1
|
Kulesskaya N, Holmström KM, Huttunen HJ. Brain-penetrating neurotrophic factor mimetics: HER-096 as a disease-modifying therapy for Parkinson's disease. Neural Regen Res 2025; 20:1094-1095. [PMID: 38989947 PMCID: PMC11438334 DOI: 10.4103/nrr.nrr-d-24-00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024] Open
|
2
|
Xiong Z, Yang L, Zhang C, Huang W, Zhong W, Yi J, Feng J, Zouxu X, Song L, Wang X. MANF facilitates breast cancer cell survival under glucose-starvation conditions via PRKN-mediated mitophagy regulation. Autophagy 2025; 21:80-101. [PMID: 39147386 DOI: 10.1080/15548627.2024.2392415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024] Open
Abstract
During tumor expansion, breast cancer (BC) cells often experience reactive oxygen species accumulation and mitochondrial damage because of glucose shortage. However, the mechanism by which BC cells deal with the glucose-shortage-induced oxidative stress remains unclear. Here, we showed that MANF (mesencephalic astrocyte derived neurotrophic factor)-mediated mitophagy facilitates BC cell survival under glucose-starvation conditions. MANF-mediated mitophagy also promotes fatty acid oxidation in glucose-starved BC cells. Moreover, during glucose starvation, SENP1-mediated de-SUMOylation of MANF increases cytoplasmic MANF expression through the inhibition of MANF's nuclear translocation and hence renders mitochondrial distribution of MANF. MANF mediates mitophagy by binding to PRKN (parkin RBR E3 ubiquitin protein ligase), a key mitophagy regulator, in the mitochondria. Under conditions of glucose starvation, protein oxidation inhibits PRKN activity; nevertheless, the CXXC motif of MANF alleviates protein oxidation in RING II-domain of PRKN and restores its E3 ligase activity. Furthermore, MANF-PRKN interactions are essential for BC tumor growth and metastasis. High MANF expression predicts poor outcomes in patients with BC. Our results highlight the prosurvival role of MANF-mediated mitophagy in BC cells during glucose starvation, suggesting MANF as a potential therapeutic target.Abbreviation: 2DG, 2-deoxy-D-glucose; 5TG, 5-thio-D-glucose; ACSL4/FACL4, acyl-CoA synthetase long chain family member 4; Baf A1, bafilomycin A1; BRCA, breast cancer; CHX, cycloheximide; DMF, distant metastasis-free; DMFS, distant metastasis-free survival; ECM, extracellular matrix; ER, endoplasmic reticulum; ERS, endoplasmic reticulum stress; F-1,6-BP, fructose-1,6-bisphosphate; FAO, fatty acid oxidation; GSH, reduced glutathione; GSVA, gene set variation analysis; HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; IF, immunofluorescence; MANF, mesencephalic astrocyte derived neurotrophic factor; Mdivi-1, mitochondrial division inhibitor 1; MFI, mean fluorescence intensity; NAC, N-acetyl-L-cysteine; OCR, oxygen-consumption rate; OS, overall survival; PMI, SQSTM1/p62-mediated mitophagy inducer; PPP, pentose phosphate pathway; PRKN, parkin RBR E3 ubiquitin protein ligase; RBR, RING in between RING; RFS, relapse-free survival; ROS, reactive oxygen species; SAPLIPs, saposin-like proteins; TCGA, The Cancer Genome Atlas; TNBC, triple-negative breast cancer; WT, wild type.
Collapse
Affiliation(s)
- Zhenchong Xiong
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Yang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chao Zhang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weiling Huang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenjing Zhong
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiarong Yi
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jikun Feng
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiazi Zouxu
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Institute of Oncology, Tumor Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xi Wang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Liu S, Wang Y, Zhang Y, Wang X, Wang L. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Mitigates Neuroinflammation and Cognitive Impairment by Modulating Glial Activation in Sepsis-Associated Encephalopathy. Neurochem Res 2024; 50:39. [PMID: 39612058 DOI: 10.1007/s11064-024-04296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a severe neurological complication of sepsis, characterized by cognitive impairment and increased mortality. Owing to the established neuroprotective and immunomodulatory effects of Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) in a plethora of neurological disorders, our study aimed to investigate the role of MANF in SAE and evaluate its potential as a therapeutic target. Employing a cecal ligation and puncture (CLP) mouse model of sepsis, we analyzed MANF expression in the hippocampus and cortex, and evaluated the influence of intranasally administered recombinant human MANF (rhMANF) on symptoms of SAE. Our results disclosed a substantial increase in MANF protein levels within the hippocampus and cortex of septic mice, primarily found in neurons. Post-CLP surgical administration of rhMANF led to numerous favorable outcomes. Specifically, rhMANF therapy mitigated sepsis-induced behavioral deviations and cognitive impairments, as gauged by SHIRPA scores and Morris water maze tests, and enhanced survival rates in septic mice. These enhancements were concomitant with alterations in neuroinflammation and synaptic integrity. The rhMANF treatment attenuated activation of microglia and astrocytes in the hippocampus and cortex, as evidenced by diminished Iba-1 and GFAP positive cells. It also curtailed the generation of pro-inflammatory cytokines TNF-α and IL-6, and obstructed the p38 MAPK inflammatory pathway. Moreover, rhMANF sustained the expression of synaptic proteins PSD95 and SYN, and conserved neuronal integrity, as demonstrated by Nissl staining. In conclusion, our study underscores the potential of MANF as an innovative therapeutic target for SAE, emphasizing its anti-inflammatory and neuroprotective capabilities.
Collapse
Affiliation(s)
- Shuchao Liu
- Eastern District, Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Ying Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Ye Zhang
- Eastern District, Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Xiongjie Wang
- Eastern District, Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China.
| |
Collapse
|
4
|
Liang Y, Mei Q, He E, Ballar P, Wei C, Wang Y, Dong Y, Zhou J, Tao X, Qu W, Zhao M, Chhetri G, Wei L, Shao J, Shen Y, Liu J, Feng L, Shen Y. MANF serves as a novel hepatocyte factor to promote liver regeneration after 2/3 partial hepatectomy via doubly targeting Wnt/β-catenin signaling. Cell Death Dis 2024; 15:681. [PMID: 39289348 PMCID: PMC11408687 DOI: 10.1038/s41419-024-07069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Liver regeneration is an intricate pathophysiological process that has been a subject of great interest to the scientific community for many years. The capacity of liver regeneration is very critical for patients with liver diseases. Therefore, exploring the mechanisms of liver regeneration and finding good ways to improve it are very meaningful. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a member of newly identified neurotrophic factors (NTFs) family, extensively expresses in the liver and has demonstrated cytoprotective effects during ER stress and inflammation. However, the role of MANF in liver regeneration remains unclear. Here, we used hepatocyte-specific MANF knockout (MANFHep-/-) mice to investigate the role of MANF in liver regeneration after 2/3 partial hepatectomy (PH). Our results showed that MANF expression was up-regulated in a time-dependent manner, and the peak level of mRNA and protein appeared at 24 h and 36 h after 2/3 PH, respectively. Notably, MANF knockout delayed hepatocyte proliferation, and the peak proliferation period was delayed by 24 h. Mechanistically, our in vitro results showed that MANF physically interacts with LRP5 and β-catenin, two essential components of Wnt/β-catenin pathway. Specifically, as a cofactor, MANF binds to the extracellular segment of LRP5 to activate Wnt/β-catenin signaling. On the other hand, MANF interacts with β-catenin to stabilize cytosolic β-catenin level and promote its nuclear translocation, which further enhance the Wnt/β-catenin signaling. We also found that MANF knockout does not affect the c-Met/β-catenin complex after 2/3 PH. In summary, our study confirms that MANF may serve as a novel hepatocyte factor that is closely linked to the activation of the Wnt/β-catenin pathway via intracellular and extracellular targets.
Collapse
Affiliation(s)
- Yanyan Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Qiong Mei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Enguang He
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Petek Ballar
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir, 35100, Turkey
| | - Chuansheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Yue Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Yue Dong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Jie Zhou
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Xiaofang Tao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Wenyan Qu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Mingxia Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Goma Chhetri
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Limeng Wei
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Juntang Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China.
- Department of General Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
5
|
Dong H, Jia W, Wang C, Teng D, Xu B, Ding X, Yang J, Zhong L, Gong L. Key subdomains of mesencephalic astrocyte-derived neurotrophic factor attenuate myocardial ischemia/reperfusion injury by JAK1/STAT1/NF-κB signaling pathway. Mol Med 2024; 30:139. [PMID: 39242993 PMCID: PMC11380330 DOI: 10.1186/s10020-024-00916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Myocardial ischemia/reperfusion (I/R) injury is a common pathological process in clinical practice. Developing effective therapeutic strategies to reduce or prevent this injury is crucial. The article aimed to investigate the role and mechanism of mesencephalic astrocyte-derived neurotrophic factor (MANF) and its key subdomains in modulating myocardial I/R-induced cardiomyocyte apoptosis. METHODS MANF stable knockout cell line and MANF mutant overexpression plasmids were constructed. The effects of MANF and mutants on apoptosis and endoplasmic reticulum (ER) stress related proteins were evaluated in hypoxia/reoxygenation-induced HL-1 cardiomyocytes by western blot, immunofluorescence, Tunel and flow cytometry. Echocardiography, ELISA, TTC and Masson were used to observe the effects of recombinant MANF protein (rMANF) on cardiac function in myocardial I/R mice. RESULTS This study observed increased expression of MANF in both myocardial infarction patients and I/R mice. MANF overexpression in cardiomyocytes decreased ER stress-induced apoptosis, while MANF knockout exacerbated it. rMANF improved cardiac function in I/R mice by reducing injury and inflammation. This study specifically demonstrates that mutations in the α-helix of MANF were more effective in reducing ER stress and cardiomyocyte apoptosis. Mechanistically, MANF and the α-helix mutant attenuated I/R injury by inhibiting the JAK1/STAT1/NF-κB signaling pathway in addition to reducing ER stress-induced apoptosis. CONCLUSION These findings highlight MANF and its subdomains as critical regulators of myocardial I/R injury, offering promising therapeutic targets with significant clinical implications for I/R-related diseases.
Collapse
Affiliation(s)
- Haibin Dong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Wenjuan Jia
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Da Teng
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Bowen Xu
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Xiaoning Ding
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China.
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China.
| |
Collapse
|
6
|
Lan B, Zhuang Z, Zhang J, He Y, Wang N, Deng Z, Mei L, Li Y, Gao Y. Triggering of endoplasmic reticulum stress via ATF4-SPHK1 signaling promotes glioblastoma invasion and chemoresistance. Cell Death Dis 2024; 15:552. [PMID: 39090107 PMCID: PMC11294582 DOI: 10.1038/s41419-024-06936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Despite advances in therapies, glioblastoma (GBM) recurrence is almost inevitable due to the aggressive growth behavior of GBM cells and drug resistance. Temozolomide (TMZ) is the preferred drug for GBM chemotherapy, however, development of TMZ resistance is over 50% cases in GBM patients. To investigate the mechanism of TMZ resistance and invasive characteristics of GBM, analysis of combined RNA-seq and ChIP-seq was performed in GBM cells in response to TMZ treatment. We found that the PERK/eIF2α/ATF4 signaling was significantly upregulated in the GBM cells with TMZ treatment, while blockage of ATF4 effectively inhibited cell migration and invasion. SPHK1 expression was transcriptionally upregulated by ATF4 in GBM cells in response to TMZ treatment. Blockage of ATF4-SPHK1 signaling attenuated the cellular and molecular events in terms of invasive characteristics and TMZ resistance. In conclusion, GBM cells acquired chemoresistance in response to TMZ treatment via constant ER stress. ATF4 transcriptionally upregulated SPHK1 expression to promote GBM cell aggression and TMZ resistance. The ATF4-SPHK1 signaling in the regulation of the transcription factors of EMT-related genes could be the underlying mechanism contributing to the invasion ability of GBM cells and TMZ resistance. ATF4-SPHK1-targeted therapy could be a potential strategy against TMZ resistance in GBM patients.
Collapse
Affiliation(s)
- Beiwu Lan
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Zhoudao Zhuang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Jinnan Zhang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Yichun He
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Nan Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Zhuoyue Deng
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Lin Mei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Yan Li
- Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China.
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China.
| |
Collapse
|
7
|
Liu MN, Lan Q, Wu H, Qiu CW. Rejuvenation of young blood on aging organs: Effects, circulating factors, and mechanisms. Heliyon 2024; 10:e32652. [PMID: 38994040 PMCID: PMC11237939 DOI: 10.1016/j.heliyon.2024.e32652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Aging causes degenerative changes in organs, leading to a decline in physical function. Over the past two decades, researchers have made significant progress in understanding the rejuvenating effects of young blood on aging organs, benefiting from heterochronic parabiosis models that connect the blood circulation of aged and young rodents. It has been discovered that young blood can partially rejuvenate organs in old animals by regulating important aging-related signaling pathways. Clinical trials have also shown the effectiveness of young blood in treating aging-related diseases. However, the limited availability of young blood poses a challenge to implementing anti-aging therapies on a large scale for older individuals. As a promising alternative, scientists have identified some specific anti-aging circulating factors in young blood that have been shown to promote organ regeneration, reduce inflammation, and alleviate fibrosis associated with aging in animal experiments. While previous reviews have focused primarily on the effects and mechanisms of circulating factors on aging, it is important to acknowledge that studying the rejuvenating effects and mechanisms of young blood has been a significant source of inspiration in this field, and it will continue to be in the future. In recent years, new findings have emerged, further expanding our knowledge in this area. This review aims to summarize the rejuvenating effects and mechanisms of young blood and circulating factors, discussing their similarities and connections, addressing discrepancies in previous studies, outlining future research directions, and highlighting the potential for clinical translation in anti-aging interventions.
Collapse
Affiliation(s)
- Meng-Nan Liu
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Qi Lan
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Hao Wu
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Cai-Wei Qiu
- Research Center of Combine Traditional Chinese and Western Medicine, Prophylaxis and Treatment of Organ Fibrosis by Integrated Medicine of Luzhou Key Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| |
Collapse
|
8
|
Chandrasekaran P, Weiskirchen R. The signaling pathways in obesity-related complications. J Cell Commun Signal 2024; 18:e12039. [PMID: 38946722 PMCID: PMC11208128 DOI: 10.1002/ccs3.12039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Obesity, a rapidly expanding epidemic worldwide, is known to exacerbate many medical conditions, making it a significant factor in multiple diseases and their associated complications. This threatening epidemic is linked to various harmful conditions such as type 2 diabetes mellitus, hypertension, metabolic dysfunction-associated steatotic liver disease, polycystic ovary syndrome, cardiovascular diseases (CVDs), dyslipidemia, and cancer. The rise in urbanization and sedentary lifestyles creates an environment that fosters obesity, leading to both psychosocial and medical complications. To identify individuals at risk and ensure timely treatment, it is crucial to have a better understanding of the pathophysiology of obesity and its comorbidities. This comprehensive review highlights the relationship between obesity and obesity-associated complications, including type 2 diabetes, hypertension, (CVDs), dyslipidemia, polycystic ovary syndrome, metabolic dysfunction-associated steatotic liver disease, gastrointestinal complications, and obstructive sleep apnea. It also explores the potential mechanisms underlying these associations. A thorough analysis of the interplay between obesity and its associated complications is vital in developing effective therapeutic strategies to combat the exponential increase in global obesity rates and mitigate the deadly consequences of this polygenic condition.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular PathobiochemistryExperimental Gene Therapy and Clinical Chemistry (IFMPEGKC)RWTH University Hospital AachenAachenGermany
| |
Collapse
|
9
|
Yu S, Hou C, Zhang X, Wei Z. Mesencephalic astrocyte-derived neurotrophic factor ameliorates inflammatory response in polycystic ovary syndrome via inhibiting TLR4-NF-κB-NLRP3 pathway. Biochem Biophys Res Commun 2024; 707:149782. [PMID: 38493745 DOI: 10.1016/j.bbrc.2024.149782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder in women of reproductive age, which often leads to female infertility. Chronic inflammation is a significant factor in the development of PCOS. Our study aimed to explore the impact of mesencephalic astrocyte-derived neurotrophic factor (MANF), a scientifically validated anti-inflammatory factor, on 99 diagnosed PCOS patients. We also investigated its effects on PCOS mice induced with dehydroepiandrosterone (DHEA) and KGN cells induced with dihydrotestosterone (DHT). Our findings revealed a decrease in serum MANF levels in PCOS patients, which were negatively associated with serum tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels. The administration of recombinant human MANF (rhMANF) in PCOS mice demonstrated a decrease in pro-inflammatory cytokines and monocytes/macrophages in both peripheral blood and ovarian tissues. Furthermore, the inclusion of rhMANF notably ameliorated DHEA-induced ovarian dysfunction and fibrosis by negatively regulating the toll-like receptor 4 (TLR4)-nuclear factor kappa B (NF-κB)-NLR family, pyrin domain containing protein 3 (NLRP3) pathway. Additionally, in vitro experiments showed that the up-regulation of MANF offset DHT-induced inhibition of viability and apoptosis in KGN cells. Collectively, this study highlights the anti-inflammatory properties of MANF in PCOS and suggests its potential as a therapeutic approach for the management of PCOS.
Collapse
Affiliation(s)
- Shujun Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chao Hou
- School of Basic Medical Science, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinru Zhang
- School of Basic Medical Science, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
10
|
Guo W, Liu K, Wang Y, Ge X, Ma Y, Qin J, Zhang C, Zhao Y, Shi C. Neurotrophins and neural stem cells in posttraumatic brain injury repair. Animal Model Exp Med 2024; 7:12-23. [PMID: 38018458 PMCID: PMC10961886 DOI: 10.1002/ame2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023] Open
Abstract
Traumatic brain injury (TBI) is the main cause of disability, mental health disorder, and even death, with its incidence and social costs rising steadily. Although different treatment strategies have been developed and tested to mitigate neurological decline, a definitive cure for these conditions remains elusive. Studies have revealed that various neurotrophins represented by the brain-derived neurotrophic factor are the key regulators of neuroinflammation, apoptosis, blood-brain barrier permeability, neurite regeneration, and memory function. These factors are instrumental in alleviating neuroinflammation and promoting neuroregeneration. In addition, neural stem cells (NSC) contribute to nerve repair through inherent neuroprotective and immunomodulatory properties, the release of neurotrophins, the activation of endogenous NSCs, and intercellular signaling. Notably, innovative research proposals are emerging to combine BDNF and NSCs, enabling them to synergistically complement and promote each other in facilitating injury repair and improving neuron differentiation after TBI. In this review, we summarize the mechanism of neurotrophins in promoting neurogenesis and restoring neural function after TBI, comprehensively explore the potential therapeutic effects of various neurotrophins in basic research on TBI, and investigate their interaction with NSCs. This endeavor aims to provide a valuable insight into the clinical treatment and transformation of neurotrophins in TBI, thereby promoting the progress of TBI therapeutics.
Collapse
Affiliation(s)
- Wenwen Guo
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
- Gansu University of Traditional Chinese MedicineLanzhouP.R. China
| | - Ke Liu
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
- Gansu University of Traditional Chinese MedicineLanzhouP.R. China
| | - Yinghua Wang
- Medical College of Yan'an UniversityYan'anP.R. China
| | - Xu Ge
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Yifan Ma
- Gansu University of Traditional Chinese MedicineLanzhouP.R. China
| | - Jing Qin
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Caiqin Zhang
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Ya Zhao
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Changhong Shi
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| |
Collapse
|
11
|
Zhao X, Wang Z, Wang J, Xu F, Zhang Y, Han D, Fang W. Mesencephalic astrocyte-derived neurotrophic factor (MANF) alleviates cerebral ischemia/reperfusion injury in mice by regulating microglia polarization via A20/NF-κB pathway. Int Immunopharmacol 2024; 127:111396. [PMID: 38134597 DOI: 10.1016/j.intimp.2023.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/31/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Microglia, resident brain immune cells, is critical in inflammation, apoptosis, neurogenesis and neurological recovery during cerebral ischemia/reperfusion (I/R) injury. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a novel identified endoplasmic reticulum stress-inducible neurotrophic factor, can alleviate I/R injury by reducing the inflammatory reaction, but its specific regulatory mechanism on microglia after ischemic stroke has not been fully clarified. To mimic the process of ischemia/reperfusion in vivo and in vitro, middle cerebral artery occlusion/reperfusion (MCAO/R) was induced in C57BL/6J mice and oxygen glucose deprivation/reoxygenation (OGD/R) model was established in BV-2 cells. Moreover, MANF small interfering RNA (siRNA) was used to silence the expression of endogenous MANF, while recombination human MANF protein (rhMANF) acted as an exogenous supplement. Seventy-two hours after MCAO/R, 2,3,5-triphenyltetrazolium staining, neurological scores, brain water content, immunohistochemical staining, immunofluorescent staining, flow cytometry, hematoxylin and eosin staining, quantitative real-time PCR and western blot are applied to evaluate the protective effect and possible mechanism of MANF on cerebral I/R injury. In vitro, cell viability, inflammatory cytokines and the expression of MANF, A20, NF-κB and the markers of microglia were analyzed. The results showed that MANF decreased brain infarct volume, neurological scores, and brain water content. In addition, MANF promoted the polarization of microglia to an anti-inflammatory phenotype both in vivo and in vitro, which are related to A20/NF-κB pathway. In summary, MANF may offer novel therapeutic approaches for ischemic stroke in the process of microglia polarization.
Collapse
Affiliation(s)
- Xueyan Zhao
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Ziyu Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jiang Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Fenglian Xu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Yi Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Zhou C, Han D, Fang H, Huang D, Cai H, Shen Y, Shen Y, Liu J. Deletion of mesencephalic astrocyte-derived neurotrophic factor delays and damages the development of white pulp in spleen. Immunobiology 2024; 229:152778. [PMID: 38159526 DOI: 10.1016/j.imbio.2023.152778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) stress-induced protein, and it has been reported that ER stress and unfolded protein response (UPR) are closely related to the immune system. The spleen is an important immune organ and we have shown in our previous research that MANF is expressed in human spleen tissues. However, there have been limited studies about the effect of MANF on spleen development. In this study, we detected MANF expression in spleen tissues and found that MANF was expressed in the red pulp and marginal zone. Additionally, MANF was localized in the CD68+ and CD138+ cells of adult rat spleen tissues, but not in the CD3+ cells. We performed immunohistochemical staining to detect MANF expression in the spleen tissues of rats that were different ages, and we found that MANF+ cells were localized together in the spleen tissues of rats that were 1-4 weeks old. MANF was also expressed in CD68+ cells in the spleen tissues of rats and mice. Furthermore, we found that MANF deficiency inhibited white pulp development in MANF knockout mice, thus indicating that MANF played an important role in the white pulp development of rodent spleen tissues.
Collapse
Affiliation(s)
- Chengyue Zhou
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei, China; School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Dan Han
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China; The Clinical College, Anhui Medical University, Hefei, China
| | - Hui Fang
- Anhui Institute of Pediatric Research, Anhui, Hefei, China
| | - Dake Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Comprehensive Experiment Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Heping Cai
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China.
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Biopharmaceutical Institute, Anhui Medical University, Hefei, China.
| |
Collapse
|
13
|
Wang J, Zhou N, Shen P, Li F, Zhao Q, Zang D, Zhang L, Lu W, Tian W, Jing L, Chen Y. Human milk-derived MANF, as an immuno-nutritional factor, maintains the intestinal epithelial barrier and protects against necrotizing enterocolitis. J Nutr Biochem 2023; 121:109431. [PMID: 37652307 DOI: 10.1016/j.jnutbio.2023.109431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of death in preterm infants. Compared to formula milk, breastfeeding protects against NEC. However, the composition of breast milk is quite complicated, and many immunological compositions remain unknown. In this study, we aimed to investigate the concentration of a secreted protein, Mesencephalic astrocyte-derived neurotrophic factor (MANF), in breastmilk and evaluate its immune-regulatory function in protecting the intestinal epithelial barrier. Our data indicated that MANF was secreted in human milk but could not be detected in infant formulas. More importantly, the amount of MANF in colostrum was higher than that in mature milk. We also clarified that MANF was mainly expressed in intestinal macrophages and was capable of inducing apoptosis and decreasing the inflammation of pro-inflammatory macrophages in both NEC intestinal tissues and BMDMs. Mechanismly, MANF protein significantly inhibited the apoptosis of intestinal epithelial cells and protected epithelial tight junctions through downregulation of the NF-κB pathway in pro-inflammatory macrophages. These results reveal the crucial function of human milk-derived MANF in intestinal macrophages, which contributes to downregulating the intestinal inflammatory response and protecting the homeostasis of intestinal epithelial cells. Our study not only demonstrates a potential mechanism underlying breastfeeding protective effects in NEC but also, more importantly, enables clinical translation, facilitating new strategies for the development of nutritional interventions in the prevention of NEC.
Collapse
Affiliation(s)
- Jie Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Nan Zhou
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Peijun Shen
- Anhui Maternal and Child Health Hospital, Hefei, China
| | - Fangmin Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qian Zhao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dandan Zang
- Center for Scientific Research, Anhui Medical University, Hefei, China
| | - Liu Zhang
- School of Nursing, Anhui Medical University, Hefei, China
| | - Wen Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ling Jing
- Anhui Maternal and Child Health Hospital, Hefei, China
| | - Ying Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; School of Nursing, Anhui Medical University, Hefei, China.
| |
Collapse
|
14
|
Zhang C, Zhang M, Cao X, Jiao B, Zhang W, Yu S, Zhang X. Navigating the Landscape of MANF Research: A Scientometric Journey with CiteSpace Analysis. Cell Mol Neurobiol 2023; 43:3897-3913. [PMID: 37751132 PMCID: PMC10661837 DOI: 10.1007/s10571-023-01412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
This study employs bibliometric analysis through CiteSpace to comprehensively evaluate the status and trends of MANF (mesencephalic astrocyte-derived neurotrophic factor) research spanning 25 years (1997-2022). It aims to fill the gap in objective and comprehensive reviews of MANF research. MANF-related studies were extracted from the Web of Science database. MANF publications were quantitatively and qualitatively analyzed for various factors by CiteSpace, including publication volume, journals, countries/regions, institutions, and authors. Keywords and references were visually analyzed to unveil research evolution and hotspot. Analysis of 353 MANF-related articles revealed escalating annual publications, indicating growing recognition of MANF's importance. High-impact journals such as the International Journal of Molecular Sciences and Journal of Biological Chemistry underscored MANF's interdisciplinary significance. Collaborative networks highlighted China and the USA's pivotal roles, while influential figures and partnerships drove understanding of MANF's mechanisms. Co-word analysis of MANF-related keywords exposed key evolutionary hotspots, encompassing neurotrophic effects, cytoprotective roles, MANF-related diseases, and the CDNF/MANF family. This progression from basic understanding to clinical potential showcased MANF's versatility from cellular protection to therapy. Bibliometric analysis reveals MANF's diverse research trends and pathways, from basics to clinical applications, driving medical progress. This comprehensive assessment enriches understanding and empowers researchers for dynamic evolution, advancing innovation, and benefiting patients. Bibliometric analysis of MANF research. The graphical abstract depicts the bibliometric analysis of MANF research, highlighting its aims, methods, and key results.
Collapse
Affiliation(s)
- Caixia Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Mi Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xueqin Cao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Wencui Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Shangchen Yu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
15
|
Yan J, Huang L, Feng J, Yang X. The Recent Applications of PLGA-Based Nanostructures for Ischemic Stroke. Pharmaceutics 2023; 15:2322. [PMID: 37765291 PMCID: PMC10535132 DOI: 10.3390/pharmaceutics15092322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the accelerated development of nanotechnology in recent years, nanomaterials have become increasingly prevalent in the medical field. The poly (lactic acid-glycolic acid) copolymer (PLGA) is one of the most commonly used biodegradable polymers. It is biocompatible and can be fabricated into various nanostructures, depending on requirements. Ischemic stroke is a common, disabling, and fatal illness that burdens society. There is a need for further improvement in the diagnosis and treatment of this disease. PLGA-based nanostructures can facilitate therapeutic compounds' passage through the physicochemical barrier. They further provide both sustained and controlled release of therapeutic compounds when loaded with drugs for the treatment of ischemic stroke. The clinical significance and potential of PLGA-based nanostructures can also be seen in their applications in cell transplantation and imaging diagnostics of ischemic stroke. This paper summarizes the synthesis and properties of PLGA and reviews in detail the recent applications of PLGA-based nanostructures for drug delivery, disease therapy, cell transplantation, and the imaging diagnosis of ischemic stroke.
Collapse
Affiliation(s)
- Jun Yan
- Department of Neurology, Fushun Central Hospital, Fushun 113000, China;
| | - Lei Huang
- Department of Cardiac Function, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xue Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
16
|
Cheng D, Zhou T, Liu H, Li L, Xuan Y, Huang L, Liu Y, Zhang X, Wei W, Wu H. MANF inhibits Sjögren's syndrome salivary gland epithelial cell apoptosis and antigen expression of Ro52/SSA through endoplasmic reticulum stress/autophagy pathway. Int Immunopharmacol 2023; 122:110582. [PMID: 37393840 DOI: 10.1016/j.intimp.2023.110582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Sjögren's syndrome (SS) is a typical autoimmune disease characterized by lymphocyte infiltration accompanied by the production of Ro52/SSA and La/SSB autoantibodies against whole body ribonucleoprotein particles. The release of type I IFN can induce endoplasmic reticulum stress (ERS) in submandibular gland cells. ERS not only produces a large number of Ro52/SSA antigens and changes their location, but also down-regulates autophagy and increases apoptosis. METHOD We collected human submandibular gland tissue samples, established an Experimental Sjögren's syndrome (ESS) mouse model, and used submandibular gland cells to test whether Mesencephalic astrocyte-derived neurotrophic factor (MANF) could reverse ERS-induced autophagy downregulation and reduce apoptosis and Ro52/SSA antigen expression. RESULT It was found that MANF could reduce lymphocyte infiltration and the proportion of CD4+ T cell subsets in the salivary glands, reduce the phosphorylation of AKT and mTOR proteins and the expression of ERS-related proteins, and increase the expression of autophagy proteins. We also found that MANF can reduce the expression of Ro52/SSA antigen on the cell membrane and reduce apoptosis. CONCLUSION In short, we found that MANF can activate autophagy, inhibit apoptosis and reduce the expression of Ro52/SSA by regulating the AKT/mTOR/LC3B signaling pathway. The above results suggest that MANF may be a protective factor against SS.
Collapse
Affiliation(s)
- Danqian Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Tongtong Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Hui Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Lijun Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Yuhao Xuan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Lijun Huang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Yuqi Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Xiao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translation Medicine, Hefei 230032, China
| | - Huaxun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translation Medicine, Hefei 230032, China.
| |
Collapse
|
17
|
Zhang CL, Fang LL, Wang CL, Li P, Yang M, Xu JW. Prognostic potential of serum mesencephalic astrocyte-derived neurotrophic factor in acute intracerebral hemorrhage: a prospective observational study. BMC Neurol 2023; 23:213. [PMID: 37268902 DOI: 10.1186/s12883-023-03254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
OBJECTIVE Mesencephalic astrocyte-derived neurotrophic factor (MANF) expressions are dramatically up-regulated in injured brain tissues, thereby conferring neurological protective effects. We intended to determine significance of serum MANF as a prognostic biomarker of intracerebral hemorrhage (ICH). METHODS In this prospective, observational study done from February 2018 to July 2021, 124 patients with new-onset primary supratentorial ICH were consecutively enrolled. Also, a group of 124 healthy individuals constituted controls. Their serum MANF levels were detected using the Enzyme-Linked Immunosorbent Assay. National Institutes of Health Stroke Scale (NIHSS) and hematoma volume were designated as the two severity indicators. Early neurologic deterioration (END) was referred to as an increase of 4 or greater points in NIHSS scores or death at post-stroke 24 h. Post-stroke 90-day modified Rankin scale (mRS) scores of 3-6 was considered as a poor prognosis. Serum MANF levels were analyzed using multivariate analysis with respect to its association with stroke severity and prognosis. RESULTS Patients, in comparison to controls, displayed markedly elevated serum MANF levels (median, 24.7 versus 2.7 ng/ml; P < 0.001), and serum MANF levels were independently correlated with NIHSS scores (beta, 3.912; 95% confidence interval (CI), 1.623-6.200; VIF = 2.394; t = 3.385; P = 0.002), hematoma volumes (beta, 1.688; 95% CI, 0.764-2.612; VIF = 2.661; t = 3.617; P = 0.001) and mRS scores (beta, 0.018; 95% CI, 0.013-0.023; VIF = 1.984; t = 2.047; P = 0.043). Serum MANF levels significantly predicted END and poor 90-day prognosis with areas under receiver operating characteristic curve at 0.752 and 0.787 respectively. END and prognostic predictive abilities were similar between serum MANF levels and NIHSS scores plus hematoma volumes (all P > 0.05). Combination of serum MANF levels with NIHSS scores and hematoma volumes had significantly higher prognostic capability than each of them (both P < 0.05). Serum MANF levels above 52.5 ng/ml and 62.0 ng/ml distinguished development of END and poor prognosis respectively with median-high sensitivity and specificity values. Using multivariate analysis, serum MANF levels > 52.5 ng/ml predicted END with odds ratio (OR) value of 2.713 (95% CI, 1.004-7.330; P = 0.042) and > 62.0 ng/ml predicted a poor prognosis with OR value of 3.848 (95% CI, 1.193-12.417; P = 0.024). Using restricted cubic spline, there was a linear correlation between serum MANF levels and poor prognosis or END risk (both P > 0.05). Nomograms were well established to predict END and a poor 90-day prognosis. Under calibration curve, such combination models were comparatively stable (using Hosmer & Lemeshow test, both P > 0.05). CONCLUSION Increased serum MANF levels after ICH, in independent correlation with disease severity, independently distinguished risks of END and 90-day poor prognosis. Therefore, serum MANF may be a potential prognostic biomarker of ICH.
Collapse
Affiliation(s)
- Cheng-Liang Zhang
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Road, Quzhou, Zhejiang Province, 324000, People's Republic of China
| | - Ling-Li Fang
- Department of Clinical Pharmacy, The Second People's Hospital of Yuhang District, 80 Anle Road, Hangzhou, Zhejiang Province, 311121, People's Republic of China
| | - Chuan-Liu Wang
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Road, Quzhou, Zhejiang Province, 324000, People's Republic of China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Road, Quzhou, Zhejiang Province, 324000, People's Republic of China
| | - Ming Yang
- Department of Neurology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 100 Minjiang Road, Quzhou, Zhejiang Province, 324000, People's Republic of China
| | - Jian-Wei Xu
- Department of Clinic, The Quzhou Hospital of TCM, Quzhou TCM Hospital at the Junction of Four Provinces Affiliated to Zhejiang Chinese Medical University, 117 Quhua Road, Quzhou, Zhejiang Province, 324000, People's Republic of China.
| |
Collapse
|
18
|
Wang KW, Zhan CP, Liu YQ, Fu ZZ, Qiu TW, Yu GF. A prospective observational study on utility of serum mesencephalic astrocyte-derived neurotrophic factor as a promising prognostic biomarker of severe traumatic brain injury in humans. Clin Chim Acta 2023; 545:117370. [PMID: 37137461 DOI: 10.1016/j.cca.2023.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Mesencephalic astrocyte-derived neurotrophic factor (MANF) is released under endoplasmic reticulum stress, thereby exerting neuroprotective effects. We determined whether serum MANF may be a prognostic biomarker of human severe traumatic brain injury (sTBI). METHODS Serum MANF concentrations of 137 sTBI patients and 137 controls were quantified in this prospective cohort study. Patients with extended Glasgow outcome scale (GOSE) scores of 1-4 at post-traumatic 6 months were considered to have poor prognosis. Relationships between serum MANF concentrations and severity plus prognosis were investigated using multivariate analyses. Area under receiver operating characteristic curve (AUC) was calculated for reflecting prognostic efficiency. RESULTS As compared to controls, there was a significant increase of serum MANF concentrations after sTBI (median, 18.5 ng/ml versus 3.0 ng/ml; P<0.001), which was independently correlated with Glasgow coma scale (GCS) scores [β, -3.000; 95% confidence interval (CI), -4.525--1.476; VIF, 2.216; P=0.001], Rotterdam computed tomography (CT) scores (β, 4.020; 95% CI, 1.446-6.593; VIF, 2.234; P=0.002) and GOSE scores (β, -0.056; 95% CI, -0.089--0.023; VIF, 1.743; P=0.011). Serum MANF concentrations substantially distinguished risk of poor prognosis with AUC of 0.795 (95% CI, 0.718-0.859) and its concentrations >23.9 ng/ml was predictive of poor prognosis with 67.7% sensitivity and 81.9% specificity. Serum MANF concentrations combined with GCS scores and Rotterdam CT scores displayed markedly higher prognostic predictive ability than each of them (all P<0.05). Using restricted cubic spline, there was a linear correlation between serum MANF concentrations and poor prognosis (P=0.256). Serum MANF concentrations > 23.9 ng/ml was independently associated with poor prognosis (odds ratio, 2.911; 95% CI, 1.057-8.020; P=0.039). A nomogram was built, where serum MANF concentrations > 23.9 ng/ml, GCS scores and Rotterdam CT scores were integrated. Hosmer and Lemeshow test, calibration curve and decision curve analysis demonstrated such a prediction model was comparatively stable and was of relatively high clinical benefit. CONCLUSIONS Substantially increased serum MANF concentrations after sTBI are highly correlated with traumatic severity and are independently predictive of long-term poor prognosis, suggesting that serum MANF may represent a useful prognostic biochemical marker of human sTBI.
Collapse
Affiliation(s)
- Ke-Wei Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Cheng-Peng Zhan
- Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, People's Republic of China
| | - Yong-Qi Liu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Zhi-Zhan Fu
- Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, People's Republic of China
| | - Tian-Wen Qiu
- Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, People's Republic of China
| | - Guo-Feng Yu
- Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, People's Republic of China.
| |
Collapse
|
19
|
Cheng L, Liang Z, You X, Jia C, Liu Z, Sun F. The Role of the Mesencephalic Astrocyte-Derived Neurotrophic Factor in Patients in Intensive Care Units Receiving Voriconazole Therapy. J Clin Pharmacol 2023; 63:604-612. [PMID: 36609957 DOI: 10.1002/jcph.2201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Recent publications regarding the role of mesencephalic astrocyte-derived neurotrophic factor (MANF) in various metabolic and degenerative disorders suggest that MANF is both a marker of disease and a possible therapeutic agent. We investigate the role of plasma MANF levels in patients in intensive care units (ICUs) receiving voriconazole (VCZ) therapy while also comparing MANF levels in healthy individuals. A single-center prospective study was conducted. The plasma MANF level in patients in ICU was found to have high interindividual variability and was significantly higher than that in healthy controls (P < .01). Compared with patients using VCZ only, patients using both VCZ and amikacin had 3-fold lower MANF concentrations (P < .05). The MANF concentrations also decreased when alkaline phosphatase (ALP) and serum creatinine levels were above the upper limits of the normal range (P < .05) and the estimated glomerular filtration rate (eGFR) was below the lower limit of the normal range (P < .01). Receiver operating characteristic curve analysis indicated that low MANF levels were associated with high ALP levels, high creatinine levels, and low eGFR. The cut-off value of MANF for ALP levels higher than 126 U/L was 0.35 ng/mL (area under curve, AUC = 0.62, 95%CI = 0.50-0.74, P = .044); for serum creatinine levels higher than 104 μmol/L, the cut-off value was 0.41 ng/mL (AUC = 0.74, 95%CI = 0.62-0.87, P = .001); and for eGFR below 80 mL/min, the cut-off value was 0.75 ng/mL (AUC = 0.70, 95%CI = 0.59-0.81, P = .002). Monitoring plasma MANF levels may be of value for clinical decision-making regarding the choice of antibiotics and the prediction of impaired liver function and renal function in patients admitted to an ICU.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Zaiming Liang
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Xi You
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Changsheng Jia
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhirui Liu
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Fengjun Sun
- Department of Pharmacy, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|