1
|
Serneels PJ, De Schutter JD, De Groef L, Moons L, Bergmans S. Oligodendroglial heterogeneity in health, disease, and recovery: deeper insights into myelin dynamics. Neural Regen Res 2025; 20:3179-3192. [PMID: 39665821 PMCID: PMC11881716 DOI: 10.4103/nrr.nrr-d-24-00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 12/13/2024] Open
Abstract
Decades of research asserted that the oligodendroglial lineage comprises two cell types: oligodendrocyte precursor cells and oligodendrocytes. However, recent studies employing single-cell RNA sequencing techniques have uncovered novel cell states, prompting a revision of the existing terminology. Going forward, the oligodendroglial lineage should be delineated into five distinct cell states: oligodendrocyte precursor cells, committed oligodendrocyte precursor cells, newly formed oligodendrocytes, myelin-forming oligodendrocytes, and mature oligodendrocytes. This new classification system enables a deeper understanding of the oligodendroglia in both physiological and pathological contexts. Adopting this uniform terminology will facilitate comparison and integration of data across studies. This, including the consolidation of findings from various demyelinating models, is essential to better understand the pathogenesis of demyelinating diseases. Additionally, comparing injury models across species with varying regenerative capacities can provide insights that may lead to new therapeutic strategies to overcome remyelination failure. Thus, by standardizing terminology and synthesizing data from diverse studies across different animal models, we can enhance our understanding of myelin pathology in central nervous system disorders such as multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis, all of which involve oligodendroglial and myelin dysfunction.
Collapse
Affiliation(s)
- Pieter-Jan Serneels
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Julie D. De Schutter
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Lies De Groef
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Cellular Communication & Neurodegeneration Research Group, Leuven, Belgium
| | - Lieve Moons
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Steven Bergmans
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| |
Collapse
|
2
|
Glazier DS. Does death drive the scaling of life? Biol Rev Camb Philos Soc 2025; 100:586-619. [PMID: 39611289 DOI: 10.1111/brv.13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024]
Abstract
The magnitude of many kinds of biological structures and processes scale with organismal size, often in regular ways that can be described by power functions. Traditionally, many of these "biological scaling" relationships have been explained based on internal geometric, physical, and energetic constraints according to universal natural laws, such as the "surface law" and "3/4-power law". However, during the last three decades it has become increasingly apparent that biological scaling relationships vary greatly in response to various external (environmental) factors. In this review, I propose and provide several lines of evidence supporting a new ecological perspective that I call the "mortality theory of ecology" (MorTE). According to this viewpoint, mortality imposes time limits on the growth, development, and reproduction of organisms. Accordingly, small, vulnerable organisms subject to high mortality due to predation and other environmental hazards have evolved faster, shorter lives than larger, more protected organisms. A MorTE also includes various corollary, size-related internal and external causative factors (e.g. intraspecific resource competition, geometric surface area to volume effects on resource supply/transport and the protection of internal tissues from environmental hazards, internal homeostatic regulatory systems, incidence of pathogens and parasites, etc.) that impact the scaling of life. A mortality-centred approach successfully predicts the ranges of body-mass scaling slopes observed for many kinds of biological and ecological traits. Furthermore, I argue that mortality rate should be considered the ultimate (evolutionary) driver of the scaling of life, that is expressed in the context of other proximate (functional) drivers such as information-based biological regulation and spatial (geometric) and energetic (metabolic) constraints.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, 16652, USA
| |
Collapse
|
3
|
Ayana R, Zandecki C, Van houcke J, Mariën V, Seuntjens E, Arckens L. Single-cell sequencing unveils the impact of aging on the progenitor cell diversity in the telencephalon of the female killifish N. furzeri. Aging Cell 2024; 23:e14251. [PMID: 38949249 PMCID: PMC11464125 DOI: 10.1111/acel.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
The African turquoise killifish (Nothobranchius furzeri) combines a short lifespan with spontaneous age-associated loss of neuro-regenerative capacity, an intriguing trait atypical for a teleost. The impact of aging on the cellular composition of the adult stem cell niches, leading to this dramatic decline in the postnatal neuro- and gliogenesis, remains elusive. Single-cell RNA sequencing of the telencephalon of young adult female killifish of the short-lived GRZ-AD strain unveiled progenitors of glial and non-glial nature, different excitatory and inhibitory neuron subtypes, as well as non-neural cell types. Sub-clustering of the progenitors identified four radial glia (RG) cell types, two non-glial progenitor (NGP) and four intermediate (intercell) cell states. Two astroglia-like, one ependymal, and one neuroepithelial-like (NE) RG subtype were found at different locations in the forebrain in line with their role, while proliferative, active NGPs were spread throughout. Lineage inference pointed to NE-RG and NGPs as start and intercessor populations for glio- and neurogenesis. Upon aging, single-cell RNA sequencing revealed major perturbations in the proportions of the astroglia and intercell states, and in the molecular signatures of specific subtypes, including altered MAPK, mTOR, Notch, and Wnt pathways. This cell catalog of the young regeneration-competent killifish telencephalon, combined with the evidence for aging-related transcriptomic changes, presents a useful resource to understand the molecular basis of age-dependent neuroplasticity. This data is also available through an online database (killifishbrain_scseq).
Collapse
Affiliation(s)
- Rajagopal Ayana
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology SectionLaboratory of Neuroplasticity and NeuroproteomicsLeuvenBelgium
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology sectionLaboratory of Developmental NeurobiologyLeuvenBelgium
| | - Caroline Zandecki
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology SectionLaboratory of Neuroplasticity and NeuroproteomicsLeuvenBelgium
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology sectionLaboratory of Developmental NeurobiologyLeuvenBelgium
| | - Jolien Van houcke
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology SectionLaboratory of Neuroplasticity and NeuroproteomicsLeuvenBelgium
| | - Valerie Mariën
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology SectionLaboratory of Neuroplasticity and NeuroproteomicsLeuvenBelgium
| | - Eve Seuntjens
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology sectionLaboratory of Developmental NeurobiologyLeuvenBelgium
- Leuven Institute for Single‐Cell OmicsLeuvenBelgium
- KU Leuven Brain InstituteLeuvenBelgium
| | - Lutgarde Arckens
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology SectionLaboratory of Neuroplasticity and NeuroproteomicsLeuvenBelgium
- Leuven Institute for Single‐Cell OmicsLeuvenBelgium
- KU Leuven Brain InstituteLeuvenBelgium
| |
Collapse
|
4
|
Bergmans S, Noel NCL, Masin L, Harding EG, Krzywańska AM, De Schutter JD, Ayana R, Hu C, Arckens L, Ruzycki PA, MacDonald RB, Clark BS, Moons L. Age-related dysregulation of the retinal transcriptome in African turquoise killifish. Aging Cell 2024; 23:e14192. [PMID: 38742929 PMCID: PMC11320354 DOI: 10.1111/acel.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
Age-related vision loss caused by retinal neurodegenerative pathologies is becoming more prevalent in our ageing society. To understand the physiological and molecular impact of ageing on retinal homeostasis, we used the short-lived African turquoise killifish, a model known to naturally develop central nervous system (CNS) ageing hallmarks and vision loss. Bulk and single-cell RNA-sequencing (scRNAseq) of three age groups (6-, 12-, and 18-week-old) identified transcriptional ageing fingerprints in the killifish retina, unveiling pathways also identified in the aged brain, including oxidative stress, gliosis, and inflammageing. These findings were comparable to observations in the ageing mouse retina. Additionally, transcriptional changes in genes related to retinal diseases, such as glaucoma and age-related macular degeneration, were observed. The cellular heterogeneity in the killifish retina was characterized, confirming the presence of all typical vertebrate retinal cell types. Data integration from age-matched samples between the bulk and scRNAseq experiments revealed a loss of cellular specificity in gene expression upon ageing, suggesting potential disruption in transcriptional homeostasis. Differential expression analysis within the identified cell types highlighted the role of glial/immune cells as important stress regulators during ageing. Our work emphasizes the value of the fast-ageing killifish in elucidating molecular signatures in age-associated retinal disease and vision decline. This study contributes to the understanding of how age-related changes in molecular pathways may impact CNS health, providing insights that may inform future therapeutic strategies for age-related pathologies.
Collapse
Affiliation(s)
- Steven Bergmans
- Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research GroupKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | | | - Luca Masin
- Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research GroupKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | - Ellen G. Harding
- John F Hardesty, MD Department of Ophthalmology and Visual SciencesWashington University School of MedicineSaint LouisMissouriUSA
| | | | - Julie D. De Schutter
- Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research GroupKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | - Rajagopal Ayana
- Department of Biology, Animal Physiology and Neurobiology Section, Laboratory of Neuroplasticity and NeuroproteomicsKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | - Chi‐Kuo Hu
- Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookUSA
| | - Lut Arckens
- Department of Biology, Animal Physiology and Neurobiology Section, Laboratory of Neuroplasticity and NeuroproteomicsKU Leuven, Leuven Brain InstituteLeuvenBelgium
| | - Philip A. Ruzycki
- John F Hardesty, MD Department of Ophthalmology and Visual SciencesWashington University School of MedicineSaint LouisMissouriUSA
- Department of GeneticsWashington University School of MedicineSaint LouisMissouriUSA
| | | | - Brian S. Clark
- John F Hardesty, MD Department of Ophthalmology and Visual SciencesWashington University School of MedicineSaint LouisMissouriUSA
- Department of Developmental BiologyWashington University School of MedicineSaint LouisMissouriUSA
- Center of Regenerative MedicineCenter of Regenerative Medicine, Washington University School of MedicineSaint LouisMissouriUSA
| | - Lieve Moons
- Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research GroupKU Leuven, Leuven Brain InstituteLeuvenBelgium
| |
Collapse
|
5
|
Bergmans S, Noel NCL, Masin L, Harding EG, Krzywańska AM, De Schutter JD, Ayana R, Hu CK, Arckens L, Ruzycki PA, MacDonald RB, Clark BS, Moons L. Age-related dysregulation of the retinal transcriptome in African turquoise killifish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581372. [PMID: 38559206 PMCID: PMC10979842 DOI: 10.1101/2024.02.21.581372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Age-related vision loss caused by retinal neurodegenerative pathologies is becoming more prevalent in our ageing society. To understand the physiological and molecular impact of ageing on retinal homeostasis, we used the short-lived African turquoise killifish, a model known to naturally develop central nervous system (CNS) ageing hallmarks and vision loss. Bulk and single-cell RNA-sequencing (scRNA-seq) of three age groups (6-, 12-, and 18-week-old) identified transcriptional ageing fingerprints in the killifish retina, unveiling pathways also identified in the aged brain, including oxidative stress, gliosis, and inflammageing. These findings were comparable to observations in ageing mouse retina. Additionally, transcriptional changes in genes related to retinal diseases, such as glaucoma and age-related macular degeneration, were observed. The cellular heterogeneity in the killifish retina was characterised, confirming the presence of all typical vertebrate retinal cell types. Data integration from age-matched samples between the bulk and scRNA-seq experiments revealed a loss of cellular specificity in gene expression upon ageing, suggesting potential disruption in transcriptional homeostasis. Differential expression analysis within the identified cell types highlighted the role of glial/immune cells as important stress regulators during ageing. Our work emphasises the value of the fast-ageing killifish in elucidating molecular signatures in age-associated retinal disease and vision decline. This study contributes to the understanding of how age-related changes in molecular pathways may impact CNS health, providing insights that may inform future therapeutic strategies for age-related pathologies.
Collapse
Affiliation(s)
- Steven Bergmans
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology division, Neural circuit development & regeneration research group, 3000 Leuven, Belgium
| | - Nicole C L Noel
- University College London, Institute of Ophthalmology, London, UK, EC1V 9EL
| | - Luca Masin
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology division, Neural circuit development & regeneration research group, 3000 Leuven, Belgium
| | - Ellen G Harding
- Washington University School of Medicine, John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Saint Louis, Missouri, 63110 United States of America
| | | | - Julie D De Schutter
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology division, Neural circuit development & regeneration research group, 3000 Leuven, Belgium
| | - Rajagopal Ayana
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology section, Laboratory of Neuroplasticity and Neuroproteomics, 3000 Leuven, Belgium
| | - Chi-Kuo Hu
- Stony Brook University, Department of Biochemistry and Cell Biology, 11790 Stony Brook, United States of America
| | - Lut Arckens
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology section, Laboratory of Neuroplasticity and Neuroproteomics, 3000 Leuven, Belgium
| | - Philip A Ruzycki
- Washington University School of Medicine, John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Saint Louis, Missouri, 63110 United States of America
- Washington University School of Medicine, Department of Genetics, Saint Louis, Missouri, 63110 United States of America
| | - Ryan B MacDonald
- University College London, Institute of Ophthalmology, London, UK, EC1V 9EL
| | - Brian S Clark
- Washington University School of Medicine, John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Saint Louis, Missouri, 63110 United States of America
- Washington University School of Medicine, Department of Developmental Biology, Saint Louis, Missouri, 63110 United States of America
- Washington University School of Medicine, Center of Regenerative Medicine, Saint Louis, Missouri, 63110 United States of America
| | - Lieve Moons
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology division, Neural circuit development & regeneration research group, 3000 Leuven, Belgium
| |
Collapse
|