San Francisco, 707 Parnassus Ave., Suite D-4000 San Francisco, CA, 94143, USA
| | - Stefan HABELITZ
- Department of Preventive and Restorative Dental Sciences, University of California San Francisco, 707 Parnassus Ave., Suite D-4000 San Francisco, CA, 94143, USA
| | - Kuniko SAEKI
- Department of Preventive and Restorative Dental Sciences, University of California San Francisco, 707 Parnassus Ave., Suite D-4000 San Francisco, CA, 94143, USA
| | - Alireza SADR
- Biomimetics Biomaterials Biophotonics & Technology Laboratory, Department of Restorative Dentistry, University of Washington School of Dentistry, 1959 NE Pacific St. Box 357456, Seatle, WA, 98195-7456, USA
| | - Laurie B. GOWER
- Materials Science and Engineering Department, University of Florida, Rhines Hall, Gainesville, FL, 32603, USA
| | - Vanessa PAZDERNIK
- Department of Research Support, A. T. Still University, 800 W. Jefferson St. Kirksville, MO, 63501, USA
| | - Junji TAGAMI
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Sally J. MARSHALL
- Department of Preventive and Restorative Dental Sciences, University of California San Francisco, 707 Parnassus Ave., Suite D-4000 San Francisco, CA, 94143, USA
| | - Grayson W. MARSHALL
- Department of Preventive and Restorative Dental Sciences, University of California San Francisco, 707 Parnassus Ave., Suite D-4000 San Francisco, CA, 94143, USA
| |
Collapse
|
15
|
Chen R, Jin R, Li X, Fang X, Yuan D, Chen Z, Yao S, Tang R, Chen Z. Biomimetic remineralization of artificial caries dentin lesion using Ca/P-PILP. Dent Mater 2020; 36:1397-1406. [DOI: 10.1016/j.dental.2020.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/19/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
|
16
|
Fischer NG, Münchow EA, Tamerler C, Bottino MC, Aparicio C. Harnessing biomolecules for bioinspired dental biomaterials. J Mater Chem B 2020; 8:8713-8747. [PMID: 32747882 PMCID: PMC7544669 DOI: 10.1039/d0tb01456g] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dental clinicians have relied for centuries on traditional dental materials (polymers, ceramics, metals, and composites) to restore oral health and function to patients. Clinical outcomes for many crucial dental therapies remain poor despite many decades of intense research on these materials. Recent attention has been paid to biomolecules as a chassis for engineered preventive, restorative, and regenerative approaches in dentistry. Indeed, biomolecules represent a uniquely versatile and precise tool to enable the design and development of bioinspired multifunctional dental materials to spur advancements in dentistry. In this review, we survey the range of biomolecules that have been used across dental biomaterials. Our particular focus is on the key biological activity imparted by each biomolecule toward prevention of dental and oral diseases as well as restoration of oral health. Additional emphasis is placed on the structure-function relationships between biomolecules and their biological activity, the unique challenges of each clinical condition, limitations of conventional therapies, and the advantages of each class of biomolecule for said challenge. Biomaterials for bone regeneration are not reviewed as numerous existing reviews on the topic have been recently published. We conclude our narrative review with an outlook on the future of biomolecules in dental biomaterials and potential avenues of innovation for biomaterial-based patient oral care.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-250A Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
17
|
|
18
|
He L, Hao Y, Zhen L, Liu H, Shao M, Xu X, Liang K, Gao Y, Yuan H, Li J, Li J, Cheng L, van Loveren C. Biomineralization of dentin. J Struct Biol 2019; 207:115-122. [PMID: 31153927 DOI: 10.1016/j.jsb.2019.05.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 02/08/2023]
Abstract
A single biomineralization of demineralized dentin is significant to restore the demineralized dentin due to dental caries or erosion. In recent years, meaningful progress has been made regarding the mechanisms involved in the biomineralization of dentin collagen. Concepts changing from the classical ion-based crystallization to non-classical particle-based crystallization, inspired a different strategy to infiltrate the demineralized dentin collagen. The remarkable discovery was the report of liquid-like amorphous calcium phosphate as nanoprecursor particles to carbonated hydroxyapatite. The non-collagenous proteins and their analogues are widely investigated, for their key role in controlling mineralization during the process of crystal nucleation and growth. The in-depth studies of the gap zone provided significant improvements in our understanding of the structure of collagen and of the intrafibrillar remineralization of collagen fibrils. The collagen is not a passive substrate as previously supposed, and the active role of guiding nanoprecursor infiltration and mediating its nucleation has been demonstrated. Furthermore, recovery of mechanical properties has been evaluated to determine the effectiveness of dentin remineralization. Finally, the problems regarding the origin formation of the calcium phosphate that is deposited in the collagen, and the exact interactions between the non-collagenous proteins, amorphous calcium phosphate and collagen are still unclear. We reviewed the importance of these findings in enriching our understanding of dentin biomineralization, while addressing certain limitations that are inherent to in vitro studies.
Collapse
Affiliation(s)
- Libang He
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Yu Hao
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Li Zhen
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Hongling Liu
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Meiying Shao
- West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Xin Xu
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Yuan Gao
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - He Yuan
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiyao Li
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Lei Cheng
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Cor van Loveren
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam 3004, 1081 LA, The Netherlands.
| |
Collapse
|
19
|
Bayne S, Ferracane J, Marshall G, Marshall S, van Noort R. The Evolution of Dental Materials over the Past Century: Silver and Gold to Tooth Color and Beyond. J Dent Res 2019; 98:257-265. [DOI: 10.1177/0022034518822808] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The field of dental materials has undergone more of a revolution than an evolution over the past 100 y. The development of new products, especially in the past half century, has occurred at a staggering pace, and their introduction to the market has been equally impressive. The movement has mostly come in the area of improved esthetics, marked by the gradual replacement of dental amalgam with dental composite and all-metal and porcelain-fused-to-metal indirect restorations with reinforced dental ceramics, all made possible by the rapid improvements in dental adhesive materials. This article covers the time course of dental materials development over the past century in which the Journal of Dental Research has been published. While there have been advances in nearly all materials used in the field, this article focuses on several areas, including dental amalgam, dental composites and light curing, dental adhesives and dental cements, ceramics, and new functional repair materials. A few short statements on future advances will be included at the end.
Collapse
Affiliation(s)
- S.C. Bayne
- School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J.L. Ferracane
- School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - G.W. Marshall
- School of Dentistry, University of California at San Francisco, San Francisco, CA, USA
| | - S.J. Marshall
- School of Dentistry, University of California at San Francisco, San Francisco, CA, USA
| | - R. van Noort
- Academic Unit of Restorative Dentistry, University of Sheffield, Sheffield, UK
| |
Collapse
|
20
|
Bacino M, Girn V, Nurrohman H, Saeki K, Marshall SJ, Gower L, Saeed E, Stewart R, Le T, Marshall GW, Habelitz S. Integrating the PILP-mineralization process into a restorative dental treatment. Dent Mater 2018; 35:53-63. [PMID: 30545611 DOI: 10.1016/j.dental.2018.11.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 11/26/2022]
Abstract
The addition of charged polymers, like poly-aspartic acid (pAsp), to mineralizing solutions allows for transport of calcium and phosphate ions into the lumen of collagen fibrils and subsequent crystallization of oriented apatite crystals by the so-called Polymer-Induced Liquid Precursor (PILP) mineralization process, leading to the functional recovery of artificial dentin lesions by intrafibrillar mineralization of collagen. OBJECTIVE To evaluate the feasibility of applying the PILP method as part of a restorative treatment and test for effectiveness to functionally remineralize artificial lesions in dentin. MATERIALS AND METHODS Two methods of providing pAsp to standardized artificial lesions during a restorative procedure were applied: (A) pAsp was mixed into commercial RMGI (resin modified glass ionomer) cement formulations and (B) pAsp was added at high concentration (25mg/ml) in solution to rehydrate lesions before restoring with a RMGI cement. All specimens were immersed in simulated body fluid for two weeks to allow for remineralization and then analyzed for dehydration shrinkage, integrity of cement-dentin interface, degree of mineralization, and changes in the nanomechanical profile (E-modulus) across the lesion. RESULTS After the remineralization treatment, lesion shrinkage was significantly reduced for all treatment groups compared to demineralized samples. Pores developed in RMGI when pAsp was added. A thin layer at the dentin-cement interface, rich in polymer formed possibly from a reaction between pAsp and the RMGI. When analyzed by SEM under vacuum, most lesions delaminated from the cement interface. EDS-analysis showed some but not full recovery of calcium and phosphorous levels for treatment groups that involved pAsp. Nanoindentations placed across the interface indicated improvement for RMGI containing 40% pAsp, and were significantly elevated when lesions were rehydrated with pAsp before being restored with RMGI. In particular the most demineralized outer zone recovered substantially in the elastic modulus, suggesting that functional remineralization has been initiated by pAsp delivery upon rehydration of air-dried demineralized dentin. In contrast, the effectiveness of the RMGI on functional remineralization of dentin was minimal when pAsp was absent. SIGNIFICANCE Incorporation of pAsp into restorative treatments using RMGIs promises to be a feasible way to induce the PILP-mineralization process in a clinical setting and to repair the structure and properties of dentin damaged by the caries process.
Collapse
Affiliation(s)
- Margot Bacino
- Department of Preventative and Restorative Dental Sciences, UCSF School of Dentistry, San Francisco, CA, USA
| | - Vishavjeet Girn
- Department of Orofacial Sciences, Division of Pediatric Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Hamid Nurrohman
- Department of Preventative and Restorative Dental Sciences, UCSF School of Dentistry, San Francisco, CA, USA; Missouri School of Dentistry and Oral Health, A.T. Still University, Kirksville, MO, USA
| | - Kuniko Saeki
- Department of Preventative and Restorative Dental Sciences, UCSF School of Dentistry, San Francisco, CA, USA
| | - Sally J Marshall
- Department of Preventative and Restorative Dental Sciences, UCSF School of Dentistry, San Francisco, CA, USA
| | - Laurie Gower
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Ella Saeed
- Department of Preventative and Restorative Dental Sciences, UCSF School of Dentistry, San Francisco, CA, USA
| | - Ray Stewart
- Department of Orofacial Sciences, Division of Pediatric Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Thuan Le
- Department of Orofacial Sciences, Division of Pediatric Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Grayson W Marshall
- Department of Preventative and Restorative Dental Sciences, UCSF School of Dentistry, San Francisco, CA, USA
| | - Stefan Habelitz
- Department of Preventative and Restorative Dental Sciences, UCSF School of Dentistry, San Francisco, CA, USA.
| |
Collapse
|
21
|
Qi Y, Ye Z, Fok A, Holmes BN, Espanol M, Ginebra MP, Aparicio C. Effects of Molecular Weight and Concentration of Poly(Acrylic Acid) on Biomimetic Mineralization of Collagen. ACS Biomater Sci Eng 2018; 4:2758-2766. [PMID: 30581990 DOI: 10.1021/acsbiomaterials.8b00512] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inspired by nature, poly(acrylic acid) (PAA) and other polyelectrolytes have been used as noncollagenous proteins (NCPs) surrogates for biomimetic intrafibrillar mineralization of collagen fibrils and thus, to model the ultrastructure of bone, to study the mechanism of bone mineralization and, more scarcely to fabricate scaffolds for hard tissue engineering. The objective of this study was to systematically investigate the effect of the molecular weight (MW) and the concentration of PAA on the rate and pattern of biomineralization of collagen matrices. Densified type I collagen films were mineralized in supersaturated PAA-stabilized amorphous calcium-phosphate (PAA-ACP) solutions containing increasing MW (2 kDa, 50 kDA, 450 kDa) and concentrations (10, 25, 50 mg/L) of PAA up to 7 days. The stability and physical properties of collagen-free PAA-ACP solutions were also investigated. In our system, lowering PAA MW and increasing PAA concentration resulted in solutions with increasing stability. Over stable PAA-ACP solutions that fully inhibited mineralization of the collagen matrices were achieved using PAA 2k-50. Conversely, unstable solutions were obtained using high PAA MW at low concentrations. Nucleation and growth of significant amount of extrafibrillar minerals on the collagen fibrils was obtained using these solutions. In a wide range of combined MW and concentration of PAA we obtained intrafibrillar mineralization of collagen with hydroxyapatite crystals aligned parallel to the collagen fibril as in natural tissues. Intrafibrillar mineralization was correlated with PAA-ACP stability and growth of the PAA-ACP particles in solution. Our results support using PAA to surrogate NCPs function as selective inhibitors or promoters of biological mineralization and provide parameters to manufacture new biomimetic scaffolds and constructs for bone and dentin tissue engineering.
Collapse
Affiliation(s)
- Yipin Qi
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhou Ye
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, USA
| | - Alex Fok
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, USA
| | - Brian N Holmes
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, USA
| | - Monsterrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, 08019 Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, C/Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, USA
| |
Collapse
|