1
|
Mei T, Chen Y, Gao Y, Zhao H, Lyu X, Lin J, Niu T, Han H, Tong Z. Formaldehyde initiates memory and motor impairments under weightlessness condition. NPJ Microgravity 2024; 10:100. [PMID: 39468074 PMCID: PMC11519943 DOI: 10.1038/s41526-024-00441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
During space flight, prolonged weightlessness stress exerts a range of detrimental impacts on the physiology and psychology of astronauts. These manifestations encompass depressive symptoms, anxiety, and impairments in both short-term memory and motor functions, albeit the precise underlying mechanisms remain elusive. Recent studies have revealed that hindlimb unloading (HU) animal models, which simulate space weightlessness, exhibited a disorder in memory and motor function associated with endogenous formaldehyde (FA) accumulation in the hippocampus and cerebellum, disruption of brain extracellular space (ECS), and blockage of interstitial fluid (ISF) drainage. Notably, the impairment of the blood-brain barrier (BBB) caused by space weightlessness elicits the infiltration of albumin and hemoglobin from the blood vessels into the brain ECS. However, excessive FA has the potential to form cross-links between these two proteins and amyloid-beta (Aβ), thereby obstructing ECS and inducing neuron death. Moreover, FA can inhibit N-methyl-D-aspartate (NMDA) currents by crosslinking NR1 and NR2B subunits, thus impairing memory. Additionally, FA has the ability to modulate the levels of certain microRNAs (miRNAs) such as miRNA-29b, which can affect the expression of aquaporin-4 (AQP4) so as to regulate ECS structure and ISF drainage. Especially, the accumulation of FA may inactivate the ataxia telangiectasia-mutated (ATM) protein kinase by forming cross-linking, a process that is associated with ataxia. Hence, this review presents that weightlessness stress-derived FA may potentially serve as a crucial catalyst in the deterioration of memory and motor abilities in the context of microgravity.
Collapse
Affiliation(s)
- Tianhao Mei
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hang Zhao
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingzhou Lyu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Lin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen, China.
- University of Science and Technology of China, Anhui, China.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China.
- NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Tian Z, Huang K, Yang W, Chen Y, Lyv W, Zhu B, Yang X, Ma P, Tong Z. Exogenous and endogenous formaldehyde-induced DNA damage in the aging brain: mechanisms and implications for brain diseases. Cell Biol Toxicol 2024; 40:83. [PMID: 39367211 PMCID: PMC11452425 DOI: 10.1007/s10565-024-09926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
Exogenous gaseous formaldehyde (FA) is recognized as a significant indoor air pollutant due to its chemical reactivity and documented mutagenic and carcinogenic properties, particularly in its capacity to damage DNA and impact human health. Despite increasing attention on the adverse effects of exogenous FA on human health, the potential detrimental effects of endogenous FA in the brain have been largely neglected in current research. Endogenous FA have been observed to accumulate in the aging brain due to dysregulation in the expression and activity of enzymes involved in FA metabolism. Surprisingly, excessive FA have been implicated in the development of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and brain cancers. Notably, FA has the ability to not only initiate DNA double strand breaks but also induce the formation of crosslinks of DNA-DNA, DNA-RNA, and DNA-protein, which further exacerbate the progression of these brain diseases. However, recent research has identified that FA-resistant gene exonuclease-1 (EXO1) and FA scavengers can potentially mitigate FA toxicity, offering a promising strategy for mitigating or repairing FA-induced DNA damage. The present review offers novel insights into the impact of FA metabolism on brain ageing and the contribution of FA-damaged DNA to the progression of neurological disorders.
Collapse
Affiliation(s)
- Zixi Tian
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Kai Huang
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wanting Yang
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wanjia Lyv
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Beilei Zhu
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ping Ma
- Beijing Geriatric Hospital, Beijing, 100049, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, 100049, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
4
|
Rajendran K, Krishnan UM. Biomarkers in Alzheimer's disease. Clin Chim Acta 2024; 562:119857. [PMID: 38986861 DOI: 10.1016/j.cca.2024.119857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is among the most common neurodegenerative disorders. AD is characterized by deposition of neurofibrillary tangles and amyloid plaques, leading to associated secondary pathologies, progressive neurodegeneration, and eventually death. Currently used diagnostics are largely image-based, lack accuracy and do not detect early disease, ie, prior to onset of symptoms, thus limiting treatment options and outcomes. Although biomarkers such as amyloid-β and tau protein in cerebrospinal fluid have gained much attention, these are generally limited to disease progression. Unfortunately, identification of biomarkers for early and accurate diagnosis remains a challenge. As such, body fluids such as sweat, serum, saliva, mucosa, tears, and urine are under investigation as alternative sources for biomarkers that can aid in early disease detection. This review focuses on biomarkers identified through proteomics in various biofluids and their potential for early and accurate diagnosis of AD.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities, & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
5
|
Ma Q, Huo P, Wang K, Yuan Y, Bai S, Zhao C, Li W. Preparation of Perovskite-Type LaMnO 3 and Its Catalytic Degradation of Formaldehyde in Wastewater. Molecules 2024; 29:3822. [PMID: 39202902 PMCID: PMC11357681 DOI: 10.3390/molecules29163822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Formaldehyde (HCHO) is identified as the most toxic chemical among 45 organic compounds found in industrial wastewater, posing significant harm to both the environment and human health. In this study, a novel approach utilizing the Lanthanum-manganese complex oxide (LaMnO3)/peroxymonosulfate (PMS) system was proposed for the effective removal of HCHO from wastewater. Perovskite-Type LaMnO3 was prepared by sol-gel method. The chemical compositions and morphology of LaMnO3 samples were analyzed through thermogravimetric analysis (TG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The effects of LaMnO3 dosage, PMS concentration, HCHO concentration, and initial pH on the HCHO removal rate were investigated. When the concentration of HCHO is less than 1.086 mg/mL (5 mL), the dosage of LaMnO3 is 0.06 g, and n(PMS)/n(HCHO) = 2.5, the removal rate of HCHO is more than 96% in the range of pH = 5-13 at 25 °C for 10 min. Compared with single-component MnO2, the perovskite structure of LaMnO3 is beneficial to the catalytic degradation of HCHO by PMS. It is an efficient Fenton-like oxidation process for treating wastewater containing HCHO. The LaMnO3 promoted the formation of SO4•- and HO•, which sequentially oxidized HCHO to HCOOH and CO2.
Collapse
Affiliation(s)
- Qingguo Ma
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China; (P.H.); (K.W.); (Y.Y.); (S.B.); (C.Z.); (W.L.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Gao Y, Wang Y, Lu J, Lian J, Yang L, Liu J, Wang A, He Q, Han H. Dynamic changes in brain glymphatic function during preoperative chemotherapy in breast cancer patients. J Cancer Res Ther 2024; 20:1306-1313. [PMID: 39206993 DOI: 10.4103/jcrt.jcrt_517_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE The current study aimed to investigate the dynamic changes in brain glymphatic function during chemotherapy in breast cancer patients (BCP) and their correlation with cognitive function. MATERIALS AND METHODS A total of 40 healthy female participants (control group) and 80 female BCP were included. Various cognitive assessment tools were used to evaluate cognitive function. Diffusion tensor imaging along the perivascular space was employed to measure brain glymphatic function. RESULTS Following chemotherapy, BCP exhibited a significant decline in various cognitive scores. After chemotherapy, the along the perivascular space index, a parameter indicating brain glymphatic function, was slightly higher than that at baseline and the control group levels and was correlated with cognitive scores. CONCLUSION This study unveiled a close relationship between the dynamic changes in brain glymphatic function after chemotherapy and cognitive function in BCP. Our findings contribute to a deeper understanding of the brain mechanisms underlying chemotherapy-related cognitive impairment and provide a theoretical basis for future interventions and treatments. In addition, they offer a new perspective for exploring the relationship between brain function and cognitive states.
Collapse
Affiliation(s)
- Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Jiabin Lu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Jingge Lian
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Liu Yang
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Jing Liu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Aibo Wang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qingyuan He
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
7
|
Zhu Y, Li M, Wang H, Yang F, Du R, Pang X, Bai J, Huang X. Mendelian Randomization Identifies Genetically Supported Drug Targets for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Mol Neurobiol 2024; 61:3809-3818. [PMID: 38019415 DOI: 10.1007/s12035-023-03817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023]
Abstract
Currently, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have no effective treatments. Drug repurposing offers a rapid method to meet therapeutic need for ALS and FTD. To identify therapeutic targets associated with ALS and FTD, Mendelian randomization (MR) analysis and colocalization were performed. Genetic instruments were based on transcriptomic and proteomic data for 422 actionable proteins targeted by approved drugs or clinical drug candidates. The publicly available ALS GWAS summary data (including a total of 20,806 ALS cases and 59,804 controls) and FTD GWAS summary data (including a total of 2154 patients with FTD and 4308 controls) were used. Using cis-expression quantitative trait loci and cis-protein quantitative trait loci genetic instruments, we identified several drug targets for repurposing (ALS: MARK3, false-discovery rate (FDR) = 0.043; LTBR, FDR = 0.068) (FTD: HLA-DRB1, FDR = 0.083; ADH5, FDR = 0.056). Our MR study analyzed the actionable druggable proteins and provided potential therapeutic targets for ALS and FTD. Future studies should further elucidate the underlying mechanism of corresponding drug targets in the pathogenesis of ALS and FTD.
Collapse
Affiliation(s)
- Yahui Zhu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mao Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongfen Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fei Yang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - RongRong Du
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Medicine, Nankai University, Tianjin, China
| | - Xinyuan Pang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Medicine, Nankai University, Tianjin, China
| | - Jiongming Bai
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Medicine, Nankai University, Tianjin, China
| | - Xusheng Huang
- Medical School of Chinese PLA, Beijing, China.
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
8
|
Kisby GE, Wilson DM, Spencer PS. Introducing the Role of Genotoxicity in Neurodegenerative Diseases and Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:7221. [PMID: 39000326 PMCID: PMC11241460 DOI: 10.3390/ijms25137221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Decades of research have identified genetic and environmental factors involved in age-related neurodegenerative diseases and, to a lesser extent, neuropsychiatric disorders. Genomic instability, i.e., the loss of genome integrity, is a common feature among both neurodegenerative (mayo-trophic lateral sclerosis, Parkinson's disease, Alzheimer's disease) and psychiatric (schizophrenia, autism, bipolar depression) disorders. Genomic instability is associated with the accumulation of persistent DNA damage and the activation of DNA damage response (DDR) pathways, as well as pathologic neuronal cell loss or senescence. Typically, DDR signaling ensures that genomic and proteomic homeostasis are maintained in both dividing cells, including neural progenitors, and post-mitotic neurons. However, dysregulation of these protective responses, in part due to aging or environmental insults, contributes to the progressive development of neurodegenerative and/or psychiatric disorders. In this Special Issue, we introduce and highlight the overlap between neurodegenerative diseases and neuropsychiatric disorders, as well as the emerging clinical, genomic, and molecular evidence for the contributions of DNA damage and aberrant DNA repair. Our goal is to illuminate the importance of this subject to uncover possible treatment and prevention strategies for relevant devastating brain diseases.
Collapse
Affiliation(s)
- Glen E. Kisby
- Department of Biomedical Sciences, College of Osteopathic Medicine of Pacific Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - David M. Wilson
- Biomedical Research Institute, BIOMED, Hasselt University, 3500 Hasselt, Belgium;
| | - Peter S. Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University (OHSU), Portland, OR 97239, USA
| |
Collapse
|
9
|
Chen G, Yu J, Wu L, Ji X, Xu J, Wang C, Ma S, Miao Q, Wang L, Wang C, Lewis SE, Yue Y, Sun Z, Liu Y, Tang B, James TD. Fluorescent small molecule donors. Chem Soc Rev 2024; 53:6345-6398. [PMID: 38742651 PMCID: PMC11181996 DOI: 10.1039/d3cs00124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Indexed: 05/16/2024]
Abstract
Small molecule donors (SMDs) play subtle roles in the signaling mechanism and disease treatments. While many excellent SMDs have been developed, dosage control, targeted delivery, spatiotemporal feedback, as well as the efficiency evaluation of small molecules are still key challenges. Accordingly, fluorescent small molecule donors (FSMDs) have emerged to meet these challenges. FSMDs enable controllable release and non-invasive real-time monitoring, providing significant advantages for drug development and clinical diagnosis. Integration of FSMDs with chemotherapeutic, photodynamic or photothermal properties can take full advantage of each mode to enhance therapeutic efficacy. Given the remarkable properties and the thriving development of FSMDs, we believe a review is needed to summarize the design, triggering strategies and tracking mechanisms of FSMDs. With this review, we compiled FSMDs for most small molecules (nitric oxide, carbon monoxide, hydrogen sulfide, sulfur dioxide, reactive oxygen species and formaldehyde), and discuss recent progress concerning their molecular design, structural classification, mechanisms of generation, triggered release, structure-activity relationships, and the fluorescence response mechanism. Firstly, from the large number of fluorescent small molecular donors available, we have organized the common structures for producing different types of small molecules, providing a general strategy for the development of FSMDs. Secondly, we have classified FSMDs in terms of the respective donor types and fluorophore structures. Thirdly, we discuss the mechanisms and factors associated with the controlled release of small molecules and the regulation of the fluorescence responses, from which universal guidelines for optical properties and structure rearrangement were established, mainly involving light-controlled, enzyme-activated, reactive oxygen species-triggered, biothiol-triggered, single-electron reduction, click chemistry, and other triggering mechanisms. Fourthly, representative applications of FSMDs for trackable release, and evaluation monitoring, as well as for visible in vivo treatment are outlined, to illustrate the potential of FSMDs in drug screening and precision medicine. Finally, we discuss the opportunities and remaining challenges for the development of FSMDs for practical and clinical applications, which we anticipate will stimulate the attention of researchers in the diverse fields of chemistry, pharmacology, chemical biology and clinical chemistry. With this review, we hope to impart new understanding thereby enabling the rapid development of the next generation of FSMDs.
Collapse
Affiliation(s)
- Guang Chen
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Jing Yu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Xinrui Ji
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Jie Xu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chao Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Siyue Ma
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Qing Miao
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Linlin Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Chen Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Yanfeng Yue
- Department of Chemistry, Delaware State University, Dover, DE, 19901, USA.
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Yuxia Liu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
10
|
Wang K, Kim N, Bagherian M, Li K, Chou E, Colacino JA, Dolinoy DC, Sartor MA. Gene Target Prediction of Environmental Chemicals Using Coupled Matrix-Matrix Completion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5889-5898. [PMID: 38501580 PMCID: PMC11131040 DOI: 10.1021/acs.est.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Human exposure to toxic chemicals presents a huge health burden. Key to understanding chemical toxicity is knowledge of the molecular target(s) of the chemicals. Because a comprehensive safety assessment for all chemicals is infeasible due to limited resources, a robust computational method for discovering targets of environmental exposures is a promising direction for public health research. In this study, we implemented a novel matrix completion algorithm named coupled matrix-matrix completion (CMMC) for predicting direct and indirect exposome-target interactions, which exploits the vast amount of accumulated data regarding chemical exposures and their molecular targets. Our approach achieved an AUC of 0.89 on a benchmark data set generated using data from the Comparative Toxicogenomics Database. Our case studies with bisphenol A and its analogues, PFAS, dioxins, PCBs, and VOCs show that CMMC can be used to accurately predict molecular targets of novel chemicals without any prior bioactivity knowledge. Our results demonstrate the feasibility and promise of computationally predicting environmental chemical-target interactions to efficiently prioritize chemicals in hazard identification and risk assessment.
Collapse
Affiliation(s)
- Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicole Kim
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maryam Bagherian
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Li
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elysia Chou
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Zhao D, Wu Y, Zhao H, Zhang F, Wang J, Liu Y, Lin J, Huang Y, Pan W, Qi J, Chen N, Yang X, Xu W, Tong Z, Cheng J. Midbrain FA initiates neuroinflammation and depression onset in both acute and chronic LPS-induced depressive model mice. Brain Behav Immun 2024; 117:356-375. [PMID: 38320681 DOI: 10.1016/j.bbi.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024] Open
Abstract
Both exogenous gaseous and liquid forms of formaldehyde (FA) can induce depressive-like behaviors in both animals and humans. Stress and neuronal excitation can elicit brain FA generation. However, whether endogenous FA participates in depression occurrence remains largely unknown. In this study, we report that midbrain FA derived from lipopolysaccharide (LPS) is a direct trigger of depression. Using an acute depressive model in mice, we found that one-week intraperitoneal injection (i.p.) of LPS activated semicarbazide-sensitive amine oxidase (SSAO) leading to FA production from the midbrain vascular endothelium. In both in vitro and in vivo experiments, FA stimulated the production of cytokines such as IL-1β, IL-6, and TNF-α. Strikingly, one-week microinfusion of FA as well as LPS into the midbrain dorsal raphe nucleus (DRN, a 5-HT-nergic nucleus) induced depressive-like behaviors and concurrent neuroinflammation. Conversely, NaHSO3 (a FA scavenger), improved depressive symptoms associated with a reduction in the levels of midbrain FA and cytokines. Moreover, the chronic depressive model of mice injected with four-week i.p. LPS exhibited a marked elevation in the levels of midbrain LPS accompanied by a substantial increase in the levels of FA and cytokines. Notably, four-week i.p. injection of FA as well as LPS elicited cytokine storm in the midbrain and disrupted the blood-brain barrier (BBB) by activating microglia and reducing the expression of claudin 5 (CLDN5, a protein with tight junctions in the BBB). However, the administration of 30 nm nano-packed coenzyme-Q10 (Q10, an endogenous FA scavenger), phototherapy (PT) utilizing 630-nm red light to degrade FA, and the combination of PT and Q10, reduced FA accumulation and neuroinflammation in the midbrain. Moreover, the combined therapy exhibited superior therapeutic efficacy in attenuating depressive symptoms compared to individual treatments. Thus, LPS-derived FA directly initiates depression onset, thereby suggesting that scavenging FA represents a promising strategy for depression treatment.
Collapse
Affiliation(s)
- Danrui Zhao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Yiqing Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Hang Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Fengji Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Junting Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Yiying Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Jing Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Yirui Huang
- Department of Clinical Laboratory, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, China
| | - Wenhao Pan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Jiahui Qi
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China
| | - Nan Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xu Yang
- Xianning Medical College, Hubei University of Science and Technology 437100, Hubei, China.
| | - Wen Xu
- School of Basic Medicine, Wenzhou Medical University, Wenzhou 325035, China.
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China.
| | - Jianhua Cheng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035. China.
| |
Collapse
|
12
|
Lee A, Henderson R, Aylward J, McCombe P. Gut Symptoms, Gut Dysbiosis and Gut-Derived Toxins in ALS. Int J Mol Sci 2024; 25:1871. [PMID: 38339149 PMCID: PMC10856138 DOI: 10.3390/ijms25031871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Many pathogenetic mechanisms have been proposed for amyotrophic lateral sclerosis (ALS). Recently, there have been emerging suggestions of a possible role for the gut microbiota. Gut microbiota have a range of functions and could influence ALS by several mechanisms. Here, we review the possible role of gut-derived neurotoxins/excitotoxins. We review the evidence of gut symptoms and gut dysbiosis in ALS. We then examine a possible role for gut-derived toxins by reviewing the evidence that these molecules are toxic to the central nervous system, evidence of their association with ALS, the existence of biochemical pathways by which these molecules could be produced by the gut microbiota and existence of mechanisms of transport from the gut to the blood and brain. We then present evidence that there are increased levels of these toxins in the blood of some ALS patients. We review the effects of therapies that attempt to alter the gut microbiota or ameliorate the biochemical effects of gut toxins. It is possible that gut dysbiosis contributes to elevated levels of toxins and that these could potentially contribute to ALS pathogenesis, but more work is required.
Collapse
Affiliation(s)
- Aven Lee
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
| | - Robert Henderson
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - James Aylward
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - Pamela McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| |
Collapse
|
13
|
Zhu N, Zhu J, Lin S, Yu H, Cao C. Correlation analysis between smoke exposure and serum neurofilament light chain in adults: a cross-sectional study. BMC Public Health 2024; 24:353. [PMID: 38308244 PMCID: PMC10835908 DOI: 10.1186/s12889-024-17811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Smoke exposure is a prevalent and well-documented risk factor for various diseases across different organ systems. Serum neurofilament light chain (sNfL) has emerged as a promising biomarker for a multitude of nervous system disorders. However, there is a notable paucity of research exploring the associations between smoke exposure and sNfL levels. METHODS We conducted a comprehensive analysis of the National Health and Nutrition Examination Survey (NHANES) cross-sectional data spanning the years 2013 to 2014. Serum cotinine levels were classified into the following three groups: < 0.05, 0.05-2.99, and ≥ 3 ng/ml. Multiple linear regression models were employed to assess the relationships between serum cotinine levels and sNfL levels. Additionally, we utilized restricted cubic spline analyses to elucidate the potential nonlinear relationship between serum cotinine and sNfL levels. RESULTS A total of 2053 participants were included in our present research. Among these individuals, the mean age was 47.04 ± 15.32 years, and males accounted for 48.2% of the total study population. After adjusting the full model, serum cotinine was positively correlated with sNfl in the second group (β = 0.08, 95%CI 0.01-0.15) and in the highest concentration of serum cotinine (β = 0.10, 95%CI 0.01-0.19) compared to the group with the lowest serum cotinine concentrations. Current smokers, in comparison to non-smokers, exhibited a trend toward elevated sNfL levels (β = 0.07, 95%CI 0.01-0.13). Furthermore, subgroup analyses revealed interactions between serum cotinine levels and different age groups (P for interaction = 0.001) and gender stratification (P for interaction = 0.015) on sNfL levels. CONCLUSION The study suggested that serum cotinine was significantly and positively associated with sNfl levels in adult participants. Furthermore, current smokers tend to exhibit elevated sNfL levels. This research sheds light on the potential implications of smoke exposure on neurological function impairment and underscores the importance of further exploration in this area.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, 315010, Ningbo, Zhejiang, China
| | - Jing Zhu
- Department of Cardiology, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, China
| | - Shanhong Lin
- Department of Ultrasound, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Hang Yu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, 315010, Ningbo, Zhejiang, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, 315010, Ningbo, Zhejiang, China.
| |
Collapse
|
14
|
Gu Z, Zhao H, Song Y, Kou Y, Yang W, Li Y, Li X, Ding L, Sun Z, Lin J, Wang Q, Li X, Yang X, Huang X, Yang C, Tong Z. PEGylated-liposomal astaxanthin ameliorates Aβ neurotoxicity and Alzheimer-related phenotypes by scavenging formaldehyde. J Control Release 2024; 366:783-797. [PMID: 38242211 DOI: 10.1016/j.jconrel.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Alzheimer's disease (AD), which is a prevailing type of dementia, presents a significant global health concern. The current therapies do not meet clinical expectations. Amyloid-beta (Aβ) has been found to induce endogenous formaldehyde (FA) accumulation by inactivating FA dehydrogenase (FDH); in turn, excessive FA triggers Aβ aggregation that eventually leads to AD onset. Hence, scavenging FA by astaxanthin (ATX, a strong exogenous antioxidant) may be pursued as a promising disease-modifying approach. Here, we report that liposomal nanoparticles coupled with PEG (PEG-ATX@NPs) could enhance water-solubility of ATX and alleviate cognitive impairments by scavenging FA and reducing Aβ deposition. To enable drug delivery to the brain, liposomes were used to encapsulate ATX and then coupled with PEG, which produced liposomal nanoparticles (PEGATX@NPs) with a diameter of <100 nm. The PEG-ATX@NPs reduced Aβ neurotoxicity by both degrading FA and reducing FA-induced Aβ assembly in vitro. Intraperitoneal administration of PEG-ATX@NPs in APPswe/PS1dE9 mice (APP/PS1, a familial model of AD), not only decreased the levels of brain FA and malondialdehyde (MDA, a typical product of oxidative stress), but also attenuated both intracellular Aβ oligomerization and extracellular Aβ-related senile plaque (SP) formation. These pathological changes were accompanied by rescued ability of spatial learning and memory. Collectively, PEG-ATX@NPs improved the water-solubility, bioavailability, and effectiveness of ATX. Thus, it has the potential to be developed as a safe and effective strategy for treating AD.
Collapse
Affiliation(s)
- Ziqi Gu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hang Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yilan Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yiduo Kou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wanting Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ye Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiang Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ling Ding
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zihui Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Department of Neurology, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China
| | - Jing Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qi Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xi Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xu Yang
- Xianning Medical College, Hubei University of Science and Technology, 437100, Hubei, China.
| | - Xuerong Huang
- Department of Neurology, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China.
| | - Chuang Yang
- Department of Psychiatry, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
15
|
Yuan X, Chen R, Luo G, Sun P, Song X, Ma J, Sun R, Yu T, Jiang Z. Role and mechanism of miR-871-3p/Megf8 in regulating formaldehyde-induced cardiomyocyte inflammation and congenital heart disease. Int Immunopharmacol 2024; 126:111297. [PMID: 38039718 DOI: 10.1016/j.intimp.2023.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE AND DESIGN We aimed to investigate the molecular mechanism underlying formaldehyde (FA)-induced congenital heart disease (CHD) using in vitro and in vivo models. MATERIALS AND SUBJECTS Neonatal rat heart tissues and H9C2 cells were used for in vitro studies, while FA-exposed new-born rats were used for in vivo studies. TREATMENT H9C2 cells were exposed to FA concentrations of 0, 50, 100 and 150 μM/mL for 24 h. METHODS Whole transcriptome gene sequencing identified differentially expressed miRNAs in neonatal rat heart tissues, while Real-time quantitative PCR (RT-qPCR) assessed miR-871-3p and Megf8 expression. RNA pull-down and dual-luciferase reporter assays determined miR-871-3p and Megf8 relationships. Inflammatory cytokine expression was assessed by western blotting. A FA-induced CHD model was used to validate miR-871-3p regulatory effects in vivo. RESULTS We identified 89 differentially expressed miRNAs, with 28 up-regulated and 61 down-regulated (fold change ≥ 2.0, P < 0.05). Inflammation (interleukin) and signalling pathways were found to control FA-induced cardiac dysplasia. miR-871-3p was upregulated in FA-exposed heart tissues, modulated inflammation, and directly targeted Megf8. In vivo experiments showed miR-871-3p knockdown inhibited FA-induced inflammation and CHD. CONCLUSION We demonstrated miR-871-3p's role in FA-induced CHD by targeting Megf8, providing potential targets for CHD intervention and improved diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Xiaoli Yuan
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong Province, People's Republic of China
| | - Rui Chen
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao 266034, Shandong Province, People's Republic of China
| | - Gang Luo
- Heart Center, Women and Children's Hospital, Qingdao University, Qingdao 266034, Shandong Province, People's Republic of China
| | - Pin Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong Province, People's Republic of China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong Province, People's Republic of China
| | - Jianmin Ma
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong Province, People's Republic of China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong Province, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong Province, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, Shandong Province, People's Republic of China.
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong Province, People's Republic of China.
| |
Collapse
|
16
|
de Araújo ALS, Cavalcante CO, Lavorante AF, Silva WE, Belian MF. Fluorimetric determination of aqueous formaldehyde employing heating and ultrasound-assisted approach through its derivatization with a ß-diketone-nickel(2+) complex immobilized in a PMMA flow cell. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 310:123792. [PMID: 38244431 DOI: 10.1016/j.saa.2023.123792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024]
Abstract
Formaldehyde (FA) is a highly toxic substance present in many matrices, including freshwater as well as found in natural mechanisms such as rainfall and combustion of organic matter. Consumption of water contaminated with high levels of FA can cause severe short-term or long-term health problems. Due to these health risks, procedures are necessary to determine and quantify FA in aqua sources This paper reports on a study of fluorimetric determination of FA using a nickel(2 + )-diketonate coordination compound immobilized as a solid precursor. The compound was characterized by electronic absorption, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetry (TG), optical microscopy (OM), and scanner electron microscopy (SEM). The methodology was based on the reaction of the synthesized compound with an ammoniacal buffer generating a selective reagent for formaldehyde: fluoral-P. The product of the reaction generates 3,5-diacetyl-1,4-dihydrolutidine (DDL), which is responsible for the fluorescence of the system. Several parameters such as temperature, duration of heating time, and dilution effect with the best effects were studied to carry out FA determination. Under the optimum experimental conditions, a linear response ranging from 1.0 to 10.0 mg/L FA (R = 0.997 and n = 10), and a detection (3σ criterion) and quantification (10 σ criterion) limit estimated at 0.129 and 0.389 mg/L, respectively were achieved. The FA analysis was able to be conducted in 05 min with a relative standard deviation estimated at 1.10 %.
Collapse
Affiliation(s)
- Arthur L S de Araújo
- Department of Chemistry Federal Rural University of Pernambuco, UFRPE, Dom Manoel de Medeiros Street, S/N°, 52171-900, Recife, Pernambuco, Brazil
| | - Caroliny O Cavalcante
- Department of Fundamental Chemistry, Federal University of Pernambuco, UFPE, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Pernambuco, Brazil
| | - André F Lavorante
- Department of Chemistry Federal Rural University of Pernambuco, UFRPE, Dom Manoel de Medeiros Street, S/N°, 52171-900, Recife, Pernambuco, Brazil
| | - Wagner E Silva
- Department of Chemistry Federal Rural University of Pernambuco, UFRPE, Dom Manoel de Medeiros Street, S/N°, 52171-900, Recife, Pernambuco, Brazil
| | - Mônica F Belian
- Department of Chemistry Federal Rural University of Pernambuco, UFRPE, Dom Manoel de Medeiros Street, S/N°, 52171-900, Recife, Pernambuco, Brazil.
| |
Collapse
|
17
|
Shu Q, Ma H, Wang T, Wang P, Xu H. Formaldehyde promotes tumor-associated macrophage polarizations and functions through induction of HIF-1α-mediated glycolysis. Toxicol Lett 2023; 390:5-14. [PMID: 37944650 DOI: 10.1016/j.toxlet.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Formaldehyde (FA) exposure has been positively correlated with many diseases including various types of cancers. However, the mechanisms of FA-related carcinogenesis are still unclear. Tumor-associated macrophages (TAMs) are the most abundant immune cells in tumor microenvironment, which is a heterogeneous population consist of both pro-inflammatory (M1) and immunosuppressive (M2) cells. TAMs are deeply involved in tumor development and progression. Our previous studies demonstrated that FA enhanced M1 polarization of macrophages through induction of HIF-1α-mediated glycolysis. To examine if TAM polarizations are also potentiated by FA, BALB/c nude mice were inoculated with A549 cells to develop subcutaneous tumors and exposed to 2.0 mg/m3 FA for 14 days. Significant increases of both M1 and M2 polarizations of TAMs were observed in tumor tissues of FA-exposed mice. After confirmation of the potentiation effects in RAW264.7 and THP-1-derived in vitro TAM models, FA at 25 and 50 μM was found to enhance TAM immunosuppressive functions and glycolytic metabolism. In addition, FA-induced glycolysis in TAMs was reversed by a specific HIF-1α inhibitor PX-478 at 5 μM, and suppression of glycolytic metabolism with a glucose analog 2-DG at 1 mM also alleviated FA-potentiated TAM functions, which indicated that FA induced TAM polarizations through the upregulation of HIF-1α-mediated glycolysis. These results illustrated a potential carcinogenic mechanism of FA through metabolic disturbance of tumor immunity, which could be utilized to develop preventative or therapeutic agents for FA-induced carcinogenesis and immune disorders.
Collapse
Affiliation(s)
- Qi Shu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huijuan Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tingqian Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Peiyao Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huan Xu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
18
|
Zhu R, Chen H, Liu M, Xu Y, Jiang W, Si X, Yi L, Gu Y, Ren D, Wang J. Nontargeted screening of aldehydes and ketones by chemical isotope labeling combined with ultra-high performance liquid chromatography-high resolution mass spectrometry followed by hybrid filtering of features. J Chromatogr A 2023; 1708:464332. [PMID: 37703764 DOI: 10.1016/j.chroma.2023.464332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Aldehydes and ketones are important carbonyl compounds that are widely present in foodstuffs, biological organisms and human living environment. However, it is still challenging to comprehensively detect and capture them using liquid chromatography - mass spectrometry. In this work, a chemical isotope labeling (CIL) coupled with ultra-high performance liquid chromatography - high resolution mass spectrometry (UHPLC-HRMS) strategy was developed for the capture and detection of this class of compounds. 2,4-Dinitrophenylhydrazine (DNPH) and isotope-labeled DNPH (DNPH-d3) were utilized to selectively label the target analytes. To address the difficulties in processing UHPLC-HRMS data, a post-acquisition data processing method called MSFilter was proposed to facilitate the screening and identification aldehydes and ketones in complex matrices. The MSFilter consists of four independent filters, namely statistical characteristic-based filtering, mass defect filtering, CIL paired peaks filtering, and diagnostic fragmentation ion filtering. These filters can be used individually or in combination to eliminate unrelated interfering MS features and efficiently detect DNPH-labeled aldehydes and ketones. The results of a mixture containing 48 model compounds showed that although all individual filtering methods could significantly reduce more than 95% of the raw MS features with acceptable recall rates above 85%, but they had relatively high false positive ratios of over 90%. In comparison, the hybrid filtering method combining four filters is able to eliminate massive interfering features (> 99.5%) with a high recall rate of 81.25% and a much lower false positive ratio of 15.22%. By implementing the hybrid filtering method in MSFilter, a total of 154 features were identified as potential signals of CCs from the original 45,961 features of real tobacco samples, of which 70 were annotated. We believe that the proposed strategy is promising to analyze the potential CCs in complex samples by UHPLC-HRMS.
Collapse
Affiliation(s)
- Ruizhi Zhu
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| | - Han Chen
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China; Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Meiyan Liu
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China; Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yanqun Xu
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| | - Wei Jiang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| | - Xiaoxi Si
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| | - Lunzhao Yi
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Gu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China
| | - Dabing Ren
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Juan Wang
- College of Arts and Sciences·Kunming, Kunming, 650221, China.
| |
Collapse
|
19
|
Sun H, Xu Q, Ren M, Kong F. A water-soluble and biocompatible chitosan-based fluorescent probe for real-time monitoring formaldehyde in living cells and zebrafish. Int J Biol Macromol 2023; 250:126157. [PMID: 37549768 DOI: 10.1016/j.ijbiomac.2023.126157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Formaldehyde (HCHO) is a common environmental toxicant that can harm the human respiratory tract and nervous system when exposed for long period of time. As a carcinogen, HCHO also increases the risk of cancer in humans. HCHO can be produced endogenously in living systems and plays an essential role in physiological and biochemical reactions and pathogenesis. Therefore, monitoring the level of HCHO in vivo and in vitro has become the focus of attention. The designed naphthalene fluorophore was introduced onto modified chitosan to prepare a chitosan-based fluorescent probe (CS-FA) for HCHO detection. Compared to other small-molecule probe analogs for the detection of HCHO, the randomly coiled polymer chain of chitosan enabled CS-FA to "enrich" HCHO using the synergistic binding of hydrazino-naphthalimide recognition sites. Thus, the reaction of the analyte with the recognition site was accelerated, resulting in a faster equilibrium fluorescence response (2-3 min) and high sensitivity. In addition, the introduction of biomass material chitosan also improved the biocompatibility of the probe. Then a series of composite materials (test strips and hydrogel) were prepared based on the probe to expand the application form of the probe.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qingyu Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mingguang Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
20
|
Seike T, Chen CH, Mochly-Rosen D. Impact of common ALDH2 inactivating mutation and alcohol consumption on Alzheimer's disease. Front Aging Neurosci 2023; 15:1223977. [PMID: 37693648 PMCID: PMC10483235 DOI: 10.3389/fnagi.2023.1223977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is an enzyme found in the mitochondrial matrix that plays a central role in alcohol and aldehyde metabolism. A common ALDH2 polymorphism in East Asians descent (called ALDH2*2 or E504K missense variant, SNP ID: rs671), present in approximately 8% of the world's population, has been associated with a variety of diseases. Recent meta-analyses support the relationship between this ALDH2 polymorphism and Alzheimer's disease (AD). And AD-like pathology observed in ALDH2-/- null mice and ALDH2*2 overexpressing transgenic mice indicate that ALDH2 deficiency plays an important role in the pathogenesis of AD. Recently, the worldwide increase in alcohol consumption has drawn attention to the relationship between heavy alcohol consumption and AD. Of potential clinical significance, chronic administration of alcohol in ALDH2*2/*2 knock-in mice exacerbates the pathogenesis of AD-like symptoms. Therefore, ALDH2 polymorphism and alcohol consumption likely play an important role in the onset and progression of AD. Here, we review the data on the relationship between ALDH2 polymorphism, alcohol, and AD, and summarize what is currently known about the role of the common ALDH2 inactivating mutation, ALDH2*2, and alcohol in the onset and progression of AD.
Collapse
Affiliation(s)
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
21
|
Yuan Y, Wu Y, Zhao H, Ren J, Su W, Kou Y, Wang Q, Cheng J, Tong Z. Tropospheric formaldehyde levels infer ambient formaldehyde-induced brain diseases and global burden in China, 2013-2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163553. [PMID: 37100142 DOI: 10.1016/j.scitotenv.2023.163553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/03/2023]
Abstract
Although air pollutions cause human diseases, no epidemiological study has investigated the effect of exposure to air pollutants on brain diseases in the general population. Our objective was to examine the association between tropospheric airborne pollutants and human health risk and global burden, especially, attributable to indoor formaldehyde (FA) pollution in China. The data of tropospheric pollutants, such as: CO, NO, O3, PM2.5 or PM10, SO2, and FA in China, 2013-2019, which were derived from the database of satellite remote-sensing, were first calculated and then analyzed them according to satellite cloud pictures. The rate of prevalence, incidence, deaths, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) of the Chinese population was obtained from the Global Burden of Diseases (GBD 2010). A linear regression analysis was used to evaluate the relationship between tropospheric FA concentrations and GBD indexes of human brain diseases, the numbers of fire plot, the average summer temperature, population density and car sales in China from 2013 to 2019. Our results showed that the levels of tropospheric FA could reflect the degree of indoor air FA pollution on a nationwide scale in China; in particular, only tropospheric FA exhibited a positive correlation with the rates of both prevalence and YLDs in brain diseases including: Alzheimer's disease (AD) and brain cancer, but not in Parkinson's disease and depression. In particular, the spatial-temporal changes in tropospheric FA levels were consistent with the geographical distribution of FA exposure-induced AD and brain cancer in both sex old adults with age (60-89). In addition, summer average temperature, car sales and population density were positively correlated with tropospheric FA levels in China, 2013-2019. Hence, mapping of tropospheric pollutants could be used for air quality monitoring and health risk assessment.
Collapse
Affiliation(s)
- Ye Yuan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Mathematics and Statistics, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186, Korea; Lishui Second People's Hospital Affiliated to Wenzhou Medical University, Lishui, 323000, China
| | - Yiqing Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Alberta Institute, School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Hang Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jie Ren
- Department of neurology, the first affiliated hospital of Wenzhou medical University, Wenzhou 325035. China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yiduo Kou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qi Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianhua Cheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of neurology, the first affiliated hospital of Wenzhou medical University, Wenzhou 325035. China.
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Alberta Institute, School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
22
|
Lee S, Kim M, Ahn BJ, Jang Y. Odorant-responsive biological receptors and electronic noses for volatile organic compounds with aldehyde for human health and diseases: A perspective review. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131555. [PMID: 37156042 DOI: 10.1016/j.jhazmat.2023.131555] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Volatile organic compounds (VOCs) are gaseous chemicals found in ambient air and exhaled breath. In particular, highly reactive aldehydes are frequently found in polluted air and have been linked to various diseases. Thus, extensive studies have been carried out to elucidate disease-specific aldehydes released from the body to develop potential biomarkers for diagnostic purposes. Mammals possess innate sensory systems, such as receptors and ion channels, to detect these VOCs and maintain physiological homeostasis. Recently, electronic biosensors such as the electronic nose have been developed for disease diagnosis. This review aims to present an overview of natural sensory receptors that can detect reactive aldehydes, as well as electronic noses that have the potential to diagnose certain diseases. In this regard, this review focuses on eight aldehydes that are well-defined as biomarkers in human health and disease. It offers insights into the biological aspects and technological advances in detecting aldehyde-containing VOCs. Therefore, this review will aid in understanding the role of aldehyde-containing VOCs in human health and disease and the technological advances for improved diagnosis.
Collapse
Affiliation(s)
- Solpa Lee
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Minwoo Kim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Bum Ju Ahn
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea
| | - Yongwoo Jang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea; Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea.
| |
Collapse
|
23
|
Chen H, Xu J, Xu H, Luo T, Li Y, Jiang K, Shentu Y, Tong Z. New Insights into Alzheimer’s Disease: Novel Pathogenesis, Drug Target and Delivery. Pharmaceutics 2023; 15:pharmaceutics15041133. [PMID: 37111618 PMCID: PMC10143738 DOI: 10.3390/pharmaceutics15041133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Alzheimer’s disease (AD), the most common type of dementia, is characterized by senile plaques composed of amyloid β protein (Aβ) and neurofilament tangles derived from the hyperphosphorylation of tau protein. However, the developed medicines targeting Aβ and tau have not obtained ideal clinical efficacy, which raises a challenge to the hypothesis that AD is Aβ cascade-induced. A critical problem of AD pathogenesis is which endogenous factor induces Aβ aggregation and tau phosphorylation. Recently, age-associated endogenous formaldehyde has been suggested to be a direct trigger for Aβ- and tau-related pathology. Another key issue is whether or not AD drugs are successfully delivered to the damaged neurons. Both the blood–brain barrier (BBB) and extracellular space (ECS) are the barriers for drug delivery. Unexpectedly, Aβ-related SP deposition in ECS slows down or stops interstitial fluid drainage in AD, which is the direct reason for drug delivery failure. Here, we propose a new pathogenesis and perspectives on the direction of AD drug development and drug delivery: (1) aging-related formaldehyde is a direct trigger for Aβ assembly and tau hyperphosphorylation, and the new target for AD therapy is formaldehyde; (2) nano-packaging and physical therapy may be the promising strategy for increasing BBB permeability and accelerating interstitial fluid drainage.
Collapse
Affiliation(s)
- Haishu Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinan Xu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Hanyuan Xu
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| | - Tiancheng Luo
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| | - Yihao Li
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| | - Ke Jiang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Yangping Shentu
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
24
|
Zhang L, Yang Y, Zhang L, Ma J, Sun R, Tian Y, Yuan X, Liu B, Yu T, Jiang Z. Identification of long non-coding RNA in formaldehyde-induced cardiac dysplasia in rats. Food Chem Toxicol 2023; 174:113653. [PMID: 36758786 DOI: 10.1016/j.fct.2023.113653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023]
Abstract
Formaldehyde exposure during pregnancy can cause fetal congenital heart disease (CHD). However, the regulatory mechanism remains unclear. Studies on the biology of long non-coding RNAs (lncRNAs) show that lncRNAs can influence cardiac development and disease. However, expression patterns and regulatory mechanisms of action of lncRNAs in formaldehyde-induced CHD remain unclear. We used high-throughput sequencing strategies as a means of identifying lncRNA expression profiles in heart tissues of normal and formaldehyde-exposed newborn rats. Overall, 763 differentially expressed lncRNAs were identified, including 325 and 438 that were respectively up-regulated and down-regulated. GO and KEGG analyses indicated that the Ras and hedgehog signaling pathways may be important regulatory pathways in CHD caused by exposure to formaldehyde. A lncRNA-miRNA-mRNA co-expression network was constructed and a key miRNA, rno-miR-665, was identified. Furthermore, qRT-PCR analysis verified that the novel lncRNAs: MSTRG.27313.2, MSTRG.30629.2, MSTRG.36520.33, MSTRG.91234.1, and MSTRG.91233.9, were upregulated in the formaldehyde-exposed group. These differentially expressed lncRNAs identified during formaldehyde-induced CHD in newborn rats help explain CHD pathogenesis and provide an effective reference for diagnosing and treating CHD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China
| | - Lin Zhang
- Department of Microbiology, Linyi Center for Disease Control and Prevention, Linyi, 276000, PR China
| | - Jianmin Ma
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Xiaoli Yuan
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Bingyu Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Road No. 38 Dengzhou, Qingdao, 266021, PR China.
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China.
| |
Collapse
|
25
|
Xing W, Gu W, Liang M, Wang Z, Fan D, Zhang B, Wang L. Association between aldehyde exposure and sex steroid hormones among adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30444-30461. [PMID: 36434445 DOI: 10.1007/s11356-022-24362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Exogenous and endogenous exposure to aldehydes is seen worldwide. Aldehydes are closely associated with human diseases, especially reproductive toxicity. However, the effect of aldehyde exposure on sex steroid hormones among adults remains uninvestigated. A total of 851 participants aged over 18 years were included in this cross-sectional analysis based on data from National Health and Nutrition Examination Survey (NHANES) 2013-2014. Serum aldehyde concentrations were quantified following an automated analytical method. Sex steroid hormones including total testosterone, estradiol, and sex hormone binding globulin (SHBG) were detected. Multivariate linear regression models, forest plots, generalized additive model (GAM), and smooth curve fitting analysis were used to assess the associations between quartiles of aldehydes and sex steroid hormones levels after adjusting for potential confounders. Butyraldehyde and propanaldehyde were found to be negatively associated with estradiol and SHBG in females and males, respectively. β values with 95% confidence intervals (95% CIs) were - 20.59 (- 38.30 to - 2.88) for Q2 vs. Q1 of butyraldehyde and - 8.13 (- 14.92 to - 1.33) and - 7.79 (- 14.91 to - 0.67) for Q2 vs. Q1 and Q4 vs. Q1 of propanaldehyde. No significant associations were observed between other aldehydes and sex hormones. In premenopausal women, isopentanaldehyde was inversely associated with serum total testosterone levels (Q4 vs. Q1: OR = - 7.95, 95% CI: - 15.62 to - 0.27), whereas propanaldehyde was positively associated with serum estradiol concentration (Q3 vs. Q1: β = 28.88, 95% CI: 0.83 to 56.94). Compared with Q1, Q3 of isopentanaldehyde was associated with 3.53 pg/mL higher concentration of estradiol in postmenopausal women (β = 3.53, 95% CI: 0.08 to 6.97). Moreover, in males under 40 years, butyraldehyde and heptanaldehyde were inversely proportional to total testosterone levels and heptanaldehyde and butyraldehyde were negatively associated with estradiol and SHBG. Decreased total testosterone, elevated estradiol, and decreased SHBG levels were found in higher quartiles of benzaldehyde, hexanaldehyde and isopentanaldehyde, and propanaldehyde, respectively, in males aged over 60 years. In male participants aged 40-60 years, only hexanaldehyde was observed to be correlated with higher serum estradiol levels. In conclusion, our current research presented the association between six serum aldehydes and sex hormones. Of note, stratification analyses were conducted in participants with different menopausal statuses and age among males and females. Sex- and age-specific effect of aldehyde exposure on alterations in sex hormone levels were observed. Further studies are warranted to confirm the causal relationship and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Weilong Xing
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China.
| | - Wen Gu
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Mengyuan Liang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Zhen Wang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Deling Fan
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Bing Zhang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| | - Lei Wang
- Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing, 210042, People's Republic of China
| |
Collapse
|
26
|
Tian Z, Wang P, Huang K, Yu J, Zhang M, Liu Y, Zhao H, Zhu B, Huang X, Tong Z. Photobiomodulation for Alzheimer's disease: photoelectric coupling effect on attenuating Aβ neurotoxicity. Lasers Med Sci 2023; 38:39. [PMID: 36633696 PMCID: PMC9837011 DOI: 10.1007/s10103-022-03692-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) and dementia are the most worrying health problems faced by people globally today. Although the pathological features of AD consisting of amyloid-beta (Aβ) plaques in the extracellular space (ECS) and intracellular tau tangles are well established, the developed medicines targeting these two proteins have not obtained the expected clinical effects. Photobiomodulation (PBM) describes the therapeutic use of red light (RL) or near-infrared light (NIR) to serve as a noninvasive neuroprotective strategy for brain diseases. The present review discusses the mechanisms of the photoelectric coupling effect (light energy-induced special electronic transition-related alterations in protein structure) of PBM on reducing Aβ toxicity. On the one hand, RL or NIR can directly disassemble Aβ in vitro and in vivo. On the other hand, formaldehyde (FA)-inhibited catalase (CAT) and H2O2-inactived formaldehyde dehydrogenase (FDH) are formed a vicious circle in AD; however, light energy not only activates FDH to degrade excessive FA (which crosslinks Aβ monomer to form Aβ oligomers and senile plaques) but also sensitizes CAT to reduce hydrogen peroxide levels (H2O2, which can facilitate Aβ aggregation and enhance FA generation). In addition, it also activates mitochondrial cytochrome-c to produce ATP in the neurons. Clinical trials of phototherapeutics or oral coenzyme Q10 have shown positive effects in AD patients. Hence, a promising strategy combined PBM with nanopacked Q10 has been proposed to apply for treating AD.
Collapse
Affiliation(s)
- Zixi Tian
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Panpan Wang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
- Department Neurology, Wenzhou Medical University Affiliated Hospital 3, Wenzhou, 325200, China
| | - Kai Huang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Yu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mange Zhang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yanming Liu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hang Zhao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Beilei Zhu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuerong Huang
- Department Neurology, Wenzhou Medical University Affiliated Hospital 3, Wenzhou, 325200, China.
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
27
|
Bekhet G, Khalifa AYZ. Essential oil sanitizers to sanitize hatching eggs. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2138894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gamal Bekhet
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ashraf Y. Z. Khalifa
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
28
|
Wang Y, Wang Y, Zhu J, Guan Y, Xie F, Cai X, Deng J, Wei Y, He R, Fang Z, Guo Q. Systematic evaluation of urinary formic acid as a new potential biomarker for Alzheimer's disease. Front Aging Neurosci 2022; 14:1046066. [PMID: 36533170 PMCID: PMC9747776 DOI: 10.3389/fnagi.2022.1046066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION The accumulation of endogenous formaldehyde is considered a pathogenic factor in Alzheimer's disease (AD). The purpose of this study was to investigate the relationship between urinary formic acid and plasma biomarkers in AD. MATERIALS AND METHODS Five hundred and seventy-four participants were divided into five groups according to their diagnosis: 71 with normal cognitive (NC), 101 with subjective cognitive decline (SCD), 131 with cognitive impairment without mild cognitive impairment (CINM), 158 with mild cognitive impairment (MCI), and 113 with AD. RESULTS With the progression of the disease, urinary formic acid levels showed an overall upward trend. Urinary formic acid was significantly correlated with Mini-Mental State Examination (MMSE) scores, the Chinese version of Addenbrooke's Cognitive Examination III (ACE-III) scores, and Montreal Cognitive Assessment-Basic (MoCA-B) time. The areas under the receiver operating characteristic curves (AUC) of urinary formic acid in distinguishing NC from AD was 0.797, which was similar to that of plasma neurofilament light chain (NfL; AUC = 0.768) and better than other plasma biomarkers (Aβ40, Aβ42, Aβ42/Aβ40, T-tau, P-tau181, and P-tau181/T-tau). We also found that using urinary formic acid and formaldehyde levels could improve the accuracy of using plasma biomarkers to determine AD disease stage. DISCUSSION Our study revealed the possibility of urinary formic acid as a potential novel biomarker for the early diagnosis of AD.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jinhang Zhu
- Department of Data and Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Cai
- Department of Data and Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China
| | - Jiale Deng
- Department of Data and Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China
| | - Yan Wei
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhuo Fang
- Department of Data and Analytics, WuXi Diagnostics Innovation Research Institute, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
29
|
Wang X, Su D, Liu C, Li P, Zhang R, Zhang W, Zhang W, Tang B. Janus-Faced Fluorescence Imaging Agent for Malondialdehyde and Formaldehyde in Brains. Anal Chem 2022; 94:14965-14973. [PMID: 36256865 DOI: 10.1021/acs.analchem.2c02805] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbonyl stress caused by reactive carbonyl species (RCS) is closely related to various brain diseases. As the highly reactive, highly toxic, and lipophilic RCS, malondialdehyde (MDA) and formaldehyde (FA) could easily cross the blood-brain barrier (BBB) and induce protein dysfunction or cross-linking in the brain. Do MDA and FA coordinately regulate the physio-pathological processes of the brain? To answer the question, first of all, powerful identification and sensing tools are needed. However, competent probes for simultaneously analyzing MDA and FA in living brains are lacking, which originates from the following three challenges: (1) MDA and FA are difficult to distinguish due to their great similarity in structure and reactivity; (2) to achieve simultaneous and discriminable imaging, same excitation and different emissions are preferable; and (3) the detection of MDA and FA in living brains require the materials to pass through the BBB. Thus, we created a two-photon fluorescent agent, TFCH, for MDA/FA. The hydrazine group in TFCH could successfully differentiate MDA/FA at 440/510 nm under same excitation. Moreover, the lipophilic trifluoromethyl group (-CF3) in TFCH prompts it to traverse the BBB, thereby realizing the coinstantaneous visualization of MDA and FA in the living brain. Using TFCH, we observed the excessive production of MDA and FA in living PC12 cells under carbonyl stress and oxidative stress. Notably, for the first time, two-photon fluorescence imaging indicated the synchronous increase of MDA and FA in living brains of mice with depression. Altogether, this work provides a promising tool for revealing the carbonyl stress-related molecular mechanism involved in brain diseases.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Di Su
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Chunyu Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ran Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
30
|
Xu J, Jin X, Ye Z, Wang D, Zhao H, Tong Z. Opposite Roles of Co-enzyme Q10 and Formaldehyde in Neurodegenerative Diseases. Am J Alzheimers Dis Other Demen 2022; 37:15333175221143274. [PMID: 36455136 PMCID: PMC10624093 DOI: 10.1177/15333175221143274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Most of neurodegenerative diseases (NDD) have no cure. The common etiology of neurodegenerations is unclear. Air pollutant-gaseous formaldehyde is notoriously known to induce demyelination and cognitive impairments. Unexpectedly, an amount of formaldehyde has been detected in the brains. Multiple factors can induce the generation and accumulation of endogenous formaldehyde. Excessive formaldehyde can induce oxidative stress to generate H2O2; in turn, H2O2 promote formaldehyde production. Clinical investigations have shown that an abnormal high level of formaldehyde but low level of coenzyme Q10 (coQ10) was observed in patients with NDD. Further studies have proven that excessive formaldehyde directly inactivates coQ10, reduces the ATP generation, enhances oxidative stress, initiates inflammation storm, induces demyelination; subsequently, it results in neurodegeneration. Although the low water solubility of coQ10 limits its clinical application, nanomicellar water-soluble coQ10 exhibits positive therapeutical effects. Hence, nanopackage of coQ10 may be a promising strategy for treating NDD.
Collapse
Affiliation(s)
- Jinan Xu
- Institute of Ningbo, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xingjiang Jin
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Zuting Ye
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Dandan Wang
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Hang Zhao
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Zhiqian Tong
- Institute of Ningbo, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|