1
|
Karunakara SH, Mehtani R, Kabekkodu SP, Kumar DP, Santhekadur PK. Genes of DLK1-DIO3 Locus and miR-379/656 Cluster is a Potential Diagnostic and Prognostic Marker in Patients With Hepatocellular Carcinoma: A Systems Biology Study. J Clin Exp Hepatol 2025; 15:102450. [PMID: 39698049 PMCID: PMC11650283 DOI: 10.1016/j.jceh.2024.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
Background Hepatocellular carcinoma is the sixth most common malignancy reported globally. This highlights the need for reliable biomarkers that can be employed for diagnostic and prognostic applications. The present study aimed to classify and characterize the clinical potential of delta like non-canonical Notch ligand 1-type III iodothyronine deiodinase (DLK1-DIO3) and miR-379/656 cluster genes in hepatocellular carcinoma. Methods We extensively studied the clinical potential of DLK1-DIO3 genes through a comprehensive systems biology approach and assessed the diagnostic and prognostic potential of the genes associated with the region. Additionally, we have predicted the gene targets of the miR-379/656 cluster associated with the locus and have identified the gene ontology, pathway, and disease associations. Results We report this region as a potential biomarker for hepatocellular carcinoma. About thirty clustered miRNAs, a long-non-coding RNA, and two coding genes of the region were underexpressed in tumors. The receiver operating characteristic analysis identified 11 clustered miRNAs with diagnostic potential. Survival analyses identified maternally expressed gene 3 and the miR-379/656 cluster as prognostically significant. Further, the random forest model predicted that the miRNA cluster classifies patients according to Tumor, Node, Metastasis (TNM) staging. Furthermore, overrepresentation analysis identified several key pathways, molecular functions, and biological processes associated with the cluster gene targets. Conclusion Our study suggests that DLK1-DIO3 genes, miR-379/656 cluster, and its target gene network might be potential diagnostic and prognostic markers for hepatocellular carcinoma management and therapy.
Collapse
Affiliation(s)
- Shreyas H. Karunakara
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, Mysuru, India
| | - Rohit Mehtani
- Department of Hepatology, Amrita Institute of Medical Sciences and Research, Faridabad, India
| | - Shama P. Kabekkodu
- Department of Cell and Molecular Biology, Manipal Academy of Higher Education, Manipal, India
| | - Divya P. Kumar
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, Mysuru, India
| | - Prasanna K. Santhekadur
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, Mysuru, India
| |
Collapse
|
2
|
Chen Z, Zeng Y, Ma P, Xu Q, Zeng L, Song X, Yu F. Integrated GMPS and RAMP3 as a signature to predict prognosis and immune heterogeneity in hepatocellular carcinoma. Gene 2025; 933:148958. [PMID: 39312983 DOI: 10.1016/j.gene.2024.148958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly fatal malignant worldwide. As different expression levels of specific genes can lead to different HCC outcomes, we aimed to develop a gene signature capable of predicting HCC prognosis. METHODS In this study, transcriptomic sequencing and relevant clinical data were extracted from public platforms. The guanine monophosphate synthase (GMPS)|receptor activity-modifying protein 3 (RAMP3) gene pair was developed based on the relative values of gene expression levels. Nomograms were developed using R software. Immune status was assessed through single-sample gene set enrichment analysis. GMPS knockdown was achieved through siRNA transfection. Quantitative reverse transcription PCR, apoptosis assays, and cell proliferation were performed to verify the function of GMPS|RAMP3 in HCC cells. RESULTS Here, a gene pair containing GMPS and RAMP3 was successfully constructed. We demonstrated that the GMPS|RAMP3 gene pair was an independent predictor with strong prognostic prediction power, based on which a nomogram was established. Functional analysis revealed that the enrichment of cell cycle-related pathways and immune status differed considerably between the two groups, with cell cycle-related genes highly expressed in the high GMPS|RAMP3 value group. Finally, cell experiments indicated that GMPS knockdown significantly repressed proliferation, promoted apoptosis, and enhanced the sensitivity of HCC cells to gemcitabine. CONCLUSIONS The gene pair GMPS|RAMP3 is a novel prognostic predictor of HCC, providing a promising approach to the treatment and assessment of immune heterogeneity in HCC.
Collapse
Affiliation(s)
- Zhuoyan Chen
- Department of Gastroenterology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yuan Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peipei Ma
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuwei Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian Song
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Sultana A, Alam MS, Khanam A, Lin Y, Ren S, Singla RK, Sharma R, Kuca K, Shen B. An integrated bioinformatics approach to early diagnosis, prognosis and therapeutics of non-small-cell lung cancer. J Biomol Struct Dyn 2024:1-15. [PMID: 39535278 DOI: 10.1080/07391102.2024.2425840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/31/2024] [Indexed: 11/16/2024]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most deadly tumors characterized by poor survival rates. Advances in therapeutics and precise identification of biomarkers can potentially reduce the mortality rate. Thus, this study aimed to identify a set of common and stable gene biomarkers through integrated bioinformatics approaches that might be effective for NSCLC early diagnosis, prognosis, and therapies. Four gene expression profiles (GSE19804, GSE19188, GSE10072, and GSE32863) downloaded from the Gene Expression Omnibus database to identify common differential expressed genes (DEGs). A total of 213 overlapping DEGs (oDEGs) between NSCLC and healthy samples were identified by using statistical LIMMA method. Then 6 common top-ranked key genes (KGs) (CENPF, CAV1, ASPM, CCNB2, PRC1, and KIAA0101) were selected by using four network-measurer methods in the protein- protein interaction network. The GO functional and KEGG pathway enrichment analysis were performed to reveal some significant functions and pathways associated with NSCLC progression. Transcriptional and post-transcriptional factors of KGs were identified through the regulatory interaction network. The prognostic power and expression level of KGs were validated by using the independent data through the Kaplan-Meier and Box plots, respectively. Finally, 4 KGs-guided repositioning candidate drugs (ZSTK474, GSK2126458, Masitinib, and Trametinib) were proposed. The stability of three top-ranked drug-target interactions (CAV1 vs. ZSTK474, CAV1 vs. GSK2126458, and ASPM vs. Trametinib) were investigated by computing their binding free energies for 140 ns MD-simulation based on MM-PBSA approach. Therefore, the findings of this computational study may be useful for early prognosis, diagnosis and therapies of NSCLC.
Collapse
Affiliation(s)
- Adiba Sultana
- School of Biology and Basic Medical Sciences, Soochow University Medical College, Suzhou, China
- Center for Systems Biology, Soochow University, Suzhou, China
- Medical Big Data Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Md Shahin Alam
- School of Biology and Basic Medical Sciences, Soochow University Medical College, Suzhou, China
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Alima Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou, China
| | - Shumin Ren
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Kamil Kuca
- Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Bairong Shen
- School of Biology and Basic Medical Sciences, Soochow University Medical College, Suzhou, China
- Center for Systems Biology, Soochow University, Suzhou, China
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Liang QJ, Long QQ, Tian FQ, Long XD. Progress in research of polo-like kinase 1 in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2024; 32:652-659. [DOI: 10.11569/wcjd.v32.i9.652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Polo-like kinase 1 (PLK1) is a protein kinase that regulates the cell cycle, and it has been found that PLK1 mediates the regulation of signaling pathways associated with hepatocellular carcinoma (HCC) development, thereby affecting the biological behaviors of hepatic tumor cells such as cell proliferation, migration, and invasion. Therefore, PLK1 may be a very promising target for the treatment of HCC. This article reviews the relevant signaling pathways of PLK1 in HCC development and PLK1 inhibitors in the treatment of HCC.
Collapse
Affiliation(s)
- Qiu-Ju Liang
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Qin-Qin Long
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- The Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Feng-Qin Tian
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- The Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xi-Dai Long
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Karthikeyan MC, Srinivasan C, Prabhakar K, Manogar P, Jayaprakash A, Arockiam AJV. Doxorubicin downregulates cell cycle regulatory hub genes in breast cancer cells. Med Oncol 2024; 41:220. [PMID: 39115587 DOI: 10.1007/s12032-024-02468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/03/2024]
Abstract
Breast cancer (BC) is the leading commonly diagnosed cancer in the world, with complex mechanisms underlying its development. There is an urgent need to enlighten key genes as potential therapeutic targets crucial to advancing BC treatment. This study sought to investigate the influence of doxorubicin (DOX) on identified key genes consistent across numerous BC datasets obtained through bioinformatic analysis. To date, a meta-analysis of publicly available coding datasets for expression profiling by array from the Gene Expression Omnibus (GEO) has been carried out. Differentially Expressed Genes (DEGs) identified using GEO2R revealed a total of 23 common DEGs, including nine upregulated genes and 14 downregulated genes among the datasets of three platforms (GPL570, GPL6244, and GPL17586), and the commonly upregulated DEGs, showed significant enrichment in the cell cycle in KEGG analysis. The top nine genes, NUSAP1, CENPF, TPX2, PRC1, ANLN, BUB1B, AURKA, CCNB2, and CDK-1, with higher degree values and MCODE scores in the cytoscape program, were regarded as hub genes. The hub genes were activated in disease states commonly across all the subclasses of BC and correlated with the unfavorable overall survival of BC patients, as verified by the GEPIA and UALCAN databases. qRT-PCR confirmed that DOX treatment resulted in reduced expression of these genes in BC cell lines, which reinforces the evidence that DOX remains an effective drug for BC and suggests that developing modified formulations of doxorubicin to reduce toxicity and resistance, could enhance its efficacy as an effective therapeutic option for BC.
Collapse
Affiliation(s)
- Mano Chitra Karthikeyan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Chandhru Srinivasan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Kowsika Prabhakar
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Priyadharshini Manogar
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Abirami Jayaprakash
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Antony Joseph Velanganni Arockiam
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
6
|
Kalaki NS, Ahmadzadeh M, Mansouri A, Saberiyan M, Karbalaie Niya MH. Identification of hub genes and pathways in hepatitis B virus-associated hepatocellular carcinoma: A comprehensive in silico study. Health Sci Rep 2024; 7:e2185. [PMID: 38895552 PMCID: PMC11183944 DOI: 10.1002/hsr2.2185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/11/2024] [Accepted: 05/04/2024] [Indexed: 06/21/2024] Open
Abstract
Background and Aim The hepatitis B virus (HBV) is one of the most common causes of liver cancer in the world. This study aims to provide a better understanding of the mechanisms involved in the development and progression of HBV-associated hepatocellular carcinoma (HCC) by identifying hub genes and the pathways related to their functions. Methods GSE83148 and GSE94660 were selected from the Gene Expression Omnibus (GEO) database, differentially expressed genes (DEGs) with an adjusted p-value < 0.05 and a |logFC| ≥1 were identified. Common DEGs of two data sets were identified using the GEO2R tool. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) databases were used to identify pathways. Protein-protein interactions (PPIs) analysis was performed by using the Cytoscap and Gephi. A Gene Expression Profiling Interactive Analysis (GEPIA) analysis was carried out to confirm the target genes. Results One hundred and ninety-eight common DEGs and 49 hub genes have been identified through the use of GEO and PPI, respectively. The GO and KEGG pathways analysis showed DEGs were enriched in the G1/S transition of cell cycle mitotic, cell cycle, spindle, and extracellular matrix structural constituent. The expression of four genes (TOP2A, CDK1, CCNA2, and CCNB2) with high scores in module 1 were more in tumor samples and have been identified by GEPIA analysis. Conclusion In this study, the hub genes and their related pathways involved in the development of HBV-associated HCC were identified. These genes, as potential diagnostic biomarkers, may provide a potent opportunity to detect HBV-associated HCC at the earliest stages, resulting in a more effective treatment.
Collapse
Affiliation(s)
- Niloufar Sadat Kalaki
- Department of Cellular and Molecular Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Mozhgan Ahmadzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Atena Mansouri
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
- Department of Medical Genetics, School of Medical SciencesHormozgan University of Medical SciencesBandar AbbasIran
| | - Mohammad Hadi Karbalaie Niya
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
7
|
Zhang Z, Jin H, Zhang X, Bai M, Zheng K, Tian J, Deng B, Mao L, Qiu P, Huang B. Bioinformatics and system biology approach to identify the influences among COVID-19, influenza, and HIV on the regulation of gene expression. Front Immunol 2024; 15:1369311. [PMID: 38601162 PMCID: PMC11004287 DOI: 10.3389/fimmu.2024.1369311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Background Coronavirus disease (COVID-19), caused by SARS-CoV-2, has emerged as a infectious disease, coexisting with widespread seasonal and sporadic influenza epidemics globally. Individuals living with HIV, characterized by compromised immune systems, face an elevated risk of severe outcomes and increased mortality when affected by COVID-19. Despite this connection, the molecular intricacies linking COVID-19, influenza, and HIV remain unclear. Our research endeavors to elucidate the shared pathways and molecular markers in individuals with HIV concurrently infected with COVID-19 and influenza. Furthermore, we aim to identify potential medications that may prove beneficial in managing these three interconnected illnesses. Methods Sequencing data for COVID-19 (GSE157103), influenza (GSE185576), and HIV (GSE195434) were retrieved from the GEO database. Commonly expressed differentially expressed genes (DEGs) were identified across the three datasets, followed by immune infiltration analysis and diagnostic ROC analysis on the DEGs. Functional enrichment analysis was performed using GO/KEGG and Gene Set Enrichment Analysis (GSEA). Hub genes were screened through a Protein-Protein Interaction networks (PPIs) analysis among DEGs. Analysis of miRNAs, transcription factors, drug chemicals, diseases, and RNA-binding proteins was conducted based on the identified hub genes. Finally, quantitative PCR (qPCR) expression verification was undertaken for selected hub genes. Results The analysis of the three datasets revealed a total of 22 shared DEGs, with the majority exhibiting an area under the curve value exceeding 0.7. Functional enrichment analysis with GO/KEGG and GSEA primarily highlighted signaling pathways associated with ribosomes and tumors. The ten identified hub genes included IFI44L, IFI44, RSAD2, ISG15, IFIT3, OAS1, EIF2AK2, IFI27, OASL, and EPSTI1. Additionally, five crucial miRNAs (hsa-miR-8060, hsa-miR-6890-5p, hsa-miR-5003-3p, hsa-miR-6893-3p, and hsa-miR-6069), five essential transcription factors (CREB1, CEBPB, EGR1, EP300, and IRF1), and the top ten significant drug chemicals (estradiol, progesterone, tretinoin, calcitriol, fluorouracil, methotrexate, lipopolysaccharide, valproic acid, silicon dioxide, cyclosporine) were identified. Conclusion This research provides valuable insights into shared molecular targets, signaling pathways, drug chemicals, and potential biomarkers for individuals facing the complex intersection of COVID-19, influenza, and HIV. These findings hold promise for enhancing the precision of diagnosis and treatment for individuals with HIV co-infected with COVID-19 and influenza.
Collapse
Affiliation(s)
- Zhen Zhang
- Microbiology Laboratory Department, Jinzhou Center for Disease Control and Prevention, Jinzhou, Liaoning, China
| | - Hao Jin
- Microbiology Laboratory Department, Jinzhou Center for Disease Control and Prevention, Jinzhou, Liaoning, China
| | - Xu Zhang
- Microbiology Laboratory Department, Jinzhou Center for Disease Control and Prevention, Jinzhou, Liaoning, China
| | - Mei Bai
- Microbiology Laboratory Department, Jinzhou Center for Disease Control and Prevention, Jinzhou, Liaoning, China
| | - Kexin Zheng
- Microbiology Laboratory Department, Jinzhou Center for Disease Control and Prevention, Jinzhou, Liaoning, China
| | - Jing Tian
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Bin Deng
- Laboratory Department, Jinzhou Central Hospital, Jinzhou, Liaoning, China
| | - Lingling Mao
- Institute for Prevention and Control of Infection and Infectious Diseases, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, Liaoning, China
| | - Pengcheng Qiu
- Thoracic Surgery Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Bo Huang
- Thoracic Surgery Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
- Thoracic Surgery Department, Yingkou Central Hospital, Yingkou, Liaoning, China
| |
Collapse
|
8
|
Rong Y, Tang MZ, Liu SH, Li XF, Cai H. Comprehensive analysis of the potential pathogenesis of COVID-19 infection and liver cancer. World J Gastrointest Oncol 2024; 16:436-457. [PMID: 38425388 PMCID: PMC10900145 DOI: 10.4251/wjgo.v16.i2.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019 (COVID-19) appears to have an impact on the treatment of patients with liver cancer compared to the normal population, and the prevalence of COVID-19 is significantly higher in patients with liver cancer. However, this mechanism of action has not been clarified. AIM To investigate the disease relevance of COVID-19 in liver cancer. METHODS Gene sets for COVID-19 (GSE180226) and liver cancer (GSE87630) were obtained from the Gene Expression Omnibus database. After identifying the common differentially expressed genes (DEGs) of COVID-19 and liver cancer, functional enrichment analysis, protein-protein interaction network construction and screening and analysis of hub genes were performed. Subsequently, the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed. RESULTS Of 518 common DEGs were obtained by screening for functional analysis. Fifteen hub genes including aurora kinase B, cyclin B2, cell division cycle 20, cell division cycle associated 8, nucleolar and spindle associated protein 1, etc., were further identified from DEGs using the "cytoHubba" plugin. Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation, cell cycle and other functions, and they may serve as potential molecular markers for COVID-19 and liver cancer. Finally, we selected 10 of the hub genes for in vitro expression validation in liver cancer cells. CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19. These common pathways and key genes may provide new ideas for further mechanistic studies.
Collapse
Affiliation(s)
- Yao Rong
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Ming-Zheng Tang
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Song-Hua Liu
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Xiao-Feng Li
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
9
|
Liu Q, Yuan Y, Shang X, Xin L. Cyclin B2 impairs the p53 signaling in nasopharyngeal carcinoma. BMC Cancer 2024; 24:25. [PMID: 38166895 PMCID: PMC10763327 DOI: 10.1186/s12885-023-11768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Cyclin B2 (CCNB2), a member of the cyclin family, is an oncogene in multiple cancers, including nasopharyngeal carcinoma (NPC). However, the epigenetics mechanism for CCNB2 overexpression in NPC remains unclear. This study dissects the regulatory role of CCNB2 in NPC and the molecular mechanism. METHODS Differentially methylated genes (DMG) and differentially expressed genes (DEG) were screened out in GSE52068 and GSE13597 databases, respectively, and candidate targets were identified by the Venn diagram. GO annotation and pathway enrichment analyses were performed on selected DMG and DEG, and a PPI network was constructed to pinpoint hub genes. PCR and qMSP were conducted to detect the expression and methylation of CCNB2 in cells. The siRNA targeting CCNB2 was transfected into NPC cells, and the migration, proliferation, cell cycle, epithelial-mesenchymal transition (EMT), tumorigenesis, and metastasis were examined. The upstream factor responsible for CCNB2 overexpression in NPC was explored. The p53 activity in NPC cells was assessed using western blot analysis. RESULTS CCNB2 showed hypomethylation and overexpression in NPC. CCNB2 silencing inhibited cell migration, proliferation, cell cycle entry, and EMT. JMJD6 was overexpressed in NPC and upregulated CCNB2 through demethylation. JMJD6 reversed the effects of CCNB2 downregulation, resulting in elevated cellular activity in vitro and tumorigenic and metastatic activities in vivo. CCNB2 blocked the p53 pathway, while the p53 pathway inhibitor reversed the effect of CCNB2 silencing to increase the activity of NPC cells. CONCLUSIONS JMJD6 enhanced CCNB2 transcription by demethylating CCNB2, thereby repressing the p53 pathway and promoting NPC progression.
Collapse
Affiliation(s)
- Qinsong Liu
- Department of Otolaryngology, Qingdao Municipal Hospital, NO. 1, Shibei District, Jiaozhou Road, 266011, Qingdao, Shandong, P.R. China
| | - Yong Yuan
- Department of Otolaryngology, Qingdao Municipal Hospital, NO. 1, Shibei District, Jiaozhou Road, 266011, Qingdao, Shandong, P.R. China
| | - Xiaofen Shang
- Department of Otolaryngology, Qingdao Municipal Hospital, NO. 1, Shibei District, Jiaozhou Road, 266011, Qingdao, Shandong, P.R. China
| | - Lu Xin
- Department of Otolaryngology, Qingdao Municipal Hospital, NO. 1, Shibei District, Jiaozhou Road, 266011, Qingdao, Shandong, P.R. China.
| |
Collapse
|
10
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Zhang GX, Ding XS, Wang YL. Prognostic model of hepatocellular carcinoma based on cancer grade. World J Clin Cases 2023; 11:6383-6397. [PMID: 37900243 PMCID: PMC10600993 DOI: 10.12998/wjcc.v11.i27.6383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. With highly invasive biological characteristics and a lack of obvious clinical manifestations, HCC usually has a poor prognosis and ranks fourth in cancer mortality. The aetiology and exact molecular mechanism of primary HCC are still unclear. AIM To select the characteristic genes that are significantly associated with the prognosis of HCC patients and construct a prognosis model of this malignancy. METHODS By comparing the gene expression levels of patients with different cancer grades of HCC, we screened out differentially expressed genes associated with tumour grade. By protein-protein interaction (PPI) network analysis, we obtained the top 2 PPI networks and hub genes from these differentially expressed genes. By using least absolute shrinkage and selection operator Cox regression, 13 prognostic genes were selected for feature extraction, and a prognostic risk model of HCC was established. RESULTS The model had significant prognostic ability in HCC. We also analysed the biological functions of these prognostic genes. CONCLUSION By comparing the gene profiles of patients with different stages of HCC, We have constructed a prognosis model consisting of 13 genes that have important prognostic value. This model has good application value and can be explained clinically.
Collapse
Affiliation(s)
- Guo-Xin Zhang
- Department of General Surgery, Aviation General Hospital, Beijing 100010, China
| | - Xiao-Sheng Ding
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - You-Li Wang
- Department of General Surgery, Aviation General Hospital, Beijing 100010, China
| |
Collapse
|
12
|
Song H, Wu J, Liu W, Cai K, Xie Z, Liu Y, Huang J, Gan S, Xiong Y, Sun Y. Key genes involved with prognosis were identified in lung adenocarcinoma by integrated bioinformatics analysis. Heliyon 2023; 9:e16789. [PMID: 37313154 PMCID: PMC10258416 DOI: 10.1016/j.heliyon.2023.e16789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023] Open
Abstract
Objective By screening the core genes in lung adenocarcinoma (LUAD) with bioinformatics, our study evaluated its prognosis value and role in infiltration process of immune cells. Methods Using GEO database, we screened 5 gene chips, including GSE11072, GSE32863, GSE43458, GSE115002, and GSE116959. Then, we obtained the corresponding differentially expressed genes by analyzed 5 gene chips online by GEO2R (P < 0.05, |logFC| > 1). Then, through DAVID online platform, Cytoscape 3.6.1 software and PPI network analysis, the network was visualized and obtain the final core genes. Next, we plan to use the GEPIA, UALCAN, Kaplan-Meier plotter and Time 2.0 database for corresponding analysis. The GEPIA database was used to verify the expression of core genes in LUAD and normal lung tissues, and survival analysis was used to evaluate the value of core genes in the prognosis of LUAD patients. UALCAN was used to verify the expression of the LUAD core gene and promoter methylation status, and the predictive value of core genes was evaluated in LUAD patients by the Kaplan-Meier plotter online tool. Then, we used the Time 2.0 database to identify the relationship to immune infiltration in LUAD. Finally, we used the human protein atlas (HPA) database for online immunohistochemical analysis of the expressed proteins. Results The expression of CCNB2 and CDC20 in LUAD were higher than those in normal lung tissues, their increased expression was negatively correlated with the overall survival rate of LUAD, and they were involved in cell cycle signal transduction, oocyte meiosis signal transduction as well as the infiltration process of immune cells in LUAD. The expression proteins of CCNB2 and CDC20 were also different in lung cancer tissue and normal lung tissue. Therefore, CCNB2 and CDC20 were identified as the vital core genes. Conclusion CCNB2 and CDC20 are essential genes that may constitute prognostic biomarkers in LUAD, they also participate the immune infiltration process and protein expression process of LUAD, and might provides basis for clinical anti-tumor drug research.
Collapse
Affiliation(s)
- Hao Song
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Junfeng Wu
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Wang Liu
- Department of Respiratory, The Second Affilated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Kaier Cai
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhilong Xie
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yingao Liu
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jiandi Huang
- Department of Pathology, Guangdong Medical University, Dongguan 523808/Zhanjiang 524001, China
| | - Siyuan Gan
- Department of Pathology, Guangdong Medical University, Dongguan 523808/Zhanjiang 524001, China
| | - Yinghuan Xiong
- Biological Sample Bank, The Affilated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, Dongguan 523808/Zhanjiang 524001, China
| |
Collapse
|
13
|
Lai LT, Ren YH, Huai YJ, Liu Y, Liu Y, Wang SS, Mei JH. Identification and validation of novel prognostic biomarkers and therapeutic targets for non-small cell lung cancer. Front Genet 2023; 14:1139994. [PMID: 37007961 PMCID: PMC10060803 DOI: 10.3389/fgene.2023.1139994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Despite the significant survival benefits of anti-PD-1/PD-L1 immunotherapy, non-small cell lung cancer (NSCLC) remains one of the most common tumors and major causes of cancer-related deaths worldwide. Thus, there is an urgent need to identify new therapeutic targets for this refractory disease.Methods: In this study, microarray datasets GSE27262, GSE75037, GSE102287, and GSE21933 were integrated by Venn diagram. We performed functional clustering and pathway enrichment analyses using R. Through the STRING database and Cytoscape, we conducted protein-protein interaction (PPI) network analysis and identified the key genes, which were verified by the GEPIA2 and UALCAN portal. Validation of actin-binding protein anillin (ANLN) was performed by quantitative real-time polymerase chain reaction and Western blotting. Additionally, Kaplan-Meier methods were used to compute the survival analyses.Results: In total, 126 differentially expressed genes were identified, which were enriched in mitotic nuclear division, mitotic cell cycle G2/M transition, vasculogenesis, spindle, and peroxisome proliferator-activated receptor signaling pathway. 12 central node genes were identified in the PPI network complex. The survival analysis revealed that high transcriptional levels were associated with inferior survival in NSCLC patients. The clinical implication of ANLN was further explored; its protein expression showed a gradually increasing trend from grade I to III.Conclusion: These Key genes may be involved in the carcinogenesis and progression of NSCLC, which may serve as useful targets for NSCLC diagnosis and treatment.
Collapse
Affiliation(s)
- Li-Ting Lai
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuan-Hui Ren
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Molecular Pathology, Nanchang University, Nanchang, Jiangxi, China
| | - Ya-Jun Huai
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yu Liu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Molecular Pathology, Nanchang University, Nanchang, Jiangxi, China
| | - Ying Liu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Molecular Pathology, Nanchang University, Nanchang, Jiangxi, China
| | - Shan-Shan Wang
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Molecular Pathology, Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Shan-Shan Wang, ; Jin-Hong Mei,
| | - Jin-Hong Mei
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Molecular Pathology, Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Shan-Shan Wang, ; Jin-Hong Mei,
| |
Collapse
|
14
|
Lu Y, Liu S, Sun Y, Zhao B, Xu D. Identification of key genes in hepatocellular carcinoma associated with exposure to TCDD and α-endosulfan by WGCNA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114595. [PMID: 36753968 DOI: 10.1016/j.ecoenv.2023.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
2,3,7,8-tet-rachlorodibenzo-p-dioxin (TCDD) and α-endosulfan are two typical persistent organic pollutants (POPs), both of which accumulate in the liver and have potential carcinogenic hepatic effects. The underlying molecular mechanisms of pathogenesis of hepatocellular carcinoma (HCC) remain elusive when exposure to POPs. The aim of this study is to explore the key genes involved in HCC when exposure to TCDD and α-endosulfan by weighted gene co-expression network analysis (WGCNA). First, we performed co-expressed analysis on HCC and normal condition, based on WGCNA. In results, seven co-expressed modules were identified from 56 human liver samples, and the brown module correlated with five stages of HCC. Subsequently, we predicted that human five liver diseases were associated with exposure to TCDD and/or α-endosulfan by Nextbio analysis. Functional enrichment analysis showed that the brown module enriched in oxidation-reduction process, DNA replication, oxidoreductase activity and aging, which were the same as the results when exposure to the mixture of TCDD and α-endosulfan. Lastly, based on the protein-protein interaction network, we identified three novel genes including HK2, EXO1 and PFKP as key genes in HCC associated with exposure to TCDD and α-endosulfan mixture. In addition, survival analysis of key genes in Kaplan-Meier plotter demonstrated that aberrant expression levels of all the three key genes were associated with poor prognosis of HCC. Finally, Western blot analysis confirmed that protein expression levels of PFKP and HK2 in the three exposed groups were significantly elevated, while EXO1 were significantly upregulated when exposure to TCDD and α-endosulfan mixture in HepaRG cells. This study provides a new perspective to the understanding of the genetic mechanism of HCC when exposure to POPs.
Collapse
Affiliation(s)
- Yanyuan Lu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Shiqi Liu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian 116026, China.
| |
Collapse
|
15
|
Islam B, Yu HY, Duan TQ, Pan J, Li M, Zhang RQ, Masroor M, Huang JF. Cell cycle kinases (AUKA, CDK1, PLK1) are prognostic biomarkers and correlated with tumor-infiltrating leukocytes in HBV related HCC. J Biomol Struct Dyn 2023; 41:11845-11861. [PMID: 36634158 DOI: 10.1080/07391102.2022.2164056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/24/2022] [Indexed: 01/14/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the high incidence cancers and third leading cause of cancer-related mortality. HBV is the top most risk factor accounting for 50-80% of the HCC cases. Kinases: Aurora kinase A (AURKA), cyclin-dependent kinase (CDK1) and Polo-like kinase 1 (PLK1), the key regulators of cell mitosis are overexpressed in varieties of cancers including HCC. However, the exact role of these genes in prognosis of HCC is not fully unveiled. In addition, there is no such an accurate prognostic biomarker for HBV-related HCC. To address this issue, we performed a multidimensional analysis of AURKA, CDK1 and PLK1 with a series of publicly available databases in multiple cancers and with experimental validation in HBV-related HCC tissues. Overexpression of AURKA, CDK1 and PLK1 was found in multiple cancers including HCC. Elevated expression of these genes could result from lowered DNA methylation and genomic alterations. Transcriptional overexpression was significantly correlated with poor prognosis of HCC patients. The expression levels were also significantly positively associated with tumor grades and stages. Furthermore, the expression levels of these genes had a strong correlation with infiltration of immune cells. Our analysis shows that AURKA, CDK1 and PLK1 are correlated with immune infiltration and are the prognostic biomarkers for HBV-induced HCC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Baitul Islam
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Hai-Yang Yu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Tian-Qi Duan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jing Pan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ru-Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Matiullah Masroor
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
16
|
Yang X, Zhou Y, Ge H, Tian Z, Li P, Zhao X. Identification of a transcription factor‑cyclin family genes network in lung adenocarcinoma through bioinformatics analysis and validation through RT‑qPCR. Exp Ther Med 2022; 25:63. [PMID: 36605530 PMCID: PMC9798156 DOI: 10.3892/etm.2022.11762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the predominant pathological subtype of lung cancer, which is the most prevalent and lethal malignancy worldwide. Cyclins have been reported to regulate the physiology of various types of tumors by controlling cell cycle progression. However, the key roles and regulatory networks associated with the majority of the cyclin family members in LUAD remain unclear. In total, 556 differentially expressed genes were screened from the GSE33532, GSE40791 and GSE19188 mRNA microarray datasets by R software. Subsequently, protein-protein interaction network containing 499 nodes and 4,311 edges, in addition to a significant module containing 76 nodes and 2,631 edges, were extracted through the MCODE plug-in of Cytoscape. A total of four cyclin family genes [cyclin (CCNA2, CCNB1, CCNB2 and CCNE2] were then found in this module. Further co-expression analysis and associated gene prediction revealed forkhead box M1 (FOXM1), the common transcription factor of CCNB2, CCNB1 and CCNA2. In addition, using GEPIA database, it was found that the high expression of these four genes were simultaneously associated with poorer prognosis in patients with LUAD. Experimentally, it was proved that these four hub genes were highly expressed in LUAD cell lines (Beas-2B and H1299) and LUAD tissues through qPCR, western blot analysis and immunohistochemical studies. The diagnostic value of these 4 hub genes in LUAD was analyzed by logistic regression, CCNA2 was deleted, following which a nomogram diagnostic model was constructed accordingly. The area under the curve values of CCNB1, CCNB2 and FOXM1 diagnostic models were calculated to be 0.92, 0.91 and 0.96 in the training set (Combined dataset of GSE33532, GSE40791 and GSE19188) and two validation sets (GSE10072 and GSE75037), respectively. To conclude, data from the present study suggested that the FOXM1/cyclin (CCNA2, CCNB1 and/or CCNB2) axis may serve a regulatory role in the development and prognosis of LUAD. Specifically, CCNB1, CCNB2 and FOXM1 have potential as diagnostic markers and/or therapeutic targets for LUAD treatment.
Collapse
Affiliation(s)
- Xiaodong Yang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yongjia Zhou
- Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Haibo Ge
- Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Zhongxian Tian
- Key Laboratory of Chest Cancer, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China
| | - Peiwei Li
- Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, P.R. China,Correspondence to: Dr Peiwei Li, Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, P.R. China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250021, P.R. China,Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, P.R. China,Correspondence to: Dr Peiwei Li, Institute of Medical Sciences, Cheeloo College of Medicine, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, P.R. China
| |
Collapse
|
17
|
Lou L, Chen L, Wu Y, Zhang G, Qiu R, Su J, Zhao Z, Lu Z, Liao M, Deng X. Identification of hub genes and construction of prognostic nomogram for patients with Wilms tumors. Front Oncol 2022; 12:982110. [PMID: 36338682 PMCID: PMC9634477 DOI: 10.3389/fonc.2022.982110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background In children, Wilms' tumors are the most common urological cancer with unsatisfactory prognosis, but few molecular prognostic markers have been discovered for it. With the rapid development of high-throughput quantitative proteomic and transcriptomic approaches, the molecular mechanisms of various cancers have been comprehensively explored. This study aimed to uncover the molecular mechanisms underlying Wilms tumor and build predictive models by use of microarray and RNA-seq data. Methods Gene expression datasets were downloaded from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. Bioinformatics methods wereutilized to identified hub genes, and these hub genes were validated by experiment. Nomogram predicting OS was developed using genetic risk score model and clinicopathological variables. Results CDC20, BUB1 and CCNB2 were highly expressed in tumor tissues and able to affect cell proliferation and the cell cycle of SK-NEP-1 cells. This may reveal molecular biology features and a new therapeutic target of Wilms tumour.7 genes were selected as prognostic genes after univariate, Lasso, and multivariate Cox regression analyses and had good accuracy, a prognostic nomogram combined gene model with clinical factors was completed with high accuracy. Conclusions The current study discovered CDC20,BUB1 and CCNB2 as hub-genes associated with Wilms tumor, providing references to understand the pathogenesis and be considered a novel candidate to target therapy and construct novel nomogram, incorporating both clinical risk factors and gene model, could be appropriately applied in preoperative individualized prediction of malignancy in patients with Wilms tumor.
Collapse
Affiliation(s)
- Lei Lou
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Pediatric Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Luping Chen
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yaohao Wu
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Gang Zhang
- Department of Pediatric Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ronglin Qiu
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianhang Su
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhuangjie Zhao
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zijie Lu
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minyi Liao
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaogeng Deng
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
18
|
Liu NQ, Cao WH, Wang X, Chen J, Nie J. Cyclin genes as potential novel prognostic biomarkers and therapeutic targets in breast cancer. Oncol Lett 2022; 24:374. [PMID: 36238849 PMCID: PMC9494629 DOI: 10.3892/ol.2022.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Nian-Qiu Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan 650000, P.R. China
| | - Wei-Han Cao
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Xing Wang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan 650000, P.R. China
| | - Junyao Chen
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan 650000, P.R. China
| | - Jianyun Nie
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
19
|
Chen L, Sun T, Li J, Zhao Y. Identification of hub genes and biological pathways in glioma via integrated bioinformatics analysis. J Int Med Res 2022; 50:3000605221103976. [PMID: 35676807 PMCID: PMC9189557 DOI: 10.1177/03000605221103976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Glioma is the most common intracranial primary malignancy, but its pathogenesis remains unclear. METHODS We integrated four eligible glioma microarray datasets from the gene expression omnibus database using the robust rank aggregation method to identify a group of significantly differently expressed genes (DEGs) between glioma and normal samples. We used these DEGs to explore key genes closely associated with glioma survival through weighted gene co-expression network analysis. We then constructed validations of prognosis and survival analyses for the key genes via multiple databases. We also explored their potential biological functions using gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA). RESULTS We selected DLGAP5, CDCA8, NCAPH, and CCNB2, as four genes that were abnormally up-regulated in glioma samples, for verification. They showed high levels of isocitrate dehydrogenase gene mutation and tumor grades, as well as good prognostic and diagnostic value for glioma. Their methylation levels were generally lower in glioma samples. GSEA and GSVA analyses suggested the genes were closely involved with glioma proliferation. CONCLUSION These findings provide new insights into the pathogenesis of glioma. The hub genes have the potential to be used as diagnostic and therapeutic markers.
Collapse
Affiliation(s)
- Lulu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tao Sun
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jian Li
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yongxuan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
20
|
Huang L, Guan S, Feng L, Wei J, Wu L. Integrated analysis identified NPNT as a potential key regulator in tumor metastasis of hepatocellular carcinoma. Gene 2022; 825:146436. [PMID: 35304239 DOI: 10.1016/j.gene.2022.146436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/12/2022] [Accepted: 03/11/2022] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the lethal malignancies worldwide. Tumor metastasis is the main cause of HCC related death. Although progress has been made in the mechanism study of HCC in the past decades, the underlying mechanism of HCC metastasis has not been fully illustrated. In the present study, bioinformatic analysis including weighted gene co-expression network analysis (WGCNA), differentially expressed gene analysis, and gene enrichment analysis were applied to discover genes correlated with HCC metastasis. Immunohistochemistry (IHC) assays were applied to detect the expression of NPNT in HCC samples. Cell transfection, wound healing, matrigel transwell assays, and western blot assays were utilized to evaluate the effects of NPNT on cell migration and invasion and signaling pathway variation. We found that NPNT was up-regulated in HCC tumor tissues compared with normal tissues. Especially, NPNT was highly expressed in metastatic tumor compared with non-metastatic HCC tumors. Down-regulation of NPNT via siRNA transfection inhibited cell migration, invasion, and FAK/PI3K/AKT signaling pathway in HCC. Our results demonstrate that NPNT is a potential key regulator in HCC metastasis.
Collapse
Affiliation(s)
- Lingkun Huang
- Medical College, Guangxi University, Nanning 530004, China
| | - Shuzhen Guan
- Medical College, Guangxi University, Nanning 530004, China
| | - Lin Feng
- Department of Pathology, the first Medical Center of PLA General Hospital, Beijing, China
| | - Jinrui Wei
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lichuan Wu
- Medical College, Guangxi University, Nanning 530004, China.
| |
Collapse
|
21
|
Cheng D, Wang L, Qu F, Yu J, Tang Z, Liu X. Identification and construction of a 13-gene risk model for prognosis prediction in hepatocellular carcinoma patients. J Clin Lab Anal 2022; 36:e24377. [PMID: 35421268 PMCID: PMC9102505 DOI: 10.1002/jcla.24377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022] Open
Abstract
We attempted to screen out the feature genes associated with the prognosis of hepatocellular carcinoma (HCC) patients through bioinformatics methods, to generate a risk model to predict the survival rate of patients. Gene expression information of HCC was accessed from GEO database, and differentially expressed genes (DEGs) were obtained through the joint analysis of multi-chip. Functional and pathway enrichment analyses of DEGs indicated that the enrichment was mainly displayed in biological processes such as nuclear division. Based on TCGA-LIHC data set, univariate, LASSO, and multivariate Cox regression analyses were conducted on the DEGs. Then, 13 feature genes were screened for the risk model. Also, the hub genes were examined in our collected clinical samples and GEPIA database. The performance of the risk model was validated by Kaplan-Meier survival analysis and receiver operation characteristic (ROC) curves. While its universality was verified in GSE76427 and ICGC (LIRI-JP) validation cohorts. Besides, through combining patients' clinical features (age, gender, T staging, and stage) and risk scores, univariate and multivariate Cox regression analyses revealed that the risk score was an effective independent prognostic factor. Finally, a nomogram was implemented for 3-year and 5-year overall survival prediction of patients. Our findings aid precision prediction for prognosis of HCC patients.
Collapse
Affiliation(s)
- Daming Cheng
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan City, China
| | - Libing Wang
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan City, China
| | - Fengzhi Qu
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan City, China
| | - Jingkun Yu
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan City, China
| | - Zhaoyuan Tang
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan City, China
| | - Xiaogang Liu
- Department of Hepatobiliary Surgery, Tangshan Gongren Hospital, Tangshan City, China
| |
Collapse
|
22
|
Xiao Y, Ma J, Guo C, Liu D, Pan J, Huang X. Cyclin B2 overexpression promotes tumour growth by regulating jagged 1 in hepatocellular carcinoma. Aging (Albany NY) 2022; 14:2855-2867. [PMID: 35349480 PMCID: PMC9004552 DOI: 10.18632/aging.203979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
Background: Our previous study showed that Cyclin B2 (CCNB2) is closely related to the occurrence and progression of hepatocellular carcinoma (HCC). Aim of the study: This study aimed to clarify the effect of CCNB2 gene silencing on tumorigenesis in nude mice and to detect the potential mechanism. Methods: The effect of CCNB2 on HCC was tested in vivo. The downstream target genes of CCNB2 were predicted by proteomics and confirmed by western blot assay. The regulatory functions of CCNB2 in the proliferation and migration of HCC cells were determined through functional recovery experiments. The expression of the downstream target genes of CCNB2 was detected by immunohistochemistry. Results: Knockdown of CCNB2 decreased tumour formation rate and tumour volume and weight and inhibited tumour proliferation. A total of 130 differentially expressed proteins were detected by proteomics, and Jagged 1 (JAG1) was predicted as the potential downstream target of CCNB2. Western blot assay revealed that CCNB2 and JAG1 expression was significantly correlated in HCC cells. The results of functional recovery experiments suggested that CCNB2 knockdown weakened the proliferation and migration ability of HCC cells, while JAG1 overexpression restored this ability of HCC cells that was weakened by CCNB2 knockdown. Immunohistochemistry showed that JAG1 expression was higher in HCC tissues than in paracancerous tissues and was related to tumour size and number and tumour thrombus formation. Conclusions: The proliferation of HCC cells in vivo was inhibited by CCNB2 knockdown. CCNB2 may accelerate the proliferation and metastasis of HCC cells by increasing JAG1 expression.
Collapse
Affiliation(s)
- Yening Xiao
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570028, China
| | - Jiamei Ma
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570028, China
| | - Chunliu Guo
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570028, China
| | - Danni Liu
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570028, China
| | - Jing Pan
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570028, China
| | - Xiaoxi Huang
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570028, China
| |
Collapse
|
23
|
Wei ZL, Zhou X, Lan CL, Huang HS, Liao XW, Mo ST, Wei YG, Peng T. Clinical implications and molecular mechanisms of Cyclin-dependent kinases 4 for patients with hepatocellular carcinoma. BMC Gastroenterol 2022; 22:77. [PMID: 35193513 PMCID: PMC8864914 DOI: 10.1186/s12876-022-02152-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) was frequently considered as a kind of malignant tumor with a poor prognosis. Cyclin-dependent kinases (CDK) 4 was considered to be cell-cycle-related CDK gene. In this study, we explored the clinical significance of CDK4 in HCC patients. Methods Data of HCC patients were obtained from The Cancer Genome Atlas database (TCGA) and the Gene Expression Omnibus (GEO) database. Kaplan–Meier analysis and Cox regression model were performed to calculate median survival time (MST) and the hazard ration (HR), respectively. The joint-effect analysis and prognostic risk score model were constructed to demonstrate significance of prognosis-related genes. The differential expression of prognostic genes was further validated using reverse transcription-quantitative PCR (RT-qPCR) of 58 pairs of HCC samples. Results CDK1 and CDK4 were considered prognostic genes in TCGA and GSE14520 cohort. The result of joint-effect model indicated patients in CDK1 and CDK4 low expression groups had a better prognosis in TCGA (adjusted HR = 0.491; adjusted P = 0.003) and GSE14520 cohort (adjusted HR = 0.431; adjusted P = 0.002). Regarding Kaplan–Meier analysis, high expression of CDK1 and CDK4 was related to poor prognosis in both the TCGA (P < 0.001 and = 0.001 for CDK1 and CDK4, respectively) and the GSE14520 cohort (P = 0.006 and = 0.033 for CDK1 and CDK4, respectively). However, only CDK4 (P = 0.042) was validated in RT-qPCR experiment, while CDK1 (P = 0.075) was not. Conclusion HCC patients with high CDK4 expression have poor prognosis, and CDK4 could be a potential candidate diagnostic biomarker for HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02152-w.
Collapse
Affiliation(s)
- Zhong-Liu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chen-Lu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hua-Sheng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shu-Tian Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yong-Guang Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
24
|
CRHBP is degraded via autophagy and exerts anti-hepatocellular carcinoma effects by reducing cyclin B2 expression and dissociating cyclin B2-CDK1 complex. Cancer Gene Ther 2022; 29:1217-1227. [PMID: 35082401 DOI: 10.1038/s41417-021-00423-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Autophagy is the predominant self-eating catabolic pathway activated in response to nutrient starvation and hypoxia within the microenvironment of varied malignancies, including hepatocellular carcinoma (HCC). SQSTM1/p62 links its cargos to autophagosomes for degradation, and reportedly acts as a contributor for hepatocarcinogenesis. Five GEO gene microarrays identified corticotropin releasing hormone (CRH) binding protein (CRHBP) as a significantly downregulated gene in HCC (log2 Fold change < -3 and p < 0.001), and an earlier human interactome study indicated that CRHBP may interact with p62. This study aimed to explore (1) the role of CRHBP in HCC development, and (2) whether p62-mediated autophagy was responsible for low CRHBP expression within HCC tissue. Following functional experiments first revealed an anti-proliferative, anti-metastatic, and anti-angiogenic role of CRHBP in HCC cells (Huh-7, Li-7 and HCCLM3) and xenografts. CRHBP negatively regulated cyclin B2 expression, and dissociated cyclin B2-CDK1 complex in HCC cells, thereby leading to cell cycle arrest at G2 phase. To simulate HCC microenvironment in vitro, Huh-7 cells were incubated in Earle's Balanced Salt Solution (nutrient starvation) or exposed to 1% O2 (hypoxic exposure). In addition to activating autophagy, nutrient starvation and hypoxic exposure also induced CRHBP degradation. Interestingly, CRHBP was demonstrated as a novel cargo targeted by p62 for degradation in autophagosomes. Blocking autophagy with 3-MA, chloroquine or siSQSTM1 prevented CRHBP degradation in HCC cells. Collectively, our study uncovers a role for CRHBP in retarding HCC development, reducing cyclin B2 expression and impairing cyclin B2-CDK1 interaction. CRHBP downregulation in HCC may attribute to p62-mediated autophagy.
Collapse
|
25
|
Yang Z, Wu X, Li J, Zheng Q, Niu J, Li S. CCNB2, CDC20, AURKA, TOP2A, MELK, NCAPG, KIF20A, UBE2C, PRC1, and ASPM May Be Potential Therapeutic Targets for Hepatocellular Carcinoma Using Integrated Bioinformatic Analysis. Int J Gen Med 2022; 14:10185-10194. [PMID: 34992437 PMCID: PMC8710976 DOI: 10.2147/ijgm.s341379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/09/2021] [Indexed: 01/14/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a highly malignant, recurrent and drug-resistant tumor, and patients often lose the opportunity for surgery when they are diagnosed. Abnormal gene expression is closely related to the occurrence of HCC. The aim of the present study was to identify the differentially expressed genes (DEGs) between tumor tissue and non-tumor tissue of HCC samples in order to investigate the mechanisms of liver cancer. Methods The gene expression profile (GSE62232, GSE89377, and GSE112790) was downloaded from the Gene Expression Omnibus (GEO) and analyzed using the online tool GEO2R to identify differentially expressed genes (DEGs). Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery. Protein–protein interaction (PPI) of these DEGs was analyzed based on the Search Tool for the Retrieval of Interacting Genes database and visualized by Cytoscape software. In addition, we used the online Kaplan–Meier plotter survival analysis tool to evaluate the prognostic value of hub genes expression. HPA database was used to reveal the differences in protein level of hub genes. Results A total of 50 upregulated DEGs and 122 downregulated DEGs were identified. Among them, ten hub genes with a high degree of connectivity were picked out. Overexpression of these hub genes was associated with unfavorable prognosis of HCC. Conclusion Our study suggests that CCNB2, CDC20, AURKA, TOP2A, MELK, NCAPG, KIF20A, UBE2C, PRC1, and ASPM were overexpressed in HCC compared with normal liver tissue. Overexpression of these genes was an unfavorable prognostic factor of HCC patients. Further study is needed to explore the value of them in the diagnosis and treatment of HCC. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/6-kRy19SREg
Collapse
Affiliation(s)
- Zhiqiang Yang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinglang Wu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Junbo Li
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qiang Zheng
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Junwei Niu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shengwei Li
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
26
|
Zhong X, Zhang S, Zhang Y, Jiang Z, Li Y, Chang J, Niu J, Shi Y. HMGB3 is Associated With an Unfavorable Prognosis of Neuroblastoma and Promotes Tumor Progression by Mediating TPX2. Front Cell Dev Biol 2022; 9:769547. [PMID: 34988076 PMCID: PMC8721485 DOI: 10.3389/fcell.2021.769547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is the most common solid tumor apart from central nervous system malignancies in children aged 0–14 years, and the outcomes of high-risk patients are dismal. High mobility group box 3 (HMGB3) plays an oncogenic role in many cancers; however, its biological role in NB is still unclear. Using data mining, we found that HMGB3 expression was markedly elevated in NB patients with unfavorable prognoses. When HMGB3 expression in NB cell lines was inhibited, cell proliferation, migration, and invasion were suppressed, and HMGB3 knockdown inhibited NB tumor development in mice. RT−PCR was employed to detect mRNA expression of nine coexpressed genes in response to HMGB3 knockdown, and TPX2 was identified. Furthermore, overexpression of TPX2 reversed the cell proliferation effect of HMGB3 silencing. Multivariate Cox regression analysis indicated that HMGB3 and TPX2 might be independent prognostic factors for overall survival and event-free survival, which showed the highest significance (p < 0.001). According to the nomogram predictor constructed, the integration of gene expression and clinicopathological features exhibited better prognostic prediction power. Furthermore, the random forest algorithm and receiver operating characteristic curves also showed that HMGB3 and TPX2 played important roles in discriminating the vital status (alive/dead) of patients in the NB datasets. Our informatics analysis and biological experiments suggested that HMGB3 is correlated with the unfavorable clinical outcomes of NB, and plays an important role in promoting cell growth, proliferation, and invasion in NB, potentially representing a new therapeutic target for tumor progression.
Collapse
Affiliation(s)
- Xiaodan Zhong
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, China
| | - Songling Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Yutong Zhang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, China
| | - Zongmiao Jiang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yanan Li
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Jian Chang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Ying Shi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Kakar MU, Mehboob MZ, Akram M, Shah M, Shakir Y, Ijaz HW, Aziz U, Ullah Z, Ahmad S, Ali S, Yin Y. Identification of Differentially Expressed Genes Associated with the Prognosis and Diagnosis of Hepatocellular Carcinoma by Integrated Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4237633. [PMID: 36317111 PMCID: PMC9617698 DOI: 10.1155/2022/4237633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The goal of this study was to understand the possible core genes associated with hepatocellular carcinoma (HCC) pathogenesis and prognosis. METHODS GEO contains datasets of gene expression, miRNA, and methylation patterns of diseased and healthy/control patients. The GSE62232 dataset was selected by employing the server Gene Expression Omnibus. A total of 91 samples were collected, including 81 HCC and 10 healthy samples as control. GSE62232 was analysed through GEO2R, and Functional Enrichment Analysis was performed to extract rational information from a set of DEGs. The Protein-Protein Relationship Networking search method has been used for extracting the interacting genes. MCC method was used to calculate the top 10 genes according to their importance. Hub genes in the network were analysed using GEPIA to estimate the effect of their differential expression on cancer progression. RESULTS We identified the top 10 hub genes through CytoHubba plugin. These included BUB1, BUB1B, CCNB1, CCNA2, CCNB2, CDC20, CDK1 and MAD2L1, NCAPG, and NDC80. NCAPG and NDC80 reported for the first time in this study while the remaining from a recently reported literature. The pathogenesis of HCC may be directly linked with the aforementioned genes. In this analysis, we found critical genes for HCC that showed recommendations for future prognostic and predictive biomarkers studies that could promote selective molecular therapy for HCC.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of life Sciences, Beijing Institute of Technology (BIT), Beijing 100081, China
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences (LUAWMS), Uthal, Balochistan, Pakistan
| | - Muhammad Zubair Mehboob
- CAS Centre for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Muhammad Akram
- School of Science, Department of Life sciences, University of Management and Technology, Johar Town, Lahore 54770, Pakistan
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University, Mardan 23200, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mauz, P.O. Box 33, Nizwa 616, Oman
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Hafza Wajeeha Ijaz
- CAS Centre for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
| | - Ubair Aziz
- Research Centre of Molecular Simulation, National University of Science and Technology, Islamabad, Pakistan
| | - Zahid Ullah
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Sajjad Ahmad
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, LUAWMS, Uthal, 90150 Balochistan, Pakistan
| | - Sikandar Ali
- Dow Institute for Advanced Biological and Animal Research, Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan
| | - Yongxiang Yin
- Department of Pathology, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
28
|
Huang J, Zhou H, Diao Y, Yang Z. Hsa_circ_0000285 knockdown inhibits the progression of hepatocellular carcinoma by sponging miR-582-3p to regulate CCNB2 expression. Hum Exp Toxicol 2022; 41:9603271221115400. [PMID: 35839486 DOI: 10.1177/09603271221115400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIM Hsa_circ_0000285, a novel circular RNA, has been proven to extensively take part in the pathogenesis of numerous tumors. In hepatocellular carcinoma (HCC), very little is known about hsa_circ_0000285 until now. Hence, this research aims to determine hsa_circ_0000285's functional role and underlying mechanisms in HCC. METHODS The expressions of miR-582-3p, hsa_circ_000028, and cyclin B2 (CCNB2) among the HCC cells and tumor samples were determined by performing western blotting and qRT-PCR analyses. The impacts of hsa_circ_000028 on the proliferative and migratory abilities of HCC cells were examined through the execution of CCK-8 and wound-healing assays. Meanwhile, the expressions of the proteins Bcl-2 and Bax were detected via western blotting. Tumor xenograft models were established to examine how hsa_circ_000028 functions during the mediation of HCC tumor growth in vivo. RNA immunoprecipitation and luciferase reporter experiments were performed for the validation of the interactions of miR-582-3p, hsa_circ_000028, and CCNB2 with each other. RESULTS Elevated hsa_circ_0000285 and CCNB2 expressions, and a decreased miR-582-3p expression were observed among the HCC cell lines and tumors. Hsa_circ_0000285 bound to miR-582-3p competitively to improve CCNB2 levels. Silencing of hsa_circ_0000285 promoted apoptosis and repressed proliferation and migration among HCC cells. Moreover, silencing hsa_circ_0000285 also impeded the growth of HCC tumors in vivo. Inhibiting hsa_circ_0000285 or CCNB2 reversed the miR-582-3p-knockdown-mediated promotion of malignant HCC cell phenotypes. CONCLUSION Our study has demonstrated that hsa_circ_0000285 fosters the development of malignant HCC cells phenotypes through the modulation of the miR-582-3p/CCNB2 axis. Thus, these results suggest that hsa_circ_0000285 is a prospective target for HCC treatment.
Collapse
Affiliation(s)
- Jing Huang
- Department of Hepatobiliary & Vascular Surgery, 580504School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hongchi Zhou
- Department of Hepatobiliary & Vascular Surgery, 580504School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yun Diao
- Operation Room, 580504School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhiming Yang
- Department of Hepatobiliary & Vascular Surgery, 580504School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
29
|
CCNB2 is a novel prognostic factor and a potential therapeutic target in Low-grade glioma (LGG). Biosci Rep 2021; 42:230458. [PMID: 34908101 PMCID: PMC8799923 DOI: 10.1042/bsr20211939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Cyclin B2 (CCNB2) is an important component of the cyclin pathway and plays a key role in the occurrence and development of cancer. However, the correlation between prognosis of low-grade glioma (LGG), CCNB2, and tumor infiltrating lymphocytes is not clear. Methods: The expression of CCNB2 in LGG was queried in Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and TIMER databases. The relationships between CCNB2 and the clinicopathological features of LGG were analyzed using the Chinese Glioma Genome Atlas (CGGA) database. The relationship between CCNB2 expression and overall survival (OS) was evaluated by GEPIA2. The correlation between CCNB2 and LGG immune infiltration was analyzed by the TIMER database. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect CCNB2 expression. Results: The expression of CCNB2 differed across different tumor tissues, but was higher in LGG than in normal tissues. LGG patients with high expression of CCNB2 have poorer prognosis. The expression of CCNB2 was correlated with age, WHO grade, IDH mutational status, 1p/19q codeletion status, and other clinicopathological features. The expression of CCNB2 in LGG was positively correlated with the infiltration level of B cells, dendritic cells, and macrophages. qRT-PCR results revealed that the expression of CCNB2 in LGG tissues was higher than normal tissues and higher expression of CCNB2 was associated with worse prognosis. Conclusion: CCNB2 may be used as a potential biomarker to determine the prognosis of LGG and is also related to immune infiltration.
Collapse
|
30
|
Xia T, Meng L, Zhao Z, Li Y, Wen H, Sun H, Zhang T, Wei J, Li F, Liu C. Bioinformatics prediction and experimental verification identify MAD2L1 and CCNB2 as diagnostic biomarkers of rhabdomyosarcoma. Cancer Cell Int 2021; 21:634. [PMID: 34838000 PMCID: PMC8626952 DOI: 10.1186/s12935-021-02347-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Background Rhabdomyosarcoma (RMS) is a malignant soft-tissue tumour. In recent years, the tumour microenvironment (TME) has been reported to be associated with the development of tumours. However, the relationship between the occurrence and development of RMS and TME is unclear. The purpose of this study is to identify potential tumor microenvironment-related biomarkers in rhabdomyosarcoma and analyze their molecular mechanisms, diagnostic and prognostic significance. Methods We first applied bioinformatics method to analyse the tumour samples of 125 patients with rhabdomyosarcoma (RMS) from the Gene Expression Omnibus database (GEO). Differential genes (DEGs) that significantly correlate with TME and the clinical staging of tumors were extracted. Immunohistochemistry (IHC) was applied to validate the expression of mitotic arrest deficient 2 like 1 (MAD2L1) and cyclin B2 (CCNB2) in RMS tissue. Then, we used cell function and molecular biology techniques to study the influence of MAD2L1 and CCNB2 expression levels on the progression of RMS. Results Bioinformatics results show that the RMS TME key genes were screened, and a TME-related tumour clinical staging model was constructed. The top 10 hub genes were screened through the establishment of a protein–protein interaction (PPI) network, and then Gene Expression Profiling Interactive Analysis (GEPIA) was conducted to measure the overall survival (OS) of the 10 hub genes in the sarcoma cases in The Cancer Genome Atlas (TCGA). Six DEGs of statistical significance were acquired. The relationship between these six differential genes and the clinical stage of RMS was analysed. Further analysis revealed that the OS of RMS patients with high expression of MAD2L1 and CCNB2 was worse and the expression of MAD2L1 and CCNB2 was related to the clinical stage of RMS patients. Gene set enrichment analysis (GSEA) revealed that the genes in MAD2L1 and CCNB2 groups with high expression were mainly related to the mechanism of tumour metastasis and recurrence. In the low-expression MAD2L1 and CCNB2 groups, the genes were enriched in the metabolic and immune pathways. Immunohistochemical results also confirmed that the expression levels of MAD2L1 (30/33, 87.5%) and CCNB2 (33/33, 100%) were remarkably higher in RMS group than in normal control group (0/11, 0%). Moreover, the expression of CCNB2 was related to tumour size. Downregulation of MAD2L1 and CCNB2 suppressed the growth, invasion, migration, and cell cycling of RMS cells and promoted their apoptosis. The CIBERSORT immune cell fraction analysis indicated that the expression levels of MAD2L1 and CCNB2 affected the immune status in the TME. Conclusions The expression levels of MAD2L1 and CCNB2 are potential indicators of TME status changes in RMS, which may help guide the prognosis of patients with RMS and the clinical staging of tumours.
Collapse
Affiliation(s)
- Tian Xia
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Lian Meng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Zhijuan Zhao
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Yujun Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Hao Wen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Hao Sun
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Tiantian Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Jingxian Wei
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China. .,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China. .,Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
31
|
Gong K, Zhou H, Liu H, Xie T, Luo Y, Guo H, Chen J, Tan Z, Yang Y, Xie L. Identification and Integrate Analysis of Key Biomarkers for Diagnosis and Prognosis of Non-Small Cell Lung Cancer Based on Bioinformatics Analysis. Technol Cancer Res Treat 2021; 20:15330338211060202. [PMID: 34825846 PMCID: PMC8649439 DOI: 10.1177/15330338211060202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Non-small cell lung cancer (NSCLC) is the most common
type of lung cancer affecting humans. However, appropriate biomarkers for
diagnosis and prognosis have not yet been established. Here, we evaluated the
gene expression profiles of patients with NSCLC to identify novel biomarkers.
Methods: Three datasets were downloaded from the Gene
Expression Omnibus (GEO) database, and differentially expressed genes were
analyzed. Venn diagram software was applied to screen differentially expressed
genes, and gene ontology functional analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis were performed. Cytoscape was used to analyze
protein-protein interactions (PPI) and Kaplan–Meier Plotter was used to evaluate
the survival rates. Oncomine database, Gene Expression Profiling Interactive
Analysis (GEPIA), and The Human Protein Atlas (THPA) were used to analyze
protein expression. Quantitative real-time polymerase (qPCR) chain reaction was
used to verify gene expression. Results: We identified 595
differentially expressed genes shared by the three datasets. The PPI network of
these differentially expressed genes had 202 nodes and 743 edges. Survival
analysis identified 10 hub genes with the highest connectivity, 9 of which
(CDC20, CCNB2, BUB1,
CCNB1, CCNA2, KIF11,
TOP2A, NDC80, and ASPM)
were related to poor overall survival in patients with NSCLC. In cell
experiments, CCNB1, CCNB2,
CCNA2, and TOP2A expression levels were
upregulated, and among different types of NSCLC, these four genes showed highest
expression in large cell lung cancer. The highest prognostic value was detected
for patients who had successfully undergone surgery and for those who had not
received chemotherapy. Notably, CCNB1 and
CCNA2 showed good prognostic value for patients who had not
received radiotherapy. Conclusion: CCNB1,
CCNB2, CCNA2, and TOP2A
expression levels were upregulated in patients with NSCLC. These genes may be
meaningful diagnostic biomarkers and could facilitate the development of
targeted therapies.
Collapse
Affiliation(s)
- Ke Gong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Haidan Liu
- The Clinical Center for Gene Diagnosis and Therapy of The State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, PR China
| | - Ting Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Yong Luo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Hui Guo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Jinlan Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Zhiping Tan
- The Clinical Center for Gene Diagnosis and Therapy of The State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, PR China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| |
Collapse
|
32
|
Zhang H, Wang Y, Feng J, Wang S, Wang Y, Kong W, Zhang Z. Integrative Analysis for Elucidating Transcriptomics Landscapes of Systemic Lupus Erythematosus. Front Genet 2021; 12:782005. [PMID: 34804130 PMCID: PMC8599929 DOI: 10.3389/fgene.2021.782005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex and heterogeneous autoimmune disease that the immune system attacks healthy cells and tissues. SLE is difficult to get a correct and timely diagnosis, which makes its morbidity and mortality rate very high. The pathogenesis of SLE remains to be elucidated. To clarify the potential pathogenic mechanism of SLE, we performed an integrated analysis of two RNA-seq datasets of SLE. Differential expression analysis revealed that there were 4,713 and 2,473 differentially expressed genes, respectively, most of which were up-regulated. After integrating differentially expressed genes, we identified 790 common differentially expressed genes (DEGs). Gene functional enrichment analysis was performed and found that common differentially expressed genes were significantly enriched in some important immune-related biological processes and pathways. Our analysis provides new insights into a better understanding of the pathogenic mechanisms and potential candidate markers for systemic lupus erythematosus.
Collapse
Affiliation(s)
- Haihong Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanli Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinghui Feng
- Department of Gerontology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuya Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weisi Kong
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiyi Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Identification of Three Key Genes Associated with Hepatocellular Carcinoma Progression Based on Co-expression Analysis. Cell Biochem Biophys 2021; 80:301-309. [PMID: 34406599 DOI: 10.1007/s12013-021-01028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and one of the leading causes of cancer-related death in the world. Due to the recurrence of HCC, its survival rate is still low. Therefore, it is vital to seek prognostic biomarkers for HCC. In this study, differential analysis was conducted on gene expression data in The Cancer Genome Atlas -LIHC, and 4482 differentially expressed genes in tumor tissue were selected. Then, weighted gene co-expression network analysis was used to analyze the co-expression of the gained differential genes. By module-trait correlation analysis, the turquoise gene module that was significantly related to tumor grade, pathologic_T stage, and clinical stage was identified. Thereafter, enrichment analysis of genes in this module uncovered that the genes were mainly enriched in the signaling pathways involved in spliceosome and cell cycle. After that, through correlation analysis, 18 hub genes highly correlated with tumor grade, clinical stage, pathologic_T stage, and the turquoise module were selected. Meanwhile, protein-protein interaction (PPI) network was constructed by using genes in the module. Finally, three key genes, heterogeneous nuclear ribonucleoprotein L, serrate RNA effector molecule, and cyclin B2, were identified by intersecting the top 30 genes with the highest connectivity in PPI network and the previously obtained 18 hub genes in the turquoise module. Further survival analysis revealed that high expression of the three key genes predicted poor prognosis of HCC. These results indicated the direction for further research on clinical diagnosis and prognostic biomarkers of HCC.
Collapse
|
34
|
An Integrative Systems Biology Approach Identifies Molecular Signatures Associated with Gallbladder Cancer Pathogenesis. J Clin Med 2021; 10:jcm10163520. [PMID: 34441816 PMCID: PMC8397040 DOI: 10.3390/jcm10163520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/17/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Gallbladder cancer (GBC) has a lower incidence rate among the population relative to other cancer types but is a major contributor to the total number of biliary tract system cancer cases. GBC is distinguished from other malignancies by its high mortality, marked geographical variation and poor prognosis. To date no systemic targeted therapy is available for GBC. The main objective of this study is to determine the molecular signatures correlated with GBC development using integrative systems level approaches. We performed analysis of publicly available transcriptomic data to identify differentially regulated genes and pathways. Differential co-expression network analysis and transcriptional regulatory network analysis was performed to identify hub genes and hub transcription factors (TFs) associated with GBC pathogenesis and progression. Subsequently, we assessed the epithelial-mesenchymal transition (EMT) status of the hub genes using a combination of three scoring methods. The identified hub genes including, CDC6, MAPK15, CCNB2, BIRC7, L3MBTL1 were found to be regulators of cell cycle components which suggested their potential role in GBC pathogenesis and progression.
Collapse
|
35
|
Zelong Y, Han Y, Ting G, Yifei W, Kun H, Haoran H, Yong C. Increased expression of Cyclin F in liver cancer predicts poor prognosis: A study based on TCGA database. Medicine (Baltimore) 2021; 100:e26623. [PMID: 34397798 PMCID: PMC8341327 DOI: 10.1097/md.0000000000026623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/21/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cyclin F (CCNF) dysfunction has been implicated in various forms of cancer, offering a new avenue for understanding the pathogenic mechanisms underlying hepatocellular carcinoma (HCC). We aimed to evaluate the role of CCNF in HCC using publicly available data from The Cancer Genome Atlas (TCGA). METHOD We used TCGA data and Gene Expression Omnibus (GEO) data to analyze the differential expression of CCNF between tumor and adjacent tissues and the relationship between CCNF and clinical characteristics. We compared prognosis of patients with HCC with high and low CCNF expression and constructed receiver operating characteristic (ROC) curves. In addition, we also explored the types of gene mutations in relevant groups and conducted Gene Set Enrichment Analysis (GSEA). RESULTS The expression of CCNF in liver cancer tissues was significantly increased compared with that in adjacent tissues, and patients with high CCNF expression had a worse prognosis than those with low CCNF expression. Patients with high CCNF expression also had more somatic mutations. High expression of CCNF hampers the prognosis independently. The GSEA showed that the "http://www.gsea-msigdb.org/gsea/msigdb/cards/BIOCARTA_WNT_PATHWAY" Wnt pathway, "http://www.gsea-msigdb.org/gsea/msigdb/cards/BIOCARTA_P53_PATHWAY" P53 pathway, "http://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_PI3K_AKT_MTOR_SIGNALING" PI3K/Akt/mTOR pathway, "http://www.gsea-msigdb.org/gsea/msigdb/cards/HALLMARK_NOTCH_SIGNALING" Notch pathway were enriched in patients with the high CCNF expression phenotype. CONCLUSION High CCNF expression can be seen as an independent risk factor for poor survival in HCC. Its expression may serve as a target for the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Yang Zelong
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yang Han
- School of Life Sciences, Central South University, Changsha, China
| | - Guo Ting
- Department of Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wang Yifei
- Department of Neurology, Fourth Military Medical University, Xi’an, China
| | - He Kun
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hu Haoran
- School of Life Sciences, Central South University, Changsha, China
| | - Chen Yong
- Department of Hepatobiliary Surgery, Xi Jing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
36
|
Cyclin B2 (CCNB2) Stimulates the Proliferation of Triple-Negative Breast Cancer (TNBC) Cells In Vitro and In Vivo. DISEASE MARKERS 2021; 2021:5511041. [PMID: 34354775 PMCID: PMC8331305 DOI: 10.1155/2021/5511041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer. Currently, targeting therapy makes great advances for the treatment of TNBC, whereas more effective therapeutic targets are urgently needed. Cyclin B2 (CCNB2), which belongs to B-type cyclins, is known as a cell cycle regulator. CCNB2 is synthesized at G1 phase in cancer cells and downregulated at anaphase. The defects of CCNB2 led to the abnormal cell cycle and tumorigenesis. Though there are wide effects of CCNB2 on multiple types of tumors, the potential role of CCNB2 in TNBC progression is still unclear. Herein, we found that CCNB2 was highly expressed in human TNBC tissues and correlated with the prognosis and clinical pathological features including tumor size (p = 0.022∗) and pTNM stage (p = 0.021∗) of patients with TNBC. CCNB2 could promote the proliferation of TNBC cells in vitro and in mice. Our findings therefore confirmed the involvement of CCNB2 in TNBC progression and provided the evidence that CCNB2 could serve as a promising molecular target of TNBC.
Collapse
|
37
|
Meng Z, Wu J, Liu X, Zhou W, Ni M, Liu S, Guo S, Jia S, Zhang J. Identification of potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma via integrated bioinformatics analysis. J Int Med Res 2021; 48:300060520910019. [PMID: 32722976 PMCID: PMC7391448 DOI: 10.1177/0300060520910019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective The objective was to identify potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma (HCC). Methods Gene expression profile datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between HCC and normal samples were identified via an integrated analysis. A protein–protein interaction network was constructed and analyzed using the STRING database and Cytoscape software, and enrichment analyses were carried out through DAVID. Gene Expression Profiling Interactive Analysis and Kaplan–Meier plotter were used to determine expression and prognostic values of hub genes. Results We identified 11 hub genes (CDK1, CCNB2, CDC20, CCNB1, TOP2A, CCNA2, MELK, PBK, TPX2, KIF20A, and AURKA) that might be closely related to the pathogenesis and prognosis of HCC. Enrichment analyses indicated that the DEGs were significantly enriched in metabolism-associated pathways, and hub genes and module 1 were highly associated with cell cycle pathway. Conclusions In this study, we identified key genes of HCC, which indicated directions for further research into diagnostic and prognostic biomarkers that could facilitate targeted molecular therapy for HCC.
Collapse
Affiliation(s)
- Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
38
|
Yang L, Yin W, Liu X, Li F, Ma L, Wang D, Li H. Identification of a five-gene signature in association with overall survival for hepatocellular carcinoma. PeerJ 2021; 9:e11273. [PMID: 33986994 PMCID: PMC8088210 DOI: 10.7717/peerj.11273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is considered to be a malignant tumor with a high incidence and a high mortality. Accurate prognostic models are urgently needed. The present study was aimed at screening the critical genes for prognosis of HCC. Methods The GSE25097, GSE14520, GSE36376 and GSE76427 datasets were obtained from Gene Expression Omnibus (GEO). We used GEO2R to screen differentially expressed genes (DEGs). A protein-protein interaction network of the DEGs was constructed by Cytoscape in order to find hub genes by module analysis. The Metascape was performed to discover biological functions and pathway enrichment of DEGs. MCODE components were calculated to construct a module complex of DEGs. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. ONCOMINE was employed to assess the mRNA expression levels of key genes in HCC, and the survival analysis was conducted using the array from The Cancer Genome Atlas (TCGA) of HCC. Then, the LASSO Cox regression model was performed to establish and identify the prognostic gene signature. We validated the prognostic value of the gene signature in the TCGA cohort. Results We screened out 10 hub genes which were all up-regulated in HCC tissue. They mainly enrich in mitotic cell cycle process. The GSEA results showed that these data sets had good enrichment score and significance in the cell cycle pathway. Each candidate gene may be an indicator of prognostic factors in the development of HCC. However, hub genes expression was weekly associated with overall survival in HCC patients. LASSO Cox regression analysis validated a five-gene signature (including CDC20, CCNB2, NCAPG, ASPM and NUSAP1). These results suggest that five-gene signature model may provide clues for clinical prognostic biomarker of HCC.
Collapse
Affiliation(s)
- Lei Yang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Weilong Yin
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Xuechen Liu
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Fangcun Li
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Li Ma
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Dong Wang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Hongxing Li
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
39
|
Chen Y, Jin L, Jiang Z, Liu S, Feng W. Identifying and Validating Potential Biomarkers of Early Stage Lung Adenocarcinoma Diagnosis and Prognosis. Front Oncol 2021; 11:644426. [PMID: 33937050 PMCID: PMC8085413 DOI: 10.3389/fonc.2021.644426] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/22/2021] [Indexed: 01/05/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. At present, most patients with LUAD are diagnosed at an advanced stage, and the prognosis of advanced LUAD is poor. Hence, we aimed to identify novel biomarkers for the diagnosis and treatment of early stage LUAD and to explore their predictive value. Methods The microarray datasets GSE63459, GSE27262, and GSE33532 were searched, and the differentially expressed genes (DEGs) were obtained using GEO2R. The DEGs were subjected to gene ontology (GO) and pathway enrichment analyses using METASCAPE. A protein–protein interaction (PPI) network was plotted with STRING and visualized by Cytoscape. Module analysis of the PPI network was performed using MCODE. Overall survival (OS) analysis and analysis of the mRNA expression levels of genes identified by MCODE were performed with UALCAN. Western blot analysis of hub genes in LUAD patients, MTS assays, and clonogenic assays were performed to test the effects of the hub genes on cell proliferation in vitro. Results A total of 341 DEGs were obtained, which were mainly enriched in terms related to blood vessel development, growth factor binding, and extracellular matrix organization. A PPI network consisting of 300 nodes and 1140 edges was constructed, and a significant module including 15 genes was identified. Elevated expression of ASPM, CCNB2, CDCA5, PRC1, KIAA0101, and UBE2T was associated with poor OS in LUAD patients. In the protein level, the hub gene was overexpressed in LUAD patients. In vitro experiments showed that knockdown of the hub genes in the LUAD cell lines could promote cell proliferation. Conclusions DEGs are potential biomarkers for early stage lung adenocarcinoma and could have utility for the diagnosis and predicting treatment efficacy.
Collapse
Affiliation(s)
- Yingji Chen
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Longyu Jin
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhibin Jiang
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Suo Liu
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Feng
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
40
|
Exploration and validation of a novel prognostic signature based on comprehensive bioinformatics analysis in hepatocellular carcinoma. Biosci Rep 2021; 40:226788. [PMID: 33111935 PMCID: PMC7670566 DOI: 10.1042/bsr20203263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to construct a novel signature for indicating the prognostic outcomes of hepatocellular carcinoma (HCC). Gene expression profiles were downloaded from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. The prognosis-related genes with differential expression were identified with weighted gene co-expression network analysis (WGCNA), univariate analysis, the least absolute shrinkage and selection operator (LASSO). With the stepwise regression analysis, a risk score was constructed based on the expression levels of five genes: Risk score = (−0.7736* CCNB2) + (1.0083* DYNC1LI1) + (−0.6755* KIF11) + (0.9588* SPC25) + (1.5237* KIF18A), which can be applied as a signature for predicting the prognosis of HCC patients. The prediction capacity of the risk score for overall survival was validated with both TCGA and ICGC cohorts. The 1-, 3- and 5-year ROC curves were plotted, in which the AUC was 0.842, 0.726 and 0.699 in TCGA cohort and 0.734, 0.691 and 0.700 in ICGC cohort, respectively. Moreover, the expression levels of the five genes were determined in clinical tumor and normal specimens with immunohistochemistry. The novel signature has exhibited good prediction efficacy for the overall survival of HCC patients.
Collapse
|
41
|
Sun R, Li S, Zhao K, Diao M, Li L. Identification of Ten Core Hub Genes as Potential Biomarkers and Treatment Target for Hepatoblastoma. Front Oncol 2021; 11:591507. [PMID: 33868991 PMCID: PMC8047669 DOI: 10.3389/fonc.2021.591507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to systematically investigate gene signatures for hepatoblastoma (HB) and identify potential biomarkers for its diagnosis and treatment. Materials and Methods GSE131329 and GSE81928 were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between hepatoblastoma and normal samples were identified using the Limma package in R. Then, the similarity of network traits between two sets of genes was analyzed by weighted gene correlation network analysis (WGCNA). Cytoscape was used to visualize and select hub genes. PPI network of hub genes was construed by Cytoscape. GO enrichment and KEGG pathway analyses of hub genes were carried out using ClueGO. The random forest classifier was constructed based on the hub genes using the GSE131329 dataset as the training set, and its reliability was validated using the GSE81928 dataset. The resulting core hub genes were combined with the InnateDB database to identify the innate core genes. Results A total of 4244 DEGs in HB were identified. WGCNA identified four modules that were significantly correlated with the disease status. A total of 114 hub genes were obtained within the top 20 genes of each node rank. 6982 relation pairs and 3700 nodes were contained in the PPI network of 114 hub genes. GO enrichment and KEGG pathway analyses of hub genes were focused on MAPK, cell cycle, p53, and other crucial pathways involved in HB. A random forest classifier was constructed using the 114 hub genes as feature genes, resulting in a 95.5% true positive rate when classifying HB and normal samples. A total of 35 core hub genes were obtained through the mean decrease in accuracy and mean decrease Gini of the random forest model. The classification efficiency of the random forest model was 81.4%. Finally, CDK1, TOP2A, ADRA1A, FANCI, XRCC1, TPX2, CCNB2, CDK4, GLYATL1, and CFHR3 were identified by cross-comparison with the InnateDB database. Conclusion Our study established a random forest classifier that identified 10 core genes in HB. These findings may be beneficial for the diagnosis, prediction, and targeted therapy of HB.
Collapse
Affiliation(s)
- Rui Sun
- Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ke Zhao
- Department of Ophthalmology, Ningbo Hangzhou Bay Hospital, Ningbo, China
| | - Mei Diao
- Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Long Li
- Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
42
|
Lu D, Jiang J, Liu X, Wang H, Feng S, Shi X, Wang Z, Chen Z, Yan X, Wu H, Cai K. Machine Learning Models to Predict Primary Sites of Metastatic Cervical Carcinoma From Unknown Primary. Front Genet 2020; 11:614823. [PMID: 33408743 PMCID: PMC7779672 DOI: 10.3389/fgene.2020.614823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022] Open
Abstract
Metastatic cervical carcinoma from unknown primary (MCCUP) accounts for 1–4% of all head and neck tumors, and identifying the primary site in MCCUP is challenging. The most common histopathological type of MCCUP is squamous cell carcinoma (SCC), and it remains difficult to identify the primary site pathologically. Therefore, it seems necessary and urgent to develop novel and effective methods to determine the primary site in MCCUP. In the present study, the RNA sequencing data of four types of SCC and Pan-Cancer from the cancer genome atlas (TCGA) were obtained. And after data pre-processing, their differentially expressed genes (DEGs) were identified, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that these significantly changed genes of four types of SCC share lots of similar molecular functions and histological features. Then three machine learning models, [Random Forest (RF), support vector machine (SVM), and neural network (NN)] which consisted of ten genes to distinguish these four types of SCC were developed. Among the three models with prediction tests, the RF model worked best in the external validation set, with an overall predictive accuracy of 88.2%, sensitivity of 88.71%, and specificity of 95.42%. The NN model is the second in efficacy, with an overall accuracy of 82.02%, sensitivity of 81.23%, and specificity of 93.04%. The SVM model is the last, with an overall accuracy of 76.69%, sensitivity of 74.81%, and specificity of 90.84%. The present analysis of similarities and differences among the four types of SCC, and novel models developments for distinguishing four types of SCC with informatics methods shed lights on precision MCCUP diagnosis in the future.
Collapse
Affiliation(s)
- Di Lu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Jiang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiguang Liu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - He Wang
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Siyang Feng
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoshun Shi
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhizhi Wang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiming Chen
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuebin Yan
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Wu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Liu Z, Guo Z, Long L, Zhang Y, Lu Y, Wu D, Dong Z. [Spindle assembly checkpoint complex-related genes TTK and MAD2L1 are over-expressed in lung adenocarcinoma: a big data and bioinformatics analysis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1422-1431. [PMID: 33118511 DOI: 10.12122/j.issn.1673-4254.2020.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To screen the key genes related to the prognosis of lung adenocarcinoma through big data analysis and explore their clinical value and potential mechanism. METHODS We analyzed GSE18842, GSE27262, and GSE33532 gene expression profile data obtained from the Gene Expression Omnibus (GEO). Bioinformatics methods were used to screen the differentially expressed genes in lung adenocarcinoma tissues and KEGG and GO enrichment analysis was performed, followed by PPI interaction network analysis, module analysis, differential expression analysis, and prognosis analysis. The expressions of MAD2L1 and TTK by immunohistochemistry were verified in 35 non-small cell lung cancer specimens and paired adjacent tissues. RESULTS We identified a total of 256 genes that showed significant differential expressions in lung adenocarcinoma, including 66 up-regulated and 190 down-regulated genes. Thirty-two up-regulated core genes were screened by functional analysis, and among them 29 were shown to significantly correlate with a poor prognosis of patients with lung adenocarcinoma. All the 29 genes were highly expressed in lung adenocarcinoma tissues compared with normal lung tissues and were mainly enriched in cell cycle pathways. Seven of these key genes were closely related to the spindle assembly checkpoint (SAC) complex and responsible for regulating cell behavior in G2/M phase. We selected SAC-related proteins TTK and MAD2L1 to test their expressions in clinical tumor samples, and detected their overexpression in lung adenocarcinoma tissues as compared with the adjacent tissues. CONCLUSIONS Seven SAC complex-related genes, including TTK and MAD2L1, are overexpressed in lung adenocarcinoma tissues with close correlation with the prognosis of the patients.
Collapse
Affiliation(s)
- Zhu Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zeqin Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lili Long
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanpei Zhang
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuwen Lu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhongyi Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
44
|
Abstract
Lung cancer is the world's most common malignancies and ranks first among all cancer-related deaths. Lung adenocarcinoma (LUAD) is the most frequent histological type in lung cancer. Its pathogenesis has not yet been fully elucidated, so it is of great significance to explore related genes for elucidating the molecular mechanism involved in occurrence and development of LUAD.To explore the crucial genes associated with LUAD development and progression, microarray datasets GSE7670, GSE10072, and GSE31547 were acquired from the Gene Expression Omnibus (GEO) database. R language Limma package was adopted to screen the differentially expressed genes (DEGs). The clusterProfiler package was used for enrichment analysis and annotation of the Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathways for DEGs. The Search Tool for the Retrieval of Interacting Genes database (STRING) was used to construct the protein interaction network for DEGs, while Cytoscape was adopted to visualize it. The functional module was screened with Cytoscape's MCODE (The Molecular Complex Detection) plugin. The crucial genes associated with LUAD were identified by cytoHubba plugin. Kaplan-Meier plotter online tool was used to perform survival analysis of the hub gene.Three hundred twenty-one DEGs in total were screened, of which 105 were upregulated and 216 were downregulated. It was found that some GO terms and pathways (e.g., collagen trimer, extracellular structure organization, heparin binding, complement and coagulation cascades, malaria, protein digestion and absorption, and PPAR signaling pathway) were considerably enriched in DEGs. UBE2C, TOP2A, RRM2, CDC20, CCNB2, KIAA0101, BUB1B, TPX2, PRC1, and CDK1 were identified as crucial genes. Survival analysis showed that the overexpression of UBE2C, TOP2A, RRM2, CDC20, CCNB2, KIAA0101, BUB1B, TPX2, and PRC1 significantly reduced the overall survival of LUAD patients. One of the crucial genes: UBE2C was validated by immunohistochemistry to be upregulated in LUAD tissues.This study screened out potential biomarkers of LUAD, providing a theoretical basis for elucidating the pathogenesis and evaluating the prognosis of LUAD.
Collapse
|
45
|
Zhang X, Yang L, Chen W, Kong M. Identification of Potential Hub Genes and Therapeutic Drugs in Malignant Pleural Mesothelioma by Integrated Bioinformatics Analysis. Oncol Res Treat 2020; 43:656-671. [PMID: 33032291 DOI: 10.1159/000510534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is closely linked to asbestos exposure and is an extremely aggressive tumor with poor prognosis. OBJECTIVE Our study aimed to elucidate hub genes and potential drugs in MPM by integrated bioinformatics analysis. METHODS GSE42977 was download from the Gene Expression Omnibus (GEO) database; the differentially expressed genes (DEGs) with adj.p value <0.05 and |logFC| ≥2 were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed by DAVID database. The STRING database was used to construct a protein-protein interaction network, and modules analysis and hub genes acquisition were performed by Cytoscape. The Gene Expression Profiling Interactive Analysis (GEPIA) database was used to assess the impact of hub genes on the prognosis of MPM patients. The Drug-Gene Interaction database (DGIdb) was used to select the related drugs. RESULTS A total of 169 upregulated and 70 downregulated DEGs were identified. These DEGs are enriched in the pathway of extracellular matrix-receptor interaction, focal adhesion, PI3K-Akt signaling pathway, and PPAR signaling pathway. Finally, 10 hub genes (CDC20, CDK1, UBE2C, TOP2A, CCNB2, NUSAP1, KIF20A, AURKA, CEP55, and ASPM) were identified, which are considered to be closely related to the poor prognosis of MPM. In addition, 119 related drugs that may have a therapeutic effect on MPM were filtered out. CONCLUSION These discovered genes and small-molecule drugs provide some new ideas for further research on MPM.
Collapse
Affiliation(s)
| | - Liu Yang
- School of Medicine, Shihezi University, Shihezi, China
| | - Wei Chen
- Department of Anaesthetic Operating Room, Provincial Otolaryngology Hospital Affiliated to Shandong University, Shandong Provincial Western Hospital, Jinan, China
| | - Ming Kong
- Department of Thoracic Surgery, Provincial Otolaryngology Hospital Affiliated to Shandong University, Shandong Provincial Western Hospital, Jinan, China,
| |
Collapse
|
46
|
Zou Y, Ruan S, Jin L, Chen Z, Han H, Zhang Y, Jian Z, Lin Y, Shi N, Jin H. CDK1, CCNB1, and CCNB2 are Prognostic Biomarkers and Correlated with Immune Infiltration in Hepatocellular Carcinoma. Med Sci Monit 2020; 26:e925289. [PMID: 32863381 PMCID: PMC7482506 DOI: 10.12659/msm.925289] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Orderly G2/M transition in the cell cycle is controlled by the cyclin-dependent kinase 1/cyclin B (CDK1/CCNB) complex. We aimed to comprehensively investigate the roles of CDK1, CCNB1, and CCNB2 via multi-omics analysis and their relationships with immune infiltration in hepatocellular carcinoma (HCC). MATERIAL AND METHODS The transcriptional data and the epigenetic and genetic alterations of CDK1, CCNB1, and CCNB2, as well as their impacts on prognosis in HCC patients, were identified using multiple databases. The correlations between expression of these genes and immune infiltration in HCC were then explored using the TIMER database. RESULTS Overall, mRNA expression of CDK1, CCNB1, and CCNB2 was up-regulated in various tumor tissues including HCC. Higher expression of these genes was associated with poorer prognosis in HCC patients. Lower promoter methylation of these genes might cause higher expression levels in tumor tissues of HCC. Genetic alterations and several methylated-CpG sites in these genes were significantly associated with survival. Notably, expression levels of CDK1, CCNB1, and CCNB2 were positively correlated with infiltrating levels of CD4⁺ T cells, CD8⁺ T cells, neutrophils, macrophages, and dendritic cells in HCC. In addition, significant correlations between the expression of these genes and various immune markers in HCC, such as PD-1, PDL-1, and CTLA-4, were also observed. CONCLUSIONS CDK1, CCNB1, and CCNB2 are potential prognostic biomarkers and associated with immune cell infiltration in HCC. The genes may be utilized to predict the reaction of immunotherapy. Combining inhibitors of these genes with immunotherapy may improve the survival time of HCC patients.
Collapse
Affiliation(s)
- Yiping Zou
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Shiye Ruan
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Liang Jin
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Zhihong Chen
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Hongwei Han
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Yuanpeng Zhang
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Zhixiang Jian
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Ye Lin
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Ning Shi
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Haosheng Jin
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
47
|
Yu-jing T, Wen-jing T, Biao T. Integrated Analysis of Hub Genes and Pathways In Esophageal Carcinoma Based on NCBI's Gene Expression Omnibus (GEO) Database: A Bioinformatics Analysis. Med Sci Monit 2020; 26:e923934. [PMID: 32756534 PMCID: PMC7431388 DOI: 10.12659/msm.923934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Esophageal carcinoma (ESCA) is a health challenge with poor prognosis and limited treatment options. Our aim is to screen for hub genes and pathways associated with ESCA pathology as diagnostic or therapeutic targets. MATERIAL AND METHODS We downloaded 2 ESCA-related datasets from the Gene Expression Omnibus (GEO) database. Subsequently, differentially expressed genes (DEGs) of ESCA were determined by statistical analysis. Both Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using online analytic tools. Network analysis was employed to construct a protein-protein interaction (PPI) network and to filter hub genes. We evaluated the expression level and impact of hub genes on survival of ESCA patients using the OncoLoc webserver. RESULTS A total of 210 DEGs were identified. The GO analysis showed that the DEGs were enriched in cell division. The KEGG pathway analysis showed DEGs that were enriched in cell cycle regulation, known cancer pathways, the PI3K-Akt signaling pathway, and the cGMP-PKG signaling pathway. The top 10 hub genes were markedly upregulated in ESCA tissue compared with normal esophageal tissue. Moreover, the expression level of the hub genes was different at different pathological stages of ESCA. Further prognostic analysis identified that the top 10 hub genes were related to late survival of ESCA patients, while exhibiting few associations with early survival time. CONCLUSIONS The signaling pathways involving the DEGs probably represent the pathological mechanism underlying ESCA. The hub genes were associated with survival of ESCA patients, and as such have the potential to serve as diagnostic indicators and therapeutic targets.
Collapse
|
48
|
Ji Y, Yin Y, Zhang W. Integrated Bioinformatic Analysis Identifies Networks and Promising Biomarkers for Hepatitis B Virus-Related Hepatocellular Carcinoma. Int J Genomics 2020; 2020:2061024. [PMID: 32775402 PMCID: PMC7407030 DOI: 10.1155/2020/2061024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/09/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) has long been recognized as a dominant hazard factor for hepatocellular carcinoma (HCC) and accounts for at least half of HCC instances globally. However, the underlying molecular mechanism of HBV-linked HCC has not been completely elucidated. Here, three microarray datasets, totally containing 170 tumoral samples and 181 adjacent normal tissues from the liver of patients suffering from HBV-related HCC assembled from the Gene Expression Omnibus (GEO) database, were subjected to integrated analysis of differentially expressed genes (DEGs). Subsequently, the analysis of function and pathway enrichment as well as the protein-protein interaction network (PPI) was performed. The ten hub genes screened out from the PPI network were further subjected to expression profile and survival analysis. Overall, 329 DEGs (67 upregulated and 262 downregulated) were identified. Ten DEGs with the highest degree of connectivity included cyclin-dependent kinase 1 (CDK1), cyclin B1 (CCNB1), cyclin B2 (CCNB2), PDZ-binding kinase (PBK), abnormal spindle microtubule assembly (ASPM), nuclear division cycle 80 (NDC80), aurora kinase A (AURKA), targeting protein for xenopus kinesin-like protein 2 (TPX2), kinesin family member 2C (KIF2C), and centromere protein F (CENPF). Kaplan-Meier analysis unveiled that overexpression levels of KIF2C and TPX2 were relevant to both the poor overall survival and relapse-free survival. In summary, the hub genes validated in the present study may provide promising targets for the diagnosis, prognosis, and therapy of HBV-associated HCC. Additionally, our work uncovers various crucial biological components (e.g., extracellular exosome) and signaling pathways that participate in the progression of HCC induced by HBV, serving comprehensive knowledge of the mechanisms regarding HBV-related HCC.
Collapse
Affiliation(s)
- Yun Ji
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
49
|
Wang X, Xiao H, Wu D, Zhang D, Zhang Z. miR-335-5p Regulates Cell Cycle and Metastasis in Lung Adenocarcinoma by Targeting CCNB2. Onco Targets Ther 2020; 13:6255-6263. [PMID: 32636645 PMCID: PMC7335273 DOI: 10.2147/ott.s245136] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background Lots of studies have shown that cyclin disorders can promote tumor development. This study aims to investigate the biological function and molecular mechanism of CCNB2 in lung adenocarcinoma (LUAD). Methods LUAD data were downloaded from GEO database and TCGA-LUAD database. Differential analysis was conducted to find the differentially expressed miRNAs and mRNAs, while targeted prediction was done for the access of potential target mRNAs. Gene expression level was detected by qRT-PCR and Western blot in human LUAD cell lines A-427, A549, Calu-3, PC-9 and human bronchial epithelial cell line BEAS-2B. MTT, colony formation, Transwell and flow cytometry assays were used to detect cell proliferation, metastasis, and cell cycle changes of PC-9 cell line. The dual-luciferase reporter gene was used to detect the targeted binding relationship of the target miRNA and mRNA. Results CCNB2 was highly expressed and served as a biomarker indicating poor prognosis in LUAD patients. Cell function experiments confirmed the inhibitory effects of silencing CCNB2 on the proliferation, migration and invasion of LUAD cells and cell cycle was blocked in the G0/G1 phase. In addition, with regard to the regulatory mechanism, we demonstrated that miR-335-5p had binding sites with 3ʹ-UTR of CCNB2, indicating that miR-335-5p could target the regulation expression of CCNB2. In subsequent cell function tests, overexpression of miR-335-5p inhibited the proliferation and metastasis of cancer cells, and the rescue experiments also verified that miR-335-5p could reverse the promotion of CCNB2 overexpression on the progress of cancer cells. Conclusion In summary, our results revealed that miR-335-5p could target the down-regulation of CCNB2 to inhibit the occurrence and development of LUAD.
Collapse
Affiliation(s)
- Xiyong Wang
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing 314000, People's Republic of China
| | - Huaiqing Xiao
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing 314000, People's Republic of China
| | - Dongqiang Wu
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing 314000, People's Republic of China
| | - Dongliang Zhang
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing 314000, People's Republic of China
| | - Zhihao Zhang
- Department of Thoracic Surgery, China Coast Guard Hospital of the People's Armed Police Force, Jiaxing 314000, People's Republic of China
| |
Collapse
|
50
|
Zhang L, Makamure J, Zhao D, Liu Y, Guo X, Zheng C, Liang B. Bioinformatics analysis reveals meaningful markers and outcome predictors in HBV-associated hepatocellular carcinoma. Exp Ther Med 2020; 20:427-435. [PMID: 32537007 PMCID: PMC7281962 DOI: 10.3892/etm.2020.8722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of malignant neoplasm of the liver with high morbidity and mortality. Extensive research into the pathology of HCC has been performed; however, the molecular mechanisms underlying the development of hepatitis B virus-associated HCC have remained elusive. Thus, the present study aimed to identify critical genes and pathways associated with the development and progression of HCC. The expression profiles of the GSE121248 dataset were downloaded from the Gene Expression Omnibus database and the differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) analyses were performed by using the Database for Annotation, Visualization and Integrated Discovery. Subsequently, protein-protein interaction (PPI) networks were constructed for detecting hub genes. In the present study, 1,153 DEGs (777 upregulated and 376 downregulated genes) were identified and the PPI network yielded 15 hub genes. GO analysis revealed that the DEGs were primarily enriched in ‘protein binding’, ‘cytoplasm’ and ‘extracellular exosome’. KEGG analysis indicated that DEGs were accumulated in ‘metabolic pathways’, ‘chemical carcinogenesis’ and ‘fatty acid degradation’. After constructing the PPI network, cyclin-dependent kinase 1, cyclin B1, cyclin A2, mitotic arrest deficient 2 like 1, cyclin B2, DNA topoisomerase IIα, budding uninhibited by benzimidazoles (BUB)1, TTK protein kinase, non-SMC condensin I complex subunit G, NDC80 kinetochore complex component, aurora kinase A, kinesin family member 11, cell division cycle 20, BUB1B and abnormal spindle microtubule assembly were identified as hub genes based on the high degree of connectivity by using Cytoscape software. In addition, overall survival (OS) and disease-free survival (DFS) analyses were performed using the Gene Expression Profiling Interactive Analysis online database, which revealed that the increased expression of all hub genes were associated with poorer OS and DFS outcomes. Receiver operating characteristic curves were constructed using GraphPad prism 7.0 software. The results confirmed that 15 hub genes were able to distinguish HCC form normal tissues. Furthermore, the expression levels of three key genes were analyzed in tumor and normal samples of the Human Protein Atlas database. The present results may provide further insight into the underlying mechanisms of HCC and potential therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Joyman Makamure
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dan Zhao
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yiming Liu
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaopeng Guo
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chuansheng Zheng
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bin Liang
- Department of Radiology, Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|