1
|
Liu J, Zhou T, Bao Y, Lin C, Chen Q, Dai Y, Zhang N, Pan W, Jin Q, Lu L, Zhao Q, Ling T, Wu L. Identification of senescence-related genes for potential therapeutic biomarkers of atrial fibrillation by bioinformatics, human histological validation, and molecular docking. Heliyon 2024; 10:e37366. [PMID: 39381104 PMCID: PMC11456832 DOI: 10.1016/j.heliyon.2024.e37366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Background Cellular senescence is pivotal in the occurrence and progression of atrial fibrillation (AF). This study aimed to identify senescence-related genes that could be potential therapeutic biomarkers for AF. Methods AF-related differentially expressed genes (DEGs) were identified using the Gene Expression Omnibus dataset. Weighted gene co-expression network analysis (WGCNA) was used to analyze important modules and potential hub genes. Integrating senescence-related genes, potential biomarkers were identified. Their differential expression levels were then validated in human atrial tissue, HL-1 cells, and Angiotensin II-infused mice. Finally, molecular docking analysis was conducted to predict potential interactions between potential biomarkers and the senolytic drug Navitoclax. Results We identified seven genes common to AF-related DEGs and senescence-related genes. Three significant modules were selected from WGCNA analysis. Taken together, three senescence-related genes (ETS1, SP1, and WT1) were found to be significantly associated with AF. Protein-protein interaction network analysis revealed biological connections among the predicted target genes of ETS1, SP1, and WT1. Notably, ETS1, SP1, and WT1 exhibited significant differential expression in clinical samples as well as in vitro and in vivo models. Molecular docking revealed favorable binding affinity between senolytic Navitoclax and these potential biomarkers. Conclusions This study highlights ETS1, SP1, and WT1 as crucial senescence-related genes associated with AF, offering potential therapeutic targets, with supportive evidence of binding affinity with senolytic Navitoclax. These findings provide novel insights into AF pathogenesis from a senescence perspective.
Collapse
Affiliation(s)
- Jingmeng Liu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Taojie Zhou
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangyang Bao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Changjian Lin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiujing Chen
- Institute of Cardiovascular Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Dai
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Cardiovascular Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ning Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenqi Pan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Jin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Cardiovascular Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianyou Ling
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liqun Wu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
2
|
Gao P, Gao X, Xie B, Tse G, Liu T. Aging and atrial fibrillation: A vicious circle. Int J Cardiol 2024; 395:131445. [PMID: 37848123 DOI: 10.1016/j.ijcard.2023.131445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Atrial fibrillation (AF) is the commonest sustained cardiac arrhythmia observed in clinical practice. Its prevalence increases dramatically with advancing age. This review article discusses the recent advances in studies investigating the relationship between aging and AF and the possible underlying mechanisms.
Collapse
Affiliation(s)
- Pan Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinyi Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
3
|
Zhou Y, Sun C, Ma Y, Huang Y, Wu K, Huang S, Lin Q, Zhu J, Ning Z, Liu N, Tu T, Liu Q. Identification and validation of aging-related genes in atrial fibrillation. PLoS One 2023; 18:e0294282. [PMID: 37956134 PMCID: PMC10642816 DOI: 10.1371/journal.pone.0294282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in the clinic. Aging plays an essential role in the occurrence and development of AF. Herein, we aimed to identify the aging-related genes associated with AF using bioinformatics analysis. Transcriptome profiles of AF were obtained from the GEO database. Differential expression analysis was performed to identify AF-specific aging-related genes. GO and KEGG enrichment analyses were performed. Subsequently, the LASSO, SVM-RFE, and MCC algorithms were applied to screen aging-related genes. The mRNA expression of the screened genes was validated in the left atrial samples of aged rapid atrial pacing-induced AF canine models and their counterparts. The ROC curves of them were drawn to evaluate their diagnostic potential. Moreover, CIBERSORT was used to estimate immune infiltration. A correlation analysis between screened aging-related genes and infiltrating immune cells was performed. A total of 24 aging-related genes were identified, which were found to be mainly involved in the FoxO signaling pathway, PI3K-Akt signaling pathway, longevity regulating pathway, and peroxisome according to functional enrichment analysis. LASSO, SVM-RFE, and MCC algorithms identified three genes (HSPA9, SOD2, TXN). Furthermore, the expression levels of HSPA9 and SOD2 were validated in aged rapid atrial pacing-induced AF canine models. HSPA9 and SOD2 could be potential diagnostic biomarkers for AF, as evidenced by the ROC curves. Immune infiltration and correlation analysis revealed that HSPA9 and SOD2 were related to immune cell infiltrates. Collectively, these findings provide novel insights into the potential aging-related genes associated with AF. HSPA9 and SOD2 may play a significant role in the occurrence and development of AF.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Chao Sun
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yingxu Ma
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yunyin Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Keke Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Shengyuan Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Qiuzhen Lin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Jiayi Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Zuodong Ning
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Ningyuan Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Tao Tu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
4
|
Senescent cardiac fibroblasts: A key role in cardiac fibrosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166642. [PMID: 36669578 DOI: 10.1016/j.bbadis.2023.166642] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Cardiac fibroblasts are a cell population that controls the homeostasis of the extracellular matrix and orchestrates a damage response to maintain cardiac architecture and performance. Due to these functions, fibroblasts play a central role in cardiac fibrosis development, and there are large differences in matrix protein secretion profiles between fibroblasts from aged versus young animals. Senescence is a multifactorial and complex process that has been associated with inflammatory and fibrotic responses. After damage, transient cellular senescence is usually beneficial, as these cells promote tissue repair. However, the persistent presence of senescent cells within a tissue is linked with fibrosis development and organ dysfunction, leading to aging-related diseases such as cardiovascular pathologies. In the heart, early cardiac fibroblast senescence after myocardial infarction seems to be protective to avoid excessive fibrosis; however, in non-infarcted models of cardiac fibrosis, cardiac fibroblast senescence has been shown to be deleterious. Today, two new classes of drugs, termed senolytics and senostatics, which eliminate senescent cells or modify senescence-associated secretory phenotype, respectively, arise as novel therapeutical strategies to treat aging-related pathologies. However, further studies will be needed to evaluate the extent of the utility of senotherapeutic drugs in cardiac diseases, in which pathological context and temporality of the intervention must be considered.
Collapse
|
5
|
Pellegrini CN, Buzkova P, Oesterle A, Heckbert SR, Tracy RP, Siscovick DS, Mukamal KJ, Djoussé L, Kizer JR. Dysregulated carbohydrate and lipid metabolism and risk of atrial fibrillation in advanced old age. Heart 2023; 109:606-611. [PMID: 36549682 PMCID: PMC10285028 DOI: 10.1136/heartjnl-2022-321633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Obesity and dysmetabolism are major risk factors for atrial fibrillation (AF). Fasting and postload levels of glucose and non-esterified fatty acids (NEFAs) reflect different facets of metabolic regulation. We sought to study their respective contributions to AF risk concurrently. METHODS We assessed levels of fasting and postload glucose and NEFA in the Cardiovascular Health Study to identify associations with AF incidence and, secondarily, with ECG parameters of AF risk available at baseline. Linear and Cox regressions were performed. RESULTS The study included 1876 participants (age 77.7±4.4). During the median follow-up of 11.4 years, 717 cases of incident AF occurred. After adjustment for potential confounders, postload glucose showed an association with incident AF (HR per SD increment of postload glucose=1.11, 95% CI 1.02 to 1.21, p=0.017). Both glucose measures, but not NEFA, were positively associated with higher P wave terminal force in V1 (PTFV1); the association remained significant only for postload glucose when the two measures were entered together (β per SD increment=138 μV·ms, 95% CI 15 to 260, p=0.028). Exploratory analyses showed significant interaction by sex for fasting NEFA (pinteraction=0.044) and postload glucose (pinteraction=0.015) relative to AF, with relationships stronger in women. For postload glucose, the association with incident AF was observed among women but not among men. CONCLUSIONS Among older adults, postload glucose was positively associated with incident AF, with consistent findings for PTFV1. In exploratory analyses, the relationship with AF appeared specific to women. These findings require further study but suggest that interventions to address postprandial dysglycaemia late in life might reduce AF.
Collapse
Affiliation(s)
- Cara N Pellegrini
- Medical Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Petra Buzkova
- Biostatics, University of Washington, Seattle, Washington, USA
| | - Adam Oesterle
- Medical Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Russell P Tracy
- Pathology and Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - David S Siscovick
- Medicine and Epidemiology, New York Academy of Medicine, New York, New York, USA
| | - Kenneth J Mukamal
- Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Luc Djoussé
- Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jorge R Kizer
- Medical Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Fossel M, Bean J, Khera N, Kolonin MG. A Unified Model of Age-Related Cardiovascular Disease. BIOLOGY 2022; 11:1768. [PMID: 36552277 PMCID: PMC9775230 DOI: 10.3390/biology11121768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Despite progress in biomedical technologies, cardiovascular disease remains the main cause of mortality. This is at least in part because current clinical interventions do not adequately take into account aging as a driver and are hence aimed at suboptimal targets. To achieve progress, consideration needs to be given to the role of cell aging in disease pathogenesis. We propose a model unifying the fundamental processes underlying most age-associated cardiovascular pathologies. According to this model, cell aging, leading to cell senescence, is responsible for tissue changes leading to age-related cardiovascular disease. This process, occurring due to telomerase inactivation and telomere attrition, affects all components of the cardiovascular system, including cardiomyocytes, vascular endothelial cells, smooth muscle cells, cardiac fibroblasts, and immune cells. The unified model offers insights into the relationship between upstream risk factors and downstream clinical outcomes and explains why interventions aimed at either of these components have limited success. Potential therapeutic approaches are considered based on this model. Because telomerase activity can prevent and reverse cell senescence, telomerase gene therapy is discussed as a promising intervention. Telomerase gene therapy and similar systems interventions based on the unified model are expected to be transformational in cardiovascular medicine.
Collapse
Affiliation(s)
| | - Joe Bean
- University of Missouri School of Medicine, Kansas City, MO 65211, USA
| | - Nina Khera
- Buckingham Browne and Nichols School, Wellesley, MA 02138, USA
| | - Mikhail G. Kolonin
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
7
|
Myers SJ, Jiménez-Ruiz A, Sposato LA, Whitehead SN. Atrial cardiopathy and cognitive impairment. Front Aging Neurosci 2022; 14:914360. [PMID: 35942230 PMCID: PMC9355976 DOI: 10.3389/fnagi.2022.914360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cognitive impairment involves complex interactions between multiple pathways and mechanisms, one of which being cardiac disorders. Atrial cardiopathy (AC) is a structural and functional disorder of the left atrium that may be a substrate for other cardiac disorders such as atrial fibrillation (AF) and heart failure (HF). The association between AF and HF and cognitive decline is clear; however, the relationship between AC and cognition requires further investigation. Studies have shown that several markers of AC, such as increased brain natriuretic peptide and left atrial enlargement, are associated with an increased risk for cognitive impairment. The pathophysiology of cognitive decline in patients with AC is not yet well understood. Advancing our understanding of the relationship between AC and cognition may point to important treatable targets and inform future therapeutic advancements. This review presents our current understanding of the diagnosis of AC, as well as clinical characteristics and potential pathways involved in the association between AC and cognitive impairment.
Collapse
Affiliation(s)
- Sarah J. Myers
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Amado Jiménez-Ruiz
- Department of Clinical Neurological Sciences, University Hospital, Western University, London, ON, Canada
| | - Luciano A. Sposato
- Department of Clinical Neurological Sciences, University Hospital, Western University, London, ON, Canada
| | - Shawn N. Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- *Correspondence: Shawn N. Whitehead,
| |
Collapse
|
8
|
Shen YY, Zhang RR, Liu QY, Li SY, Yi S. Robust temporal changes of cellular senescence and proliferation after sciatic nerve injury. Neural Regen Res 2022; 17:1588-1595. [PMID: 34916445 PMCID: PMC8771116 DOI: 10.4103/1673-5374.330619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/28/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence and proliferation are essential for wound healing and tissue remodeling. However, senescence-proliferation cell fate after peripheral nerve injury has not been clearly revealed. Here, post-injury gene expression patterns in rat sciatic nerve stumps (SRP113121) and L4-5 dorsal root ganglia (SRP200823) obtained from the National Center for Biotechnology Information were analyzed to decipher cellular senescence and proliferation-associated genetic changes. We first constructed a rat sciatic nerve crush model. Then, β-galactosidase activities were determined to indicate the existence of cellular senescence in the injured sciatic nerve. Ki67 and EdU immunostaining was performed to indicate cellular proliferation in the injured sciatic nerve. Both cellular senescence and proliferation were less vigorous in the dorsal root ganglia than in sciatic nerve stumps. These results reveal the dynamic changes of injury-induced cellular senescence and proliferation from both genetic and morphological aspects, and thus extend our understanding of the biological processes following peripheral nerve injury. The study was approved by the Animal Ethics Committee of Nantong University, China (approval No. 20190226-001) on February 26, 2019.
Collapse
Affiliation(s)
- Yin-Ying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Rui-Rui Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Qian-Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Shi-Ying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
9
|
Sun C, Huang Z, Qin H, Zhang J, Wang S, Xu X, Ying S, Mao G. Exposure to 10 Hz Pulsed Magnetic Fields Do Not Induce Cellular Senescence in Human Fetal Lung Fibroblasts. Front Public Health 2021; 9:761069. [PMID: 34858933 PMCID: PMC8632261 DOI: 10.3389/fpubh.2021.761069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Rapid population aging has led to a global burden of late-life diseases. As the largest risk factor for a multitude of age-related diseases, aging is not only the result of genotype but also closely related to external factors. With the rapid expansion in the usage of electromagnetic fields (EMFs), the effect of EMFs on aging has also attracted attention. Cells are the basic unit of organs and body tissues, and cellular senescence plays an important role in the aging process. The effect of EMFs on cellular senescence has been investigated in a few studies, but the information is limited, and the results are inconsistent; thus, further investigation is required. In this study, we investigated the effect of 10 Hz pulsed magnetic fields (MFs) on cellular senescence in a 2BS cell line, isolated from human fetal lung fibroblasts, and found that intermittent (1 d on/1 d off) exposure to 10 Hz pulsed MFs at 1.0 mT for 2 weeks induced DNA damage, but no other significant phenotype of cellular senescence in 2BS cells.
Collapse
Affiliation(s)
- Chuan Sun
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Zheng Huang
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Houbing Qin
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Shibo Ying
- Hangzhou Medical College, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
10
|
Tian J, Shi D, Zhang Y, Li X, Li X, Teng H, James TD, Li J, Guo Y. Stress response decay with aging visualized using a dual-channel logic-based fluorescent probe. Chem Sci 2021; 12:13483-13491. [PMID: 34777768 PMCID: PMC8528035 DOI: 10.1039/d1sc04162b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Diagnosing aging for preventative intervention generally relies on the tracking of aging biomarkers in the resting state. However, the static marker levels are insufficient to fully evaluate aging, particularly given that the stress response capacity (SRC) decay is currently viewed as a critical feature of aging. Therefore, we have developed a dual-channel fluorescent probe ROKS capable of the logic-based visualization of thiophenol (stressor) and HOCl (thiophenol-activated stress response product) in vivo, which provides a new strategy from the time dimension to precisely assess the SRC of individuals under stress using the dual-channel fluorescence ratio. Using ROKS we observed that the SRC of live cells decayed with senescence, and that a higher SRC was found for young vs. aged Caenorhabditis elegans. As such, our study offers a promising strategy for the fluorescence-guided diagnosis of aging and paves the way for accurate evaluation of the efficacy of anti-aging drugs. Rather than tracking aging using the resting state, ROKS, an optical probe, was developed for evaluating the degree of aging dynamically by precisely monitoring the stress response of individuals under stress.![]()
Collapse
Affiliation(s)
- Jingye Tian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
| | - Donglei Shi
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology 130 Mei Long Road Shanghai 200237 China
| | - Yanhui Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology 130 Mei Long Road Shanghai 200237 China
| | - Xinming Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology 130 Mei Long Road Shanghai 200237 China
| | - Hao Teng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Pharmacy, East China University of Science and Technology 130 Mei Long Road Shanghai 200237 China
| | - Yuan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
| |
Collapse
|