1
|
Ma Y, Liu X, Dai R, Li Q, Cao CY. LL-37 regulates odontogenic differentiation of dental pulp stem cells in an inflammatory microenvironment. Stem Cell Res Ther 2024; 15:469. [PMID: 39696668 DOI: 10.1186/s13287-024-04075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Inflammation often causes irreversible damage to dental pulp tissue. Dental pulp stem cells (DPSCs), which have multidirectional differentiation ability, play critical roles in the repair and regeneration of pulp tissue. However, the presence of proinflammatory factors can affect DPSCs proliferation, differentiation, migration, and other functions. LL-37 is a natural cationic polypeptide that inhibits lipopolysaccharide (LPS) activity, enhances cytokine production, and promotes the migration of stem cells. However, the potential of LL-37 in regenerative endodontics remains unknown. This study aimed to investigate the regulatory role of LL-37 in promoting the migration and odontogenic differentiation of DPSCs within an inflammatory microenvironment. These findings establish an experimental foundation for the regenerative treatment of pulpitis and provide a scientific basis for its clinical application. MATERIALS AND METHODS DPSCs were isolated via enzyme digestion combined with the tissue block adhesion method and identified via flow cytometry. The impact of LL-37 on the proliferation of DPSCs was evaluated via a CCK-8 assay. The recruitment of DPSCs was assessed through a transwell assay. The mRNA expression levels of inflammatory and aging-related genes were assessed via reverse transcription‒polymerase chain reaction (RT‒PCR), western blotting, and enzyme‒linked immunosorbent assay (ELISA). The odontogenic differentiation of DPSCs was assessed through alkaline phosphatase (ALP) staining, alizarin red staining, and RT‒PCR analysis. RESULTS LL-37 has the potential to enhance the migration of DPSCs. In an inflammatory microenvironment, LL-37 can suppress the expression of genes associated with inflammation and aging, such as TNF-α, IL-1β, IL-6, P21, P38 and P53. Moreover, it promotes odontogenic differentiation in DPSCs by increasing ALP activity, increasing calcium nodule formation, and increasing the expression of dentin-related genes such as DMP1, DSPP and BSP. CONCLUSION These findings suggest that the polypeptide LL-37 facilitates the migration of DPSCs and plays a crucial role in resolving inflammation and promoting cell differentiation within an inflammatory microenvironment. Consequently, LL-37 has promising potential as an innovative therapeutic approach for managing inflammatory dental pulp conditions.
Collapse
Affiliation(s)
- Yunfeng Ma
- Key Lab. of Oral Diseases Research, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Xinyuan Liu
- Key Lab. of Oral Diseases Research, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ruoxi Dai
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Quanli Li
- Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Institute of Oral Science, Shenzhen, 518172, China
| | - Chris Ying Cao
- Key Lab. of Oral Diseases Research, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
2
|
Xu J, Hu M, Liu L, Xu X, Xu L, Song Y. A transcriptomic analysis of dental pulp stem cell senescence in vitro. Biomed Eng Online 2024; 23:102. [PMID: 39425139 PMCID: PMC11488381 DOI: 10.1186/s12938-024-01298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND/PURPOSE The use of human dental pulp stem cells (hDPSCs) as autologous stem cells for tissue repair and regenerative techniques is a significant area of global research. The objective of this study was to investigate the effects of long-term in vitro culture on the multidifferentiation potential of hDPSCs and the potential molecular mechanisms involved. MATERIALS AND METHODS The tissue block method was used to extract hDPSCs from orthodontic-minus-extraction patients, which were then expanded and cultured in vitro for 12 generations. Stem cells from passages three, six, nine, and twelve were selected. Flow cytometry was used to detect the expression of stem cell surface markers, and CCK-8 was used to assess cell proliferation. β-Galactosidase staining was employed to detect cellular senescence, Alizarin Red S staining to assess osteogenic potential, and Oil Red O staining to evaluate lipogenic capacity. RNA sequencing (RNA-seq) was conducted to identify differentially expressed genes in DPSCs and investigate their potential mechanisms. RESULTS With increasing passage numbers, pulp stem cells showed an increase in senescence and a decrease in proliferative capacity and osteogenic-lipogenic multidifferentiation potential. The expression of stem cell surface markers CD34 and CD45 was stable, whereas the expression of CD73, CD90, and CD105 decreased with increasing passages. According to the RNA-seq analysis, the differentially expressed genes CFH, WNT16, HSD17B2, IDI1, and COL5A3 may be associated with stem cell senescence. CONCLUSION Increased in vitro expansion induced cellular senescence in pulp stem cells, which resulted in a reduction in their proliferative capacity and osteogenic-lipogenic differentiation potential. The differential expression of genes such as CFH, WNT16, HSD17B2, IDI1, and COL5A3 may represent a potential mechanism for the induction of cellular senescence in pulp stem cells.
Collapse
Affiliation(s)
- Jidong Xu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Mingchang Hu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Longfei Liu
- Qingdao Engineering Vocational College, Qingdao, 266000, China
| | - Xuecheng Xu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Linlin Xu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Yu Song
- Department of Orthodontics, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China.
| |
Collapse
|
3
|
Vongprommool A, Mutirangura A, Pavasant P, Subbalekha K. Alu methylation level, morphological, and senescence changes during in vitro aging of human dental pulp stem cells. Tissue Cell 2024; 90:102512. [PMID: 39126831 DOI: 10.1016/j.tice.2024.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Human dental pulp stem cells (DPSCs) are pivotal in tissue engineering and cell-based therapies due to their significant differentiation potential and accessibility. A major challenge in in vitro cell expansion is their replicative senescence, which impacts their regeneration and differentiation capabilities. While genetic factors influence these processes, epigenetic regulations such as Alu methylation also play crucial roles. Changes in Alu methylation have been associated with human aging and age-related diseases, contributing to cellular dysfunction and stem cell senescence. Despite this, the implications of Alu methylation alterations in stem cell senescence remain underexplored. This study focuses on examining Alu methylation during the replicative senescence of DPSCs. METHODS The methylation status of Alu elements in serially passaged, long-term cultured human DPSCs was assessed using combined bisulfite restriction analysis. Morphological changes and indicators of replicative senescence were also evaluated. DPSCs were divided into three passage groups for analysis: early, middle, and late. Methylation levels across these groups were compared to identify trends correlating with passage number. RESULTS Significant morphological changes and markers of replicative senescence were observed predominantly in the late-passage DPSCs. These cells exhibited notably lower levels of Alu methylation and higher proportions of hypomethylated Alu CpG sites compared to those in early passages. CONCLUSION The study confirmed that alterations in Alu methylation are evident in the replicative senescence of human DPSCs, suggesting that epigenetic modifications could influence the aging process of these cells and potentially impact their therapeutic efficacy.
Collapse
Affiliation(s)
- Atitaya Vongprommool
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand (Oral and Maxillofacial Surgery Department, 1st Building, 34 Henri-Dunant Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand (Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Pattayapatana Building, Henri Dunant Road, Pathumwan, Bangkok 10330, Thailand
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, (Preclinic Building, 34 Henri-Dunant Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Keskanya Subbalekha
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand (Oral and Maxillofacial Surgery Department, 1st Building, 34 Henri-Dunant Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Wang C, Liu X, Zhou J, Zhang X, Zhou Z, Zhang Q. Sensory nerves drive migration of dental pulp stem cells via the CGRP-Ramp1 axis in pulp repair. Cell Mol Life Sci 2024; 81:373. [PMID: 39196292 PMCID: PMC11358583 DOI: 10.1007/s00018-024-05400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Dental pulp stem cells (DPSCs) are responsible for maintaining pulp structure and function after pulp injury. DPSCs migrate directionally to the injury site before differentiating into odontoblast-like cells, which is a prerequisite and a determinant in pulp repair. Increasing evidence suggests that sensory neuron-stem cell crosstalk is critical for maintaining normal physiological functions, and sensory nerves influence stem cells mainly by neuropeptides. However, the role of sensory nerves on DPSC behaviors after pulp injury is largely unexplored. Here, we find that sensory nerves released significant amounts of calcitonin gene-related peptide (CGRP) near the injury site, acting directly on DPSCs via receptor activity modifying protein 1 (RAMP1) to promote collective migration of DPSCs to the injury site, and ultimately promoting pulp repair. Specifically, sensory denervation leads to poor pulp repair and ectopic mineralization, in parallel with that DPSCs failed to be recruited to the injury site. Furthermore, in vitro evidence shows that sensory nerve-deficient microenvironment suppressed DPSC migration prominently among all related behaviors. Mechanistically, the CGRP-Ramp1 axis between sensory neurons and DPSCs was screened by single-cell RNA-seq analysis and immunohistochemical studies confirmed that the expression of CGRP rather than Ramp1 increases substantially near the damaged site. We further demonstrated that CGRP released by sensory nerves binds the receptor Ramp1 on DPSCs to facilitate cell collective migration by an indirect co-culture system using conditioned medium from trigeminal neurons, CGRP recombinant protein and antagonists BIBN4096. The treatment with exogenous CGRP promoted the recruitment of DPSCs, and ultimately enhanced the quality of pulp repair. Targeting the sensory nerve could therefore provide a new strategy for stem cell-based pulp repair and regeneration.
Collapse
Affiliation(s)
- Chunmeng Wang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Xiaochen Liu
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Jiani Zhou
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Xiaoyi Zhang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Zihao Zhou
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China
| | - Qi Zhang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing'an District, Shanghai, 200072, China.
| |
Collapse
|
5
|
Shirakawa J, Ntege EH, Takemura M, Miyamoto S, Kawano T, Sampei C, Kawabata H, Nakamura H, Sunami H, Hayata T, Shimizu Y. Exploring SSEA3 as an emerging biomarker for assessing the regenerative potential of dental pulp-derived stem cells. Regen Ther 2024; 26:71-79. [PMID: 38828011 PMCID: PMC11139766 DOI: 10.1016/j.reth.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Background Human dental pulp-derived stem cells (hDPSCs) have emerged as a promising source for adult stem cell-based regenerative medicine. Stage-specific embryonic antigen 3 (SSEA3) is a cell surface marker associated with Multilineage-differentiating stress-enduring (Muse) cells, a subpopulation of human bone marrow-derived stem cells (hBMSCs), known for their potent regenerative potential and safety profile. In this study, we investigated the influence of the prolonged culture period and the number of culture passages on the regenerative capacity of hDPSCs and explored the association between SSEA3 expression and their regenerative abilities. Methods hDPSCs were isolated and cultured for up to 20 passages. Cell proliferation, migration, and osteogenic, adipogenic and neurogenic differentiation potential were assessed at passages 5, 10, and 20. Flow cytometry and immunofluorescence were employed to analyze SSEA3 expression. RNA sequencing (RNA-seq) was performed on SSEA3-positive and SSEA3-negative hDPSCs to identify differentially expressed genes and associated pathways. Results Our findings demonstrated a progressive decline in hDPSCs proliferation and migration capacity with increasing passage number. Conversely, cell size exhibited a positive correlation with passage number. Early passage hDPSCs displayed superior osteogenic and adipogenic differentiation potential. Notably, SSEA3 expression exhibited a significant negative correlation with passage numbers, reflecting the observed decline in differentiation capacity. RNA-seq analysis revealed distinct transcriptional profiles between SSEA3-positive and SSEA3-negative hDPSCs. SSEA3-positive cells displayed upregulation of genes associated with ectodermal differentiation and downregulation of genes involved in cell adhesion. Conclusions This study elucidates the impact of passaging on hDPSC behavior and suggests SSEA3 as a valuable biomarker for evaluating stemness and regenerative potential. SSEA3-positive hDPSCs, functionally analogous to Muse cells, represent a promising cell population for developing targeted regenerative therapies with potentially improved clinical outcomes.
Collapse
Affiliation(s)
- Jumpei Shirakawa
- Department of Oral and Maxillofacial Surgery, and Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nakagami, Nishihara, Okinawa 903-0215, Japan
| | - Edward H. Ntege
- Department of Oral and Maxillofacial Surgery, and Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nakagami, Nishihara, Okinawa 903-0215, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nakagami, Nishihara, Okinawa 903-0215, Japan
| | - Masuo Takemura
- Department of Oral and Maxillofacial Surgery, and Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nakagami, Nishihara, Okinawa 903-0215, Japan
| | - Sho Miyamoto
- Department of Oral Surgery, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Toshihiro Kawano
- Department of Oral and Maxillofacial Surgery, and Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nakagami, Nishihara, Okinawa 903-0215, Japan
| | - Chisato Sampei
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 287-8510, Japan
| | - Hayato Kawabata
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 287-8510, Japan
| | - Hiroyuki Nakamura
- Department of Oral and Maxillofacial Surgery, and Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nakagami, Nishihara, Okinawa 903-0215, Japan
| | - Hiroshi Sunami
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 287-8510, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nakagami, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
6
|
Wang C, Liu X, Zhou J, Zhang Q. The Role of Sensory Nerves in Dental Pulp Homeostasis: Histological Changes and Cellular Consequences after Sensory Denervation. Int J Mol Sci 2024; 25:1126. [PMID: 38256202 PMCID: PMC10815945 DOI: 10.3390/ijms25021126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Homeostatic maintenance is essential for pulp function. Disrupting pulp homeostasis may lead to pulp degeneration, such as fibrosis and calcifications. Sensory nerves constitute a crucial component of the dental pulp. However, the precise involvement of sensory nerves in pulp homeostasis remains uncertain. In this study, we observed the short-term and long-term histological changes in the dental pulp after inferior alveolar nerve transection. Additionally, we cultured primary dental pulp cells (DPCs) from the innervated and denervated groups and compared indicators of cellular senescence and cellular function. The results revealed that pulp fibrosis occurred at 2 w after the operation. Furthermore, the pulp area, as well as the height and width of the pulp cavity, showed accelerated reductions after sensory denervation. Notably, the pulp area at 16 w after the operation was comparable to that of 56 w old rats. Sensory denervation induced excessive extracellular matrix (ECM) deposition and increased predisposition to mineralization. Furthermore, sensory denervation promoted the senescence of DPCs. Denervated DPCs exhibited decelerated cell proliferation, arrest in the G2/M phase of the cell cycle, imbalance in the synthesis and degradation of ECM, and enhanced mineralization. These findings indicate that sensory nerves play an essential role in pulp homeostasis maintenance and dental pulp cell fate decisions, which may provide novel insights into the prevention of pulp degeneration.
Collapse
Affiliation(s)
| | | | | | - Qi Zhang
- Department of Endodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Yanchang Middle Road, Jing’an District, Shanghai 200072, China
| |
Collapse
|
7
|
Soheilifar MH, Nobari S, Hakimi M, Adel B, Masoudi-Khoram N, Reyhani E, Neghab HK. Current concepts of microRNA-mediated regulatory mechanisms in human pulp tissue-derived stem cells: a snapshot in the regenerative dentistry. Cell Tissue Res 2023:10.1007/s00441-023-03792-4. [PMID: 37247032 DOI: 10.1007/s00441-023-03792-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
One of the most studied class of non-coding RNAs is microRNAs (miRNAs) which regulate more than 60% of human genes. A network of miRNA gene interactions participates in stem cell self-renewal, proliferation, migration, apoptosis, immunomodulation, and differentiation. Human pulp tissue-derived stem cells (PSCs) are an attractive source of dental mesenchymal stem cells (MSCs) which comprise human dental pulp stem cells (hDPSCs) obtained from the dental pulp of permanent teeth and stem cells isolated from exfoliated deciduous teeth (SHEDs) that would be a therapeutic opportunity in stomatognathic system reconstruction and repair of other damaged tissues. The regenerative capacity of hDPSCs and SHEDs is mediated by osteogenic, odontogenic, myogenic, neurogenic, angiogenic differentiation, and immunomodulatory function. Multi-lineage differentiation of PSCs can be induced or inhibited by the interaction of miRNAs with their target genes. Manipulating the expression of functional miRNAs in PSCs by mimicking miRNAs or inhibiting miRNAs emerged as a therapeutic tool in the clinical translation. However, the effectiveness and safety of miRNA-based therapeutics, besides higher stability, biocompatibility, less off-target effects, and immunologic reactions, have received particular attention. This review aimed to comprehensively overview the molecular mechanisms underlying miRNA-modified PSCs as a futuristic therapeutic option in regenerative dentistry.
Collapse
Affiliation(s)
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Hakimi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bashir Adel
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elahe Reyhani
- Faculty of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Zeng Y, Liu L, Huang D, Song D. Immortalized cell lines derived from dental/odontogenic tissue. Cell Tissue Res 2023:10.1007/s00441-023-03767-5. [PMID: 37039940 DOI: 10.1007/s00441-023-03767-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Stem cells derived from dental/odontogenic tissue have the property of multiple differentiation and are prospective in tooth regenerative medicine and cellular and molecular studies. However, in the face of cellular senescence soon in vitro, the proliferation ability of the cells is limited, so studies are hindered to some extent. Fortunately, immortalization strategies are expected to solve the above issues. Cellular immortalization is that cells are immortalized by introducing oncogenes, human telomerase reverse transcriptase genes (hTERT), or miscellaneous immortalization genes to get unlimited proliferation. At present, a variety of immortalized stem cells from dental/odontogenic tissue has been successfully generated, such as dental pulp stem cells (DPSCs), periodontal ligament cells (PDLs), stem cells from human exfoliated deciduous teeth (SHEDs), dental papilla cells (DPCs), and tooth germ mesenchymal cells (TGMCs). This review summarized establishment and applications of immortalized stem cells from dental/odontogenic tissues and then discussed the advantages and challenges of immortalization.
Collapse
Affiliation(s)
- Yanglin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
de Farias JO, Rezende TMB. Dental pulp and apical papilla cells senescence: causes, consequences, and prevention. Biogerontology 2023:10.1007/s10522-023-10029-y. [PMID: 37010664 DOI: 10.1007/s10522-023-10029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/07/2023] [Indexed: 04/04/2023]
Abstract
Dental pulp under physiological conditions has a defense function, repair capacity, and important mechanisms in pathological processes. In addition, the dental papilla is involved in important defense processes and an essential function in the pulp revascularization process. It is known that dental pulp and apical papilla undergo a natural aging process, in addition to stressful situations such as bruxism, inflammation, and infections. Both aging and stressful situations can lead to cellular senescence. Some evidence indicates that the changes resulting from this cellular state can directly affect the efficiency of cells in these tissues and affect conservative and regenerative clinical treatments. Thus, it is necessary to understand the causes and consequences of cellular senescence in addition to the development of methods for senescence prevention. This review aims to provide an overview of possible causes and consequences of senescence in dental pulp and stem cells from apical papilla and discusses possible methods to prevent this cellular state.
Collapse
Affiliation(s)
- Jade Ormondes de Farias
- Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Campus Darcy Ribeiro s/n - Asa Norte, Brasília, DF, Brazil
| | - Taia Maria Berto Rezende
- Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Campus Darcy Ribeiro s/n - Asa Norte, Brasília, DF, Brazil.
- Curso de Odontologia, Universidade Católica de Brasília, QS 07 Lote 01, Brasília, DF, Brazil.
- Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SHAN 916 Módulo B Avenida W5 - Asa Norte, Campus II - Modulo C, Room C - 221, Brasília, DF, 70.790-160, Brazil.
| |
Collapse
|
10
|
Yao L, Li F, Yu C, Wang H, Wang Y, Ye L, Yu F. Chronological and Replicative Aging of CD51 +/PDGFR-α + Pulp Stromal Cells. J Dent Res 2023:220345231158038. [PMID: 36919905 DOI: 10.1177/00220345231158038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
As a crucial source of mesenchymal stromal cells, CD51+/PDGFR-α+ human dental pulp stromal cells (hDPSCs) are promising seeding cells for regenerative medicine. Cellular senescence hinders the translational application of hDPSCs. However, it remains unclear whether chronological and replicative senescence results in distinct outcomes for hDPSCs. To investigate the influence of senescence on DPSCs, we used transgenic lineage tracking, immunofluorescence, flow cytometry, and various molecular experiments to depict the dynamic pattern of hDPSCs in mice and humans during chronological and replicative senescence. The data demonstrated that CD51+/PDGFR-α+ cells were decreased in chronological senescence. Impaired self-renewal and higher ossificatory differentiation were observed in chronologically senescent hDPSCs. Regarding replicative senescence, a decreased CD51+ but upregulated PDGFR-α+ population was observed in culture. Furthermore, weakened self-renewal and osteogenic differentiation were observed in replicatively senescent hDPSCs. In summary, CD51+/PDGFR-α+ hDPSCs decrease in chronologically aged pulp, with self-renewal that is impaired without impaired osteogenic differentiation. However, replicative senescence has a different impact: self-renewal and ossific differentiation are impaired and CD51 expression is reduced, but PDGFR-α expression remains. These findings demonstrate the different outcomes of chronological and replicative senescence in CD51+/PDGFR-α+ hDPSCs. Furthermore, we revealed that impaired self-renewal is the core dysfunction for both types of cellular aging and that osteogenic differentiation capability differs between them. This study provides insights into the influence of chronological and replicative senescence on the characteristics and capabilities of hDPSCs. These advances provide fundamental knowledge to alleviate cellular aging of CD51+/PDGFR-α+ hDPSCs and promote their translational applications.
Collapse
Affiliation(s)
- L Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - F Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - C Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - F Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Dai G, Li Y, Zhang M, Lu P, Zhang Y, Wang H, Shi L, Cao M, Shen R, Rui Y. The Regulation of the AMPK/mTOR Axis Mitigates Tendon Stem/Progenitor Cell Senescence and Delays Tendon Aging. Stem Cell Rev Rep 2023:10.1007/s12015-023-10526-0. [PMID: 36917311 DOI: 10.1007/s12015-023-10526-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
Age-related tendon disorders are closely linked with tendon stem/progenitor cell (TSPC) senescence. However, the underlying mechanisms of TSPC senescence and promising therapeutic strategies for rejuvenation of TSPC senescence remain unclear. In this study, the senescent state of TSPCs increased with age. It was also verified that the AMPK inhibition/mTOR activation is correlated with the senescent state of TSPCs. Furthermore, a low dose of metformin mitigated TSPC senescence and restored senescence-related functions, including proliferation, colony-forming ability, migration ability and tenogenic differentiation ability at the early stage of aging. The protective effects of metformin on TSPCs were regulated through the AMPK/mTOR axis. An in vivo study showed that metformin treatment postpones tendon aging and enhances AMPK phosphorylation but reduces mTOR phosphorylation in a natural aging rat model. Our study revealed new insight and mechanistic exploration of TSPC senescence and proposed a novel therapeutic treatment for age-related tendon disorders by targeting the AMPK/mTOR axis at the early stage of aging.
Collapse
Affiliation(s)
- Guangchun Dai
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Yingjuan Li
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, Nanjing, PR China
| | - Ming Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Panpan Lu
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Yuanwei Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Hao Wang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Liu Shi
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Mumin Cao
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Renwang Shen
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Yunfeng Rui
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China. .,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China. .,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China. .,China Orthopedic Regenerative Medicine Group, 310000, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
12
|
Dou W, Xie J, Chen J, Zhou J, Xu Z, Wang Z, Zhu Q. Overexpression of adrenomedullin (ADM) alleviates the senescence of human dental pulp stem cells by regulating the miR-152/CCNA2 pathway. Cell Cycle 2023; 22:565-579. [PMID: 36310381 PMCID: PMC9928452 DOI: 10.1080/15384101.2022.2135621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The limitation of human dental pulp stem cells (DPSCs), which have potential application value in regenerative medicine, is that they are prone to age in vitro. Studies have shown adrenomedullin (ADM) is believed to promote the proliferation of human DPSCs, but whether it can also affect aging remains to be investigated. A lentivirus vector was used to construct human DPSCs overexpressing ADM. Senescence tests were carried out on cells of the 7th and 15th passage. Transcriptome analysis was conducted to analyze microRNA expression regulation changes after human DPSCs overexpressed ADM. H2O2 induced the aging model of human DPSCs, and we examined the mechanism of recovery of aging through transfection experiments with miR-152 mimic, pCDH-CCNA2, and CCNA2 siRNA. Overexpression of ADM significantly upregulated the G2/M phase ratio of human DPSCs in natural passage culture (P = 0.001) and inhibited the expression of p53 (P = 0.014), P21 WAF1 (P = 0.015), and P16 INK4A (P = 0.001). Decreased ROS accumulation was observed in human DPSCs during long-term natural passage (P = 0.022). Transcriptome analysis showed that miR-152 was significantly upregulated during human DPSC senescence (P = 0.001) and could induce cell senescence by directly targeting CCNA2. Transfection with miR-152 mimic significantly reversed the inhibitory effect of ADM overexpression on p53 (P = 0.006), P21 WAF1 (P = 0.012), and P16 INK4A (P = 0.01) proteins in human DPSCs (H2O2-induced). In contrast, pCDH-CCNA2 weakened the effect of the miR-152 mimic, thus promoting cell proliferation and antiaging. ADM-overexpressing human DPSCs promote cell cycle progression and resist cellular senescence through CCNA2 expression promotion by inhibiting miR-152.
Collapse
Affiliation(s)
- Wenxue Dou
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, China
| | - Jiaye Xie
- Department of Stomatology, Tongren Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianan Chen
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, China
| | - Jiajun Zhou
- Department of Stomatology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zunyue Xu
- Department of Stomatology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Zheng Wang
- Department of Stomatology, Tongren Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Zhu
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, China,CONTACT Qiang Zhu Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai200433, China
| |
Collapse
|
13
|
Deng W, Jo JI, Morikuni H, Sasayama S, Hashimoto Y, Matsumoto N, Honda Y. Senescence-associated secretory phenotypes in rat-derived dedifferentiated fat cells with replicative senescence. Dent Mater J 2023. [PMID: 36775334 DOI: 10.4012/dmj.2022-242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Senescence-associated secretory phenotype (SASPs) secreted from senescent cells often cause the deleterious damages to the surrounding tissues. Although dedifferentiated fat (DFAT) cells prepared are considered a promising cell source for regenerative therapies, SASPs from DFAT cells undergoing long-term cell culture, which latently induce replicative senescence, have barely been explored. The present study was designed to investigate senescent behaviors in rat-derived DFAT cells at high passage numbers and to analyze the possible types of SASPs. Our data show that DFAT cells undergo senescence during replicative passaging, as determined by multiple senescent hallmarks including morphological changes in cell shape and nucleus. Moreover, RT2 PCR array analysis indicated that senescent DFAT cells expressed higher levels of 16 inflammatory cytokines (Ccl11, Ccl12, Ccl21, Ccl5, Csf2, Cxcl1, Cxcl12, Ifna2, IL11, IL12a, IL13, IL1a, IL1rn, IL6, Mif, and Tnf) associated with SASPs than non-senescent cells. This study implicates that rat DFAT cells undergo cellular senescence after long-term cell culture; cautious consideration should be paid to treat SASP secretion when senescent DFAT cells are used in regenerative medicine.
Collapse
Affiliation(s)
- Wenqi Deng
- Department of Orthodontics, Osaka Dental University
| | | | | | | | | | | | | |
Collapse
|
14
|
Changes in AMPK activity induces cellular senescence in human dental follicle cells. Exp Gerontol 2023; 172:112071. [PMID: 36563529 DOI: 10.1016/j.exger.2022.112071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Dental Follicle Cells (DFCs) are somatic stem cells with a limited lifespan, but little is known about a possible mechanism of cellular senescence. Previous studies have shown that cellular senescence is associated with increased demand of glycolsis or the "glycolytic metabotype", which can be induced by activation of 5' adenosine monophosphate-activated protein kinase (AMPK), and decreased autophagy. This study examined the role of AMPK in inducing senescence in DFCs. During the induction of cellular senescence, AMPK activity was impaired, suggesting a negative impact on senescence induction. In line with this assumption, cellular senescence was induced upon inhibition of AMPK with a specific siRNA. In addition, after this inhibition, autophagy was also inhibited. Moreover, specific inhibition of autophagy promoted cellular senescence. However, inducers of AMPK such as metformin or AICAR surprisingly increased senescence in DFCs. Interestingly, autophagy was impaired after long-term induction of AMPK with AICAR and metformin. Moreover, activation of AMPK induces the consumption of glucose but decreases NAD/NADH ratio in DFCs that suggest not only "glycolytic metabotype" of DFCs but also Mitochondrial Dysfunction Associated Senescence (MiDAS). Both changes are highly associated with the induction of cellular senescence. Hence, both AMPK activation and inhibition promote the induction of cellular senecence of DFCs.
Collapse
|
15
|
Dieterle MP, Gross T, Steinberg T, Tomakidi P, Becker K, Vach K, Kremer K, Proksch S. Characterization of a Stemness-Optimized Purification Method for Human Dental-Pulp Stem Cells: An Approach to Standardization. Cells 2022; 11:cells11203204. [PMID: 36291072 PMCID: PMC9600643 DOI: 10.3390/cells11203204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Human dental pulp stem cells (hDPSCs) are promising for oral/craniofacial regeneration, but their purification and characterization is not yet standardized. hDPSCs from three donors were purified by magnetic activated cell sorting (MACS)-assisted STRO-1-positive cell enrichment (+), colony derivation (c), or a combination of both (c/+). Immunophenotype, clonogenicity, stemness marker expression, senescence, and proliferation were analyzed. Multilineage differentiation was assessed by qPCR, immunohistochemistry, and extracellular matrix mineralization. To confirm the credibility of the results, repeated measures analysis and post hoc p-value adjustment were applied. All hDPSC fractions expressed STRO-1 and were similar for several surface markers, while their clonogenicity and expression of CD10/44/105/146, and 166 varied with the purification method. (+) cells proliferated significantly faster than (c/+), while (c) showed the highest increase in metabolic activity. Colony formation was most efficient in (+) cells, which also exhibited the lowest cellular senescence. All hDPSCs produced mineralized extracellular matrix. Regarding osteogenic induction, (c/+) revealed a significant increase in mRNA expression of COL5A1 and COL6A1, while osteogenic marker genes were detected at varying levels. (c/+) were the only population missing BDNF gene transcription increase during neurogenic induction. All hDPSCs were able to differentiate into chondrocytes. In summary, the three hDPSCs populations showed differences in phenotype, stemness, proliferation, and differentiation capacity. The data suggest that STRO-1-positive cell enrichment is the optimal choice for hDPSCs purification to maintain hDPSCs stemness. Furthermore, an (immuno) phenotypic characterization is the minimum requirement for quality control in hDPSCs studies.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Tara Gross
- Department of Operative Dentistry and Periodontology, Centre for Dental Medicine Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-27047460
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Kathrin Becker
- Department of Operative Dentistry and Periodontology, Centre for Dental Medicine Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Kirstin Vach
- Institute of Medical Biometry and Statistics, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - Katrin Kremer
- Department of Oral and Maxillofacial Surgery, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Susanne Proksch
- Department of Operative Dentistry and Periodontology, Centre for Dental Medicine Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany
| |
Collapse
|
16
|
Phenytoin Is Promoting the Differentiation of Dental Pulp Stem Cells into the Direction of Odontogenesis/Osteogenesis by Activating BMP4/Smad Pathway. DISEASE MARKERS 2022; 2022:7286645. [PMID: 35493301 PMCID: PMC9050280 DOI: 10.1155/2022/7286645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022]
Abstract
Background The purpose of this study was the evaluation of the potential and mechanism of phenytoin to promote differentiation of human dental pulp stem cells (hDPSC) into odontoblasts/osteoblasts. Methods Fourth-generation human hDPSC originating from healthy pulp of third molars was cultured in control as well as phenytoin-containing media (PHT) for 14 days. qPCR was applied to detect the expression of DSPP, DMP1, and ALP genes. Western blot analysis was used to confirm the findings. One-way analysis of variance (ANOVA) was used for statistical analysis (p < 0.05). Information about phenytoin was assessed from PubChem database, while targets of phenytoin were assessed from six databases. Drug targets were extracted based on the differentially expressed genes (‖logFC‖ ≥ 1, p < 0.05) in the experimental group (50 mg/L PHT, 14 days). GO BP and KEGG pathway enrichment analysis on the obtained drug targets was performed and the target protein functional network diagram was constructed. Results A concentration below 200 mg/L PHT had no obvious toxicity to hDPSC. The expression of DSPP, DMP1, and ALP genes in the 50 mg/L PHT concentration group increased significantly. The WB experiment showed that the protein content of BMP4, Smad1/5/9, and p-Smad1/5 was significantly increased in 50 mg/L PHT in comparison with the NC group (the group without treatment of PHT) at 14 days. Conclusion Phenytoin has the ability of promoting the differentiation of hDPSC into odontoblasts and osteoblasts. BMP4/Smad pathway, inducing odontogenic/osteogenic differentiation of hDPSC, appears a main process in this context.
Collapse
|
17
|
Jacob J, Aggarwal A, Aggarwal A, Bhattacharyya S, Kumar V, Sharma V, Sahni D. Senescent chondrogenic progenitor cells derived from articular cartilage of knee osteoarthritis patients contributes to senescence-associated secretory phenotype via release of IL-6 and IL-8. Acta Histochem 2022; 124:151867. [PMID: 35192993 DOI: 10.1016/j.acthis.2022.151867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Despite the presence of chondrogenic progenitor cells (CPCs) in knee osteoarthritis patients they are unable to repair the damaged cartilage. This study aimed to evaluate the oxidative stress, cellular senescence, and senescence-associated secretory phenotype (SASP) in the CPCs derived from osteoarthritic cartilage and compare with the CPCs of healthy articular cartilage. METHODS Isolated CPCs were characterized based on phenotypic expression of stem cell markers, clonogenicity, and tri-lineage differentiation assay. Production of ROS was measured using DCFDA assay. Cellular senescence in CPCs was assessed by senescence-associated beta-galactosidase assay and expression of senescence markers at the gene level using real-time PCR. Morphological features associated with senescent OA-CPCs were studied using scanning electron microscopy. To study SASP, the production of inflammatory cytokines was assessed in the culture supernatant using a flow-cytometer based cytometric bead array. RESULTS OA-CPCs exhibited elevated ROS levels along with a relatively high percentage of senescent cells compared to non-OA CPCs, and a positive correlation exists between ROS production and senescence. The morphological assessment of senescent CPCs revealed increased cell size and multiple nuclei in senescent OA-CPCs. These results were further validated by elevated expression of senescence genes p16, p21, and p53. Additionally, culture supernatant of senescent OA-CPCs expressed IL-6 and IL-8 cytokines indicative of SASP. CONCLUSIONS Despite exhibiting similar expression of stem cell markers and clonogenicity, CPCs undergo oxidative stress in diseased knee joint leading to increased production of intracellular ROS in chondrogenic progenitor cells that support cellular senescence. Further, senescence in OA-CPCs is mediated via the release of pro-inflammatory cytokines, IL-6 and IL-8.
Collapse
Affiliation(s)
- Justin Jacob
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Anjali Aggarwal
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Aditya Aggarwal
- Department of Orthopedics, Nehru Hospital, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Vishal Kumar
- Department of Orthopedics, Nehru Hospital, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Vinit Sharma
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Daisy Sahni
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
18
|
Investigation of the expression level of long non-coding RNAs in dental follicles of impacted mandibular third molars. Clin Oral Investig 2022; 26:2817-2825. [PMID: 34988693 DOI: 10.1007/s00784-021-04259-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/23/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Dental follicle (DF) is made up of mesenchymal cells and fibers surrounding the enamel organ of a developing tooth. It has been shown that cystic and neoplastic lesions can develop from the pericoronal follicles of impacted third molars (ITMs). But the molecular transformation of DF tissues has not yet been uncovered and remains elusive. Accordingly, in the present study, we aimed to investigate the differential expression of lncRNA genes in DF tissues associated with asymptomatic impacted mandibular third molars (IMTMs) that do not show pathological pericoronal radiolucency in radiographic examination. MATERIAL AND METHODS A total of 30 patients with unilateral mesioangular IMTMs were enrolled for the study. The expressions of lncRNA genes were determined in the DF and healthy gingival tissues obtained from study patients. For the determination of lncRNA expression levels, RNA was isolated from the obtained tissues, converted to cDNA samples, and analyzed by quantitative real-time PCR method. RESULTS As a result, we found that the gene expression of MEG3 was increased about 10-fold in DF tissues compared to healthy gingival tissues (p < 0.0001). In addition, NORAD expression was found to be upregulated 4.2-fold (p = 0.0002) in DF tissues. Also, expression level of MALAT1 was found to be decreased 1.24-fold (p = 0.584) and TP73-AS1 increased 2.6-fold (p = 0.093) in DF tissues compared to healthy gingival tissues. CONCLUSIONS Consequently, present findings suggest that differentially expressed lncRNAs in DFs might be associated with the various levels of cellular events including osteogenic differentiation, DNA damage, and the transformation into odontogenic pathology. CLINICAL RELEVANCE Expression levels of MEG3 and NORAD lncRNA molecules may guide clinicians in the evaluation of asymptomatic ITM dental follicles that cannot be determined radiologically and during extraction of these teeth for prophylactic purposes.
Collapse
|
19
|
Dong X, Huang Y, Yang Z, Chu X, Wu J, Wang S, He X, Gao C, Chen X, Yang K, Zhang D. Downregulation of ROR2 promotes dental pulp stem cell senescence by inhibiting STK4-FOXO1/SMS1 axis in sphingomyelin biosynthesis. Aging Cell 2021; 20:e13430. [PMID: 34278704 PMCID: PMC8373368 DOI: 10.1111/acel.13430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/09/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022] Open
Abstract
Dental pulp stem cells (DPSCs) play a vital role in tooth restoration, regeneration, and homeostasis. The link between DPSC senescence and tooth aging has been well‐recognized. ROR2 plays an important role in aging‐related gene expression. However, the expression and function of ROR2 in DPSC aging remain largely unknown. In this study, we found that ROR2 expression was significantly decreased in aged pulp tissues and DPSCs. The depletion of ROR2 in young DPSCs inhibits their self‐renewal capacity, while its overexpression in aged DPSCs restores their self‐renewal capacity. Interestingly, we found that sphingomyelin (SM) is involved in the senescence of DPSCs regulated by ROR2. Mechanistically, we confirmed that ROR2 inhibited the phosphorylation of STK4, which promoted the translocation of Forkhead Box O1 (FOXO1) to the nucleus. STK4 inhibition or knockdown of FOXO1 markedly increased the proliferation of DPSCs and upregulated the expression of SMS1, which catalyzed SM biogenesis. Moreover, FOXO1 directly bound to the SMS1 promoter, repressing its transcription. Our findings demonstrated the critical role of the ROR2/STK4‐FOXO1/SMS1 axis in the regulation of SM biogenesis and DPSC senescence, providing a novel target for antagonizing tooth aging.
Collapse
Affiliation(s)
- Xing‐yue Dong
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Yan‐xia Huang
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Zhan Yang
- Molecular Biology Laboratory, Talent and Academic Exchange Center The Second Hospital of Hebei Medical University Shijiazhang China
| | - Xiao‐yang Chu
- Department of Stomatology Fifth Medical Center of Chinese, PLA General HospitalBeijing China
| | - Jue Wu
- Translational Medical Research Center Medical Innovation Research Division of Chinese PLA General HospitalBeijing China
| | - Shan Wang
- Translational Medical Research Center Medical Innovation Research Division of Chinese PLA General HospitalBeijing China
| | - Xin He
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Chun‐Yan Gao
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Xu Chen
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Kai Yang
- Prenatal Diagnosis Center Beijing Obstetrics and Gynecology Hospital Capital Medical University Beijing China
| | - Dong‐liang Zhang
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| |
Collapse
|
20
|
Comparative analysis of cytokines and growth factors in the conditioned media of stem cells from the pulp of deciduous, young, and old permanent tooth. Saudi J Biol Sci 2021; 28:3559-3565. [PMID: 34121899 PMCID: PMC8176054 DOI: 10.1016/j.sjbs.2021.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Objectives To compare and analyze the secretome profile of stem cells obtained from the deciduous tooth (SHEDs), young (yDPSCs), and old permanent tooth (oDPSCs). Methods All the stem cells were assessed for mesenchymal stem cell markers. The stem cells were differentiated into osteoblasts and chondrocytes using lineage-specific differentiation media. Conditioned media was collected from growing stem cells, and a cytometric bead array was performed to estimate secreted cytokines and growth factor levels by flow cytometry. Gene expresseion levels were assessed by real-time quantitative polymerase chain reaction. Results Age did not affect the mesenchymal characteristics of dental stem cells from various age groups. The secretomes of SHEDs and young yDPSCs exhibit more growth factors and lesser pro-inflammatory cytokines than oDPSCs. Osteo and chondrogenic differentiation potential were higher in SHEDs and young yDPSCs than in the oDPSCs. TLR1, TLR2, TLR3 show decreased expression levels with age and TLR5, TLR6 show increased expression with age. Conclusion The superior regenerative potential of SHEDs and yDPSCs may be due to the higher growth factors and lower pro-inflammatory cytokine profile.
Collapse
|
21
|
Metformin-Induced MicroRNA-34a-3p Downregulation Alleviates Senescence in Human Dental Pulp Stem Cells by Targeting CAB39 through the AMPK/mTOR Signaling Pathway. Stem Cells Int 2021; 2021:6616240. [PMID: 33505470 PMCID: PMC7806386 DOI: 10.1155/2021/6616240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Dental pulp stem cells (DPSCs) are ideal seed cells for the regeneration of dental tissues. However, DPSC senescence restricts its clinical applications. Metformin (Met), a common prescription drug for type 2 diabetes, is thought to influence the aging process. This study is aimed at determining the effects of metformin on DPSC senescence. Young and aging DPSCs were isolated from freshly extracted human teeth. Flow cytometry confirmed that DPSCs expressed characteristic surface antigen markers of mesenchymal stem cells (MSCs). Cell Counting Kit-8 (CCK-8) assay showed that a concentration of 100 μM metformin produced the highest increase in the proliferation of DPSCs. Metformin inhibited senescence in DPSCs as evidenced by senescence-associated β-galactosidase (SA-β-gal) staining and the expression levels of senescence-associated proteins. Additionally, metformin significantly suppressed microRNA-34a-3p (miR-34a-3p) expression, elevated calcium-binding protein 39 (CAB39) expression, and activated the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. Dual-luciferase reporter assay confirmed that CAB39 is a direct target for miR-34a-3p. Furthermore, transfection of miR-34a-3p mimics promoted the senescence of DPSCs, while metformin treatment or Lenti-CAB39 transfection inhibited cellular senescence. In conclusion, these results indicated that metformin could alleviate the senescence of DPSCs by downregulating miR-34a-3p and upregulating CAB39 through the AMPK/mTOR signaling pathway. This study elucidates on the inhibitory effect of metformin on DPSC senescence and its potential as a therapeutic target for senescence treatment.
Collapse
|
22
|
Maeda H. Aging and Senescence of Dental Pulp and Hard Tissues of the Tooth. Front Cell Dev Biol 2020; 8:605996. [PMID: 33330507 PMCID: PMC7734349 DOI: 10.3389/fcell.2020.605996] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
The ability to consume a meal using one's own teeth influences an individual's quality of life. In today's global aging society, studying the biological changes in aging teeth is important to address this issue. A tooth includes three hard tissues (enamel, dentin, and cementum) and a soft tissue (dental pulp). With advancing age, these tissues become senescent; each tissue exhibits a unique senescent pattern. This review discusses the structural alterations of hard tissues, as well as the molecular and physiological changes in dental pulp cells and dental pulp stem cells during human aging. The significance of senescence in these cells remains unclear. Thus, there is a need to define the regulatory mechanisms of aging and senescence in these cells to aid in preservation of dental health.
Collapse
Affiliation(s)
- Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Kyushu University, Fukuoka, Japan.,Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
23
|
Morsczeck C. Effects of Cellular Senescence on Dental Follicle Cells. Pharmacology 2020; 106:137-142. [PMID: 32980839 DOI: 10.1159/000510014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
The dental follicle is part of the tooth germ, and isolated stem cells from this tissue (dental follicle cells; DFCs) are considered, for example, for regenerative medicine and immunotherapies. However somatic stem cells can also improve pharmaceutical research. Cell proliferation is limited by the induction of senescence, which, while reducing the therapeutic potential of DFCs for cell therapy, can also be used to study aging processes at the cellular level that can be used to test anti-aging pharmaceuticals. Unfortunately, very little is known about cellular senescence in DFCs. This review presents current knowledge about cellular senescence in DFCs.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany,
| |
Collapse
|
24
|
Yang RL, Huang HM, Han CS, Cui SJ, Zhou YK, Zhou YH. Serine Metabolism Controls Dental Pulp Stem Cell Aging by Regulating the DNA Methylation of p16. J Dent Res 2020; 100:90-97. [PMID: 32940141 DOI: 10.1177/0022034520958374] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To investigate the characteristics and molecular events of dental pulp stem cells (DPSCs) for tissue regeneration with aging, we isolated and analyzed the stem cells from human exfoliated deciduous teeth (SHED) and permanent teeth of young (Y-DPSCs) and old (A-DPSCs) adults. Results showed that the stemness and osteogenic differentiation capacity of DPSCs decreased with aging. The RNA sequencing results showed that glycine, serine, and threonine metabolism was one of the most enriched gene clusters among SHED, Y-DPSCs, and A-DPSCs, according to analysis based on the Kyoto Encyclopedia of Genes and Genomes. The expression of serine metabolism-related enzymes phosphoserine aminotransferase 1 (PSAT1) and phosphoglycerate (PHGDH) decreased in A-DPSCs and provided less methyl donor S-adenosylmethionine (SAM) for DNA methylation, leading to the hypomethylation of the senescence marker p16 (CDNK2A). Furthermore, the proliferation and differentiation capacity of Y-DPSCs and SHED decreased after PHGDH siRNA treatment, which reduced the level of SAM. Convincingly, the ratios of PSAT1-, PHGDH-, or proliferating cell nuclear antigen-positive cells in the dental pulp of old permanent teeth were less than those in the dental pulp of deciduous teeth and young permanent teeth. In summary, the stemness and differentiation capacity of DPSCs decreased with aging. The decreased serine metabolism in A-DPSCs upregulated the expression of p16 via attenuating its DNA methylation, resulting in DPSC aging. Our finding indicated that serine metabolism and 1 carbon unit participated in stem cell aging, which provided new direction for stem cell aging study and intervention.
Collapse
Affiliation(s)
- R L Yang
- Department of Orthodontics, Peking University, School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - H M Huang
- Department of Orthodontics, Peking University, School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - C S Han
- Department of Orthodontics, Peking University, School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - S J Cui
- Department of Orthodontics, Peking University, School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Y K Zhou
- Department of Orthodontics, Peking University, School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Y H Zhou
- Department of Orthodontics, Peking University, School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
25
|
|
26
|
Yaghoobi MM, Sheikoleslami M, Ebrahimi M. Effects of hydrogen peroxide, doxorubicin and ultraviolet irradiation on senescence of human dental pulp stem cells. Arch Oral Biol 2020; 117:104819. [PMID: 32592933 DOI: 10.1016/j.archoralbio.2020.104819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/19/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the ability of three distinct agents on the induction of senescence in human dental pulp stem cells (DPSCs). DESIGN DPSCs from three separate donors were treated with H2O2, doxorubicin and ultraviolet (UV) irradiation. The response of the cells to the three agents was assayed by specific staining for SA-βGal, RT-qPCR and flow cytometry. RESULTS The results showed that incubation with 100 μM H2O2 and 20 nM Doxorubicin for seven days led to senescence in all donors' cells equally. Interestingly, UV irradiation for just one minute was sufficient to induce senescence in the cells. The SA-βGal positive senescent cells were arrested in G1 phase and their S phase was significantly reduced as analyzed by flow cytometry. Significant increment in p21 and BTG1 expression and decrement in CCND1 expression also confirmed the cells have been arrested and get senescent via p53-p21 pathway. CONCLUSION All three agents successfully triggered senescence in the cells. There was no significant difference in the capacity of the three donor's cells for senescence. To avoid premature senescence in stem cell in vitro, it is recommended to avoid unnecessary exposure of the cell to fluorescent and UV light. Moreover, to prevent ROS production, we recommend using a separate incubator with low oxygen content for cell culture, if possible.
Collapse
Affiliation(s)
- Mohammad Mehdi Yaghoobi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Mozhgan Sheikoleslami
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Maryam Ebrahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
27
|
Kubiak CA, Grochmal J, Kung TA, Cederna PS, Midha R, Kemp SWP. Stem-cell-based therapies to enhance peripheral nerve regeneration. Muscle Nerve 2019; 61:449-459. [PMID: 31725911 DOI: 10.1002/mus.26760] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Peripheral nerve injury remains a major cause of morbidity in trauma patients. Despite advances in microsurgical techniques and improved understanding of nerve regeneration, obtaining satisfactory outcomes after peripheral nerve injury remains a difficult clinical problem. There is a growing body of evidence in preclinical animal studies demonstrating the supportive role of stem cells in peripheral nerve regeneration after injury. The characteristics of both mesoderm-derived and ectoderm-derived stem cell types and their role in peripheral nerve regeneration are discussed, specifically focusing on the presentation of both foundational laboratory studies and translational applications. The current state of clinical translation is presented, with an emphasis on both ethical considerations of using stems cells in humans and current governmental regulatory policies. Current advancements in cell-based therapies represent a promising future with regard to supporting nerve regeneration and achieving significant functional recovery after debilitating nerve injuries.
Collapse
Affiliation(s)
- Carrie A Kubiak
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan
| | - Joey Grochmal
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Theodore A Kung
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan
| | - Paul S Cederna
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Rajiv Midha
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephen W P Kemp
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Tian X, Wang Q, Wu J, Han Q, Shen L, Wei C, Song H, Li M, Fang Y, Wang X, Sun Q. Interaction of Nel-like molecule 1 with apoptosis related protein 3 with its influence on human dental pulp cells proliferation and differentiation into odontoblasts. Biochem Biophys Res Commun 2019; 518:246-252. [PMID: 31416616 DOI: 10.1016/j.bbrc.2019.08.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022]
Abstract
Nel-like molecule 1 (Nell-1) is an essential positive regulator of tooth development and odontoblast differentiation. However, its precise mechanism remains undetermined. This study aims to explore the possible receptor or binding protein of Nell-1. Results showed that Nell-1 and Apoptosis related protein 3(APR3) expression levels were high in odontoblasts and inversely correlated. Endogenous Nell-1 co-immunoprecipitated with APR3, and this co-IP was reciprocal. Double immunofluorescence staining revealed that Nell-1 and APR3 colocalized on the nuclear envelope of human dental pulp cells. Nell-1 inhibited the proliferation of these cells co-infected with APR3 through Cyclin D1 downregulation. The interaction of Nell-1 with APR3 stimulated alkaline phosphatase (ALP) activity and promoted the expression and mineralization of DSPP, ALP, OPN, and BSP. The shRNA of APR3 decreased cell differentiation and mineralization. Nell-1 could reciprocally interact with APR3 and stimulate the differentiation and mineralization of human dental pulp cells. Future studies should explore the potential functional connection and the molar mechanism of such interaction.
Collapse
Affiliation(s)
- Xiufen Tian
- School and Hospital of Stomatology, Shandong University& Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 44-1Wenhua Road West, 250012, Jinan Shandong, China; Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Qiang Wang
- Jinan Stomatological Hospital, Jinan, 250001, Shandong, China
| | - Jiameng Wu
- School and Hospital of Stomatology, Shandong University& Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 44-1Wenhua Road West, 250012, Jinan Shandong, China
| | - Qi Han
- School and Hospital of Stomatology, Shandong University& Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 44-1Wenhua Road West, 250012, Jinan Shandong, China
| | - Lili Shen
- Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Chengshi Wei
- Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Hao Song
- Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Mengyue Li
- School and Hospital of Stomatology, Shandong University& Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 44-1Wenhua Road West, 250012, Jinan Shandong, China
| | - Yixuan Fang
- School and Hospital of Stomatology, Shandong University& Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 44-1Wenhua Road West, 250012, Jinan Shandong, China
| | - Xiaoying Wang
- School and Hospital of Stomatology, Shandong University& Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 44-1Wenhua Road West, 250012, Jinan Shandong, China.
| | - Qinfeng Sun
- School and Hospital of Stomatology, Shandong University& Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 44-1Wenhua Road West, 250012, Jinan Shandong, China.
| |
Collapse
|