1
|
Thompson MC. Critiquing the Concept of BCI Illiteracy. SCIENCE AND ENGINEERING ETHICS 2019; 25:1217-1233. [PMID: 30117107 DOI: 10.1007/s11948-018-0061-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Brain-computer interfaces (BCIs) are a form of technology that read a user's neural signals to perform a task, often with the aim of inferring user intention. They demonstrate potential in a wide range of clinical, commercial, and personal applications. But BCIs are not always simple to operate, and even with training some BCI users do not operate their systems as intended. Many researchers have described this phenomenon as "BCI illiteracy," and a body of research has emerged aiming to characterize, predict, and solve this perceived problem. However, BCI illiteracy is an inadequate concept for explaining difficulty that users face in operating BCI systems. BCI illiteracy is a methodologically weak concept; furthermore, it relies on the flawed assumption that BCI users possess physiological or functional traits that prevent proficient performance during BCI use. Alternative concepts to BCI illiteracy may offer better outcomes for prospective users and may avoid the conceptual pitfalls that BCI illiteracy brings to the BCI research process.
Collapse
Affiliation(s)
- Margaret C Thompson
- Department of Electrical Engineering, University of Washington, 185 Stevens Way, Paul Allen Center - Room AE100R, Campus Box 352500, Seattle, WA, 98195-2500, USA.
- Center for Sensorimotor Neural Engineering, Box 37, 1414 NE 42nd St., Suite 204, Seattle, WA, 98105-6271, USA.
| |
Collapse
|
2
|
The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome. NEUROETHICS-NETH 2019. [DOI: 10.1007/s12152-019-09409-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Lulé D, Kübler A, Ludolph AC. Ethical Principles in Patient-Centered Medical Care to Support Quality of Life in Amyotrophic Lateral Sclerosis. Front Neurol 2019; 10:259. [PMID: 30967833 PMCID: PMC6439311 DOI: 10.3389/fneur.2019.00259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
It is one of the primary goals of medical care to secure good quality of life (QoL) while prolonging survival. This is a major challenge in severe medical conditions with a prognosis such as amyotrophic lateral sclerosis (ALS). Further, the definition of QoL and the question whether survival in this severe condition is compatible with a good QoL is a matter of subjective and culture-specific debate. Some people without neurodegenerative conditions believe that physical decline is incompatible with satisfactory QoL. Current data provide extensive evidence that psychosocial adaptation in ALS is possible, indicated by a satisfactory QoL. Thus, there is no fatalistic link of loss of QoL when physical health declines. There are intrinsic and extrinsic factors that have been shown to successfully facilitate and secure QoL in ALS which will be reviewed in the following article following the four ethical principles (1) Beneficence, (2) Non-maleficence, (3) Autonomy and (4) Justice, which are regarded as key elements of patient centered medical care according to Beauchamp and Childress. This is a JPND-funded work to summarize findings of the project NEEDSinALS (www.NEEDSinALS.com) which highlights subjective perspectives and preferences in medical decision making in ALS.
Collapse
Affiliation(s)
- Dorothée Lulé
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Andrea Kübler
- Interventional Psychology, Psychology III, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
4
|
Riccio A, Schettini F, Simione L, Pizzimenti A, Inghilleri M, Olivetti-Belardinelli M, Mattia D, Cincotti F. On the Relationship Between Attention Processing and P300-Based Brain Computer Interface Control in Amyotrophic Lateral Sclerosis. Front Hum Neurosci 2018; 12:165. [PMID: 29892218 PMCID: PMC5985322 DOI: 10.3389/fnhum.2018.00165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
Our objective was to investigate the capacity to control a P3-based brain-computer interface (BCI) device for communication and its related (temporal) attention processing in a sample of amyotrophic lateral sclerosis (ALS) patients with respect to healthy subjects. The ultimate goal was to corroborate the role of cognitive mechanisms in event-related potential (ERP)-based BCI control in ALS patients. Furthermore, the possible differences in such attentional mechanisms between the two groups were investigated in order to unveil possible alterations associated with the ALS condition. Thirteen ALS patients and 13 healthy volunteers matched for age and years of education underwent a P3-speller BCI task and a rapid serial visual presentation (RSVP) task. The RSVP task was performed by participants in order to screen their temporal pattern of attentional resource allocation, namely: (i) the temporal attentional filtering capacity (scored as T1%); and (ii) the capability to adequately update the attentive filter in the temporal dynamics of the attentional selection (scored as T2%). For the P3-speller BCI task, the online accuracy and information transfer rate (ITR) were obtained. Centroid Latency and Mean Amplitude of N200 and P300 were also obtained. No significant differences emerged between ALS patients and Controls with regards to online accuracy (p = 0.13). Differently, the performance in controlling the P3-speller expressed as ITR values (calculated offline) were compromised in ALS patients (p < 0.05), with a delay in the latency of P3 when processing BCI stimuli as compared with Control group (p < 0.01). Furthermore, the temporal aspect of attentional filtering which was related to BCI control (r = 0.51; p < 0.05) and to the P3 wave amplitude (r = 0.63; p < 0.05) was also altered in ALS patients (p = 0.01). These findings ground the knowledge required to develop sensible classes of BCI specifically designed by taking into account the influence of the cognitive characteristics of the possible candidates in need of a BCI system for communication.
Collapse
Affiliation(s)
- Angela Riccio
- Neuroelectrical Imaging and BCI Laboratory, NeiLab, Fondazione Santa Lucia (IRCCS), Rome, Italy
| | - Francesca Schettini
- Servizio Ausilioteca per Riabilitazione Assistita con Tecnologia (SARA-t), Fondazione Santa Lucia (IRCCS), Rome, Italy
| | - Luca Simione
- Institute of Cognitive Sciences and Technologies, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | | | - Maurizio Inghilleri
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Marta Olivetti-Belardinelli
- Centro Interuniversitario di Ricerca sull'Elaborazione Cognitiva in Sistemi Naturali e Artificiali (ECoNA), Rome, Italy.,ECONA Interuniversity Centre for Reseach on Natural and Artificial Systems, Sapienza University of Rome, Rome, Italy
| | - Donatella Mattia
- Neuroelectrical Imaging and BCI Laboratory, NeiLab, Fondazione Santa Lucia (IRCCS), Rome, Italy
| | - Febo Cincotti
- Neuroelectrical Imaging and BCI Laboratory, NeiLab, Fondazione Santa Lucia (IRCCS), Rome, Italy.,Department of Computer, Control and Management Engineering Antonio Ruberti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Käthner I, Halder S, Hintermüller C, Espinosa A, Guger C, Miralles F, Vargiu E, Dauwalder S, Rafael-Palou X, Solà M, Daly JM, Armstrong E, Martin S, Kübler A. A Multifunctional Brain-Computer Interface Intended for Home Use: An Evaluation with Healthy Participants and Potential End Users with Dry and Gel-Based Electrodes. Front Neurosci 2017; 11:286. [PMID: 28588442 PMCID: PMC5439234 DOI: 10.3389/fnins.2017.00286] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/03/2017] [Indexed: 11/23/2022] Open
Abstract
Current brain-computer interface (BCIs) software is often tailored to the needs of scientists and technicians and therefore complex to allow for versatile use. To facilitate home use of BCIs a multifunctional P300 BCI with a graphical user interface intended for non-expert set-up and control was designed and implemented. The system includes applications for spelling, web access, entertainment, artistic expression and environmental control. In addition to new software, it also includes new hardware for the recording of electroencephalogram (EEG) signals. The EEG system consists of a small and wireless amplifier attached to a cap that can be equipped with gel-based or dry contact electrodes. The system was systematically evaluated with a healthy sample, and targeted end users of BCI technology, i.e., people with a varying degree of motor impairment tested the BCI in a series of individual case studies. Usability was assessed in terms of effectiveness, efficiency and satisfaction. Feedback of users was gathered with structured questionnaires. Two groups of healthy participants completed an experimental protocol with the gel-based and the dry contact electrodes (N = 10 each). The results demonstrated that all healthy participants gained control over the system and achieved satisfactory to high accuracies with both gel-based and dry electrodes (average error rates of 6 and 13%). Average satisfaction ratings were high, but certain aspects of the system such as the wearing comfort of the dry electrodes and design of the cap, and speed (in both groups) were criticized by some participants. Six potential end users tested the system during supervised sessions. The achieved accuracies varied greatly from no control to high control with accuracies comparable to that of healthy volunteers. Satisfaction ratings of the two end-users that gained control of the system were lower as compared to healthy participants. The advantages and disadvantages of the BCI and its applications are discussed and suggestions are presented for improvements to pave the way for user friendly BCIs intended to be used as assistive technology by persons with severe paralysis.
Collapse
Affiliation(s)
- Ivo Käthner
- Institute of Psychology, University of WürzburgWürzburg, Germany
| | - Sebastian Halder
- Institute of Psychology, University of WürzburgWürzburg, Germany
| | | | | | | | - Felip Miralles
- eHealth Unit, Eurecat - Technology Center of CataloniaBarcelona, Spain
| | - Eloisa Vargiu
- eHealth Unit, Eurecat - Technology Center of CataloniaBarcelona, Spain
| | - Stefan Dauwalder
- eHealth Unit, Eurecat - Technology Center of CataloniaBarcelona, Spain
| | | | - Marc Solà
- eHealth Unit, Eurecat - Technology Center of CataloniaBarcelona, Spain
| | | | | | | | - Andrea Kübler
- Institute of Psychology, University of WürzburgWürzburg, Germany
| |
Collapse
|
6
|
Holz EM, Botrel L, Kübler A. Independent home use of Brain Painting improves quality of life of two artists in the locked-in state diagnosed with amyotrophic lateral sclerosis. BRAIN-COMPUTER INTERFACES 2015. [DOI: 10.1080/2326263x.2015.1100048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Hänselmann S, Schneiders M, Weidner N, Rupp R. Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface. J Neuroeng Rehabil 2015; 12:71. [PMID: 26303933 PMCID: PMC4547425 DOI: 10.1186/s12984-015-0063-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/18/2015] [Indexed: 11/18/2022] Open
Abstract
Background For the translation of noninvasive motor imagery (MI)-based brain-computer interfaces (BCIs) from the lab environment to end users at their homes, their handling must be improved. As a key component, the number of electroencephalogram (EEG)-recording electrodes has to be kept at a minimum. However, due to inter-individual anatomical and physiological variations, reducing the number of electrodes bares the risk of electrode misplacement, which will directly translate into a limited BCI performance of end users. The aim of the study is to evaluate the use of focal transcranial magnetic stimulation (TMS) as an easy tool to individually optimize electrode positioning for a MI-based BCI. For this, the area of MI-induced mu-rhythm modulation was compared with the motor hand representation area in respect to their localization and to the control performance of a MI-based BCI. Methods Focal TMS was applied to map the motor hand areas and a 48-channel high-resolution EEG was used to localize MI-induced mu-rhythm modulations in 11 able-bodied, right-handed subjects (5 male, age: 23–31). The online BCI performances of the study participants were assessed with a single next-neighbor Laplace channel consecutively placed over the motor hand area and over the area of the strongest mu-modulation. Results For most subjects, a consistent deviation between the position of the mu-modulation center and the corresponding motor hand areas well above the localization error could be observed in mediolateral and to a lesser degree in anterior-posterior direction. On an individual level, the MI-induced mu-rhythm modulation was at average found 1.6 cm (standard deviation (SD) = 1.30 cm) lateral and 0.31 cm anterior (SD = 1.39 cm) to the motor hand area and enabled a significantly better online BCI performance than the motor hand areas. Conclusion On an individual level a trend towards a consistent average spatial distance between motor hand area and mu-rhythm modulation center was found indicating that TMS may be used as a simple tool for quick individual optimization of EEG-recording electrode positions of MI-based BCIs. The study results indicate that motor hand areas of the primary motor cortex determined by TMS are not the main generators of the cortical mu-rhythm.
Collapse
Affiliation(s)
- Siegfried Hänselmann
- Heidelberg University Hospital, Spinal Cord Injury Center, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | - Matthias Schneiders
- Heidelberg University Hospital, Spinal Cord Injury Center, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | - Norbert Weidner
- Heidelberg University Hospital, Spinal Cord Injury Center, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | - Rüdiger Rupp
- Heidelberg University Hospital, Spinal Cord Injury Center, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| |
Collapse
|
8
|
Bhattacharjee S, Brayden DJ. Development of nanotoxicology: implications for drug delivery and medical devices. Nanomedicine (Lond) 2015; 10:2289-305. [DOI: 10.2217/nnm.15.69] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current nanotoxicology research suffers from suboptimal in vitro models, lack of in vitro–in vivo correlations, variability within in vitro protocols, deficits in both material purity and physicochemical characterization. Reliable nanomaterial toxicity and mechanistic insights are required for health and toxicity risk assessments. Much in vitro toxicological data is inconclusive in designating whether nanomaterials for drug delivery and medical device implants are truly safe. A critique is presented to analyze the interface between toxicology and nanopharmaceuticals. Deficiencies of existing practices in toxicology are reviewed and useful emerging techniques (e.g., lab-on-a-chip, tissue engineering, atomic force microscopy, high-content analysis) are highlighted. Cross-fertilization between disciplines will aid development of biocompatible delivery and implant platforms while improvements are being suggested for better translation of nanotoxicology.
Collapse
Affiliation(s)
| | - David J Brayden
- Conway Institute, University College Dublin (UCD), Dublin, Ireland
- School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
9
|
Kübler A, Holz EM, Sellers EW, Vaughan TM. Toward independent home use of brain-computer interfaces: a decision algorithm for selection of potential end-users. Arch Phys Med Rehabil 2015; 96:S27-32. [PMID: 25721544 DOI: 10.1016/j.apmr.2014.03.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 02/01/2014] [Accepted: 03/14/2014] [Indexed: 11/17/2022]
Abstract
Noninvasive brain-computer interfaces (BCIs) use scalp-recorded electrical activity from the brain to control an application. Over the past 20 years, research demonstrating that BCIs can provide communication and control to individuals with severe motor impairment has increased almost exponentially. Although considerable effort has been dedicated to offline analysis for improving signal detection and translation, far less effort has been made to conduct online studies with target populations. Thus, there remains a great need for both long-term and translational BCI studies that include individuals with disabilities in their own homes. Completing these studies is the only sure means to answer questions about BCI utility and reliability. Here we suggest an algorithm for candidate selection for electroencephalographic (EEG)-based BCI home studies. This algorithm takes into account BCI end-users and their environment and should assist in study design and substantially improve subject retention rates, thereby improving the overall efficacy of BCI home studies. It is the result of a workshop at the Fifth International BCI Meeting that allowed us to leverage the expertise of multiple research laboratories and people from multiple backgrounds in BCI research.
Collapse
Affiliation(s)
- Andrea Kübler
- Institute of Psychology, University of Würzburg, Würzburg, Germany.
| | - Elisa Mira Holz
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - Eric W Sellers
- Brain-Computer Interface Laboratory, Department of Psychology, East Tennessee State University, Johnson City, TN
| | | |
Collapse
|
10
|
Holz EM, Botrel L, Kaufmann T, Kübler A. Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study. Arch Phys Med Rehabil 2015; 96:S16-26. [PMID: 25721543 DOI: 10.1016/j.apmr.2014.03.035] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/09/2014] [Accepted: 03/14/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Despite intense brain-computer interface (BCI) research for >2 decades, BCIs have hardly been established at patients' homes. The current study aimed at demonstrating expert independent BCI home use by a patient in the locked-in state and the effect it has on quality of life. DESIGN In this case study, the P300 BCI-controlled application Brain Painting was facilitated and installed at the patient's home. Family and caregivers were trained in setting up the BCI system. After every BCI session, the end user indicated subjective level of control, loss of control, level of exhaustion, satisfaction, frustration, and enjoyment. To monitor BCI home use, evaluation data of every session were automatically sent and stored on a remote server. Satisfaction with the BCI as an assistive device and subjective workload was indicated by the patient. In accordance with the user-centered design, usability of the BCI was evaluated in terms of its effectiveness, efficiency, and satisfaction. The influence of the BCI on quality of life of the end user was assessed. SETTING At the patient's home. PARTICIPANT A 73-year-old patient with amyotrophic lateral sclerosis in the locked-in state. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURE The BCI has been used by the patient independent of experts for >14 months. The patient painted in about 200 BCI sessions (1-3 times per week) with a mean painting duration of 81.86 minutes (SD=52.15, maximum: 230.41). BCI improved quality of life of the patient. RESULTS In most of the BCI sessions the end user's satisfaction was high (mean=7.4, SD=3.24; range, 0-10). Dissatisfaction occurred mostly because of technical problems at the beginning of the study or varying BCI control. The subjective workload was moderate (mean=40.61; range, 0-100). The end user was highy satisfied with all components of the BCI (mean 4.42-5.0; range, 1-5). A perfect match between the user and the BCI technology was achieved (mean: 4.8; range, 1-5). Brain Painting had a positive impact on the patient's life on all three dimensions: competence (1.5), adaptability (2.17) and self-esteem (1.5); (range: -3 = maximum negative impact; 3 maximum positive impact). The patient had her first public art exhibition in July 2013; future exhibitions are in preparation. CONCLUSIONS Independent BCI home use is possible with high satisfaction for the end user. The BCI indeed positively influenced quality of life of the patient and supports social inclusion. Results demonstrate that visual P300 BCIs can be valuable for patients in the locked-in state even if other means of communication are still available (eye tracker).
Collapse
Affiliation(s)
- Elisa Mira Holz
- Institute of Psychology, University of Würzburg, Würzburg, Germany.
| | - Loic Botrel
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - Tobias Kaufmann
- Institute of Psychology, University of Würzburg, Würzburg, Germany; Institute of Clinical Medicine, University of Oslo, Norway
| | - Andrea Kübler
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Halder S, Pinegger A, Käthner I, Wriessnegger SC, Faller J, Pires Antunes JB, Müller-Putz GR, Kübler A. Brain-controlled applications using dynamic P300 speller matrices. Artif Intell Med 2015; 63:7-17. [PMID: 25533310 DOI: 10.1016/j.artmed.2014.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/19/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
|
12
|
Kübler A, Holz EM, Riccio A, Zickler C, Kaufmann T, Kleih SC, Staiger-Sälzer P, Desideri L, Hoogerwerf EJ, Mattia D. The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications. PLoS One 2014; 9:e112392. [PMID: 25469774 PMCID: PMC4254291 DOI: 10.1371/journal.pone.0112392] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/14/2014] [Indexed: 11/20/2022] Open
Abstract
Albeit research on brain-computer interfaces (BCI) for controlling applications has expanded tremendously, we still face a translational gap when bringing BCI to end-users. To bridge this gap, we adapted the user-centered design (UCD) to BCI research and development which implies a shift from focusing on single aspects, such as accuracy and information transfer rate (ITR), to a more holistic user experience. The UCD implements an iterative process between end-users and developers based on a valid evaluation procedure. Within the UCD framework usability of a device can be defined with regard to its effectiveness, efficiency, and satisfaction. We operationalized these aspects to evaluate BCI-controlled applications. Effectiveness was regarded equivalent to accuracy of selections and efficiency to the amount of information transferred per time unit and the effort invested (workload). Satisfaction was assessed with questionnaires and visual-analogue scales. These metrics have been successfully applied to several BCI-controlled applications for communication and entertainment, which were evaluated by end-users with severe motor impairment. Results of four studies, involving a total of N = 19 end-users revealed: effectiveness was moderate to high; efficiency in terms of ITR was low to high and workload low to medium; depending on the match between user and technology, and type of application satisfaction was moderate to high. The here suggested evaluation metrics within the framework of the UCD proved to be an applicable and informative approach to evaluate BCI controlled applications, and end-users with severe impairment and in the locked-in state were able to participate in this process.
Collapse
Affiliation(s)
- Andrea Kübler
- Institute of Psychology, University of Würzburg, Würzburg, Germany
- * E-mail:
| | - Elisa M. Holz
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - Angela Riccio
- Laboratory of Neuroelectrical Imaging and BCI, Fondazione Santa Lucia, IRCCS, Rome Italy
| | - Claudia Zickler
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Tobias Kaufmann
- Institute of Psychology, University of Würzburg, Würzburg, Germany
- Psychosis Research Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sonja C. Kleih
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - Pit Staiger-Sälzer
- Beratungsstelle für Unterstützte Kommunikation (BUK), Diakonie Bad-Kreuznach, Bad Kreuznach, Germany
| | | | | | - Donatella Mattia
- Laboratory of Neuroelectrical Imaging and BCI, Fondazione Santa Lucia, IRCCS, Rome Italy
| |
Collapse
|
13
|
Rupp R. Challenges in clinical applications of brain computer interfaces in individuals with spinal cord injury. FRONTIERS IN NEUROENGINEERING 2014; 7:38. [PMID: 25309420 PMCID: PMC4174119 DOI: 10.3389/fneng.2014.00038] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/08/2014] [Indexed: 01/15/2023]
Abstract
Brain computer interfaces (BCIs) are devices that measure brain activities and translate them into control signals used for a variety of applications. Among them are systems for communication, environmental control, neuroprostheses, exoskeletons, or restorative therapies. Over the last years the technology of BCIs has reached a level of matureness allowing them to be used not only in research experiments supervised by scientists, but also in clinical routine with patients with neurological impairments supervised by clinical personnel or caregivers. However, clinicians and patients face many challenges in the application of BCIs. This particularly applies to high spinal cord injured patients, in whom artificial ventilation, autonomic dysfunctions, neuropathic pain, or the inability to achieve a sufficient level of control during a short-term training may limit the successful use of a BCI. Additionally, spasmolytic medication and the acute stress reaction with associated episodes of depression may have a negative influence on the modulation of brain waves and therefore the ability to concentrate over an extended period of time. Although BCIs seem to be a promising assistive technology for individuals with high spinal cord injury systematic investigations are highly needed to obtain realistic estimates of the percentage of users that for any reason may not be able to operate a BCI in a clinical setting.
Collapse
Affiliation(s)
- Rüdiger Rupp
- Experimental Neurorehabilitation, Spinal Cord Injury Center, Heidelberg University Hospital Heidelberg, Germany
| |
Collapse
|
14
|
Höhne J, Tangermann M. Towards user-friendly spelling with an auditory brain-computer interface: the CharStreamer paradigm. PLoS One 2014; 9:e98322. [PMID: 24886978 PMCID: PMC4041754 DOI: 10.1371/journal.pone.0098322] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/30/2014] [Indexed: 11/18/2022] Open
Abstract
Realizing the decoding of brain signals into control commands, brain-computer interfaces (BCI) aim to establish an alternative communication pathway for locked-in patients. In contrast to most visual BCI approaches which use event-related potentials (ERP) of the electroencephalogram, auditory BCI systems are challenged with ERP responses, which are less class-discriminant between attended and unattended stimuli. Furthermore, these auditory approaches have more complex interfaces which imposes a substantial workload on their users. Aiming for a maximally user-friendly spelling interface, this study introduces a novel auditory paradigm: "CharStreamer". The speller can be used with an instruction as simple as "please attend to what you want to spell". The stimuli of CharStreamer comprise 30 spoken sounds of letters and actions. As each of them is represented by the sound of itself and not by an artificial substitute, it can be selected in a one-step procedure. The mental mapping effort (sound stimuli to actions) is thus minimized. Usability is further accounted for by an alphabetical stimulus presentation: contrary to random presentation orders, the user can foresee the presentation time of the target letter sound. Healthy, normal hearing users (n = 10) of the CharStreamer paradigm displayed ERP responses that systematically differed between target and non-target sounds. Class-discriminant features, however, varied individually from the typical N1-P2 complex and P3 ERP components found in control conditions with random sequences. To fully exploit the sequential presentation structure of CharStreamer, novel data analysis approaches and classification methods were introduced. The results of online spelling tests showed that a competitive spelling speed can be achieved with CharStreamer. With respect to user rating, it clearly outperforms a control setup with random presentation sequences.
Collapse
Affiliation(s)
- Johannes Höhne
- Machine Learning Laboratory, Berlin Institute of Technology, Berlin, Germany
- Neurotechnology group, Berlin Institute of Technology, Berlin, Germany
| | - Michael Tangermann
- BrainLinks-BrainTools Excellence Cluster, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Huggins JE, Guger C, Allison B, Anderson CW, Batista A, Brouwer AM(AM, Brunner C, Chavarriaga R, Fried-Oken M, Gunduz A, Gupta D, Kübler A, Leeb R, Lotte F, Miller LE, Müller-Putz G, Rutkowski T, Tangermann M, Thompson DE. Workshops of the Fifth International Brain-Computer Interface Meeting: Defining the Future. BRAIN-COMPUTER INTERFACES 2014; 1:27-49. [PMID: 25485284 PMCID: PMC4255956 DOI: 10.1080/2326263x.2013.876724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Fifth International Brain-Computer Interface (BCI) Meeting met June 3-7th, 2013 at the Asilomar Conference Grounds, Pacific Grove, California. The conference included 19 workshops covering topics in brain-computer interface and brain-machine interface research. Topics included translation of BCIs into clinical use, standardization and certification, types of brain activity to use for BCI, recording methods, the effects of plasticity, special interest topics in BCIs applications, and future BCI directions. BCI research is well established and transitioning to practical use to benefit people with physical impairments. At the same time, new applications are being explored, both for people with physical impairments and beyond. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and high-lighting important issues for future research and development.
Collapse
Affiliation(s)
- Jane E. Huggins
- Department of Physical Medicine and Rehabilitation, Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States, 325 East Eisenhower, Room 3017; Ann Arbor, Michigan 48108-5744, 734-936-7177
| | - Christoph Guger
- Christoph Guger, g.tec medical engineering GmbH/Guger Technologies OG, Austria, Sierningstrasse 14, 4521 Schiedlberg, Austria, +43725122240-0
| | - Brendan Allison
- University of California at San Diego, La Jolla, CA 91942 (415) 490 7551
| | - Charles W. Anderson
- Department of Computer Science, Colorado State University, Fort Collins, CO 80523; telephone: 970-491-7491
| | - Aaron Batista
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3501 5th Av, BST3 4074; Pittsburgh, PA 15261; (412) 383-5394
| | - Anne-Marie (A.-M.) Brouwer
- The Netherlands Organization for Applied Scientific Research; P.O. Box 23/Kampweg 5, 3769 ZG Soesterberg, the Netherlands, ++31 (0)888 665960
| | - Clemens Brunner
- Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Inffeldgasse 13/4, 8010; Graz, Austria
| | - Ricardo Chavarriaga
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Switzerland, EPFL-STI-CNBI, Station 11, 1005 Lausanne, Switzerland; Telephone: +41 21 693 6968
| | - Melanie Fried-Oken
- Oregon Health & Science University; Institute on Development & Disability; 707 SW Gaines Street; Portland, Oregon, United States; O: 503.494.7587, F: 503.494.6868
| | - Aysegul Gunduz
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Phone: +1 (352) 273 6877; Fax: +1 (352) 273 9221
| | - Disha Gupta
- Dept. of Neurology, Albany Medical College/Brain Computer Interfacing Lab, Wadsworth Center, NY State Dept. of Health, Albany, New York, USA
| | - Andrea Kübler
- Institute of Psychology, University of Würzburg; Marcusstr.9-11; 97070 Würzburg, Germany. Phone.: 0049 931 31 80179; Fax: 0049 931 31 82424
| | - Robert Leeb
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Fabien Lotte
- Inria Bordeaux Sud-Ouest/LaBRI, 200 avenue de la vieille tour, 33405, Talence Cedex, France, Tel: +33 5 24 57 41 26
| | - Lee E. Miller
- Departments of Physiology, Physical Medicine and Rehab, and Biomedical Engineering; Feinberg School of Medicine; Northwestern University; Chicago, Illinois, United States; Ward 5-01; 303 East Chicago Avenue; Chicago, Illinois 60611; Phone: (312) 503 – 8677; Fax: (312) 503 – 5101
| | - Gernot Müller-Putz
- Institute for Knowledge Discovery, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Inffeldgasse 13/4, 8010; Graz, Austria
| | - Tomasz Rutkowski
- Life Science Center of TARA, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 Japan; TEL: +81 (0)29-853-6261
| | - Michael Tangermann
- Excellence Cluster BrainLinks-BrainTools, Dept. Computer Science, University of Freiburg, Freiburg, Germany, Albertstr. 23; 79104 Freiburg; Germany; Phone: +49.(0)761.2038423, Fax : +49.(0)761.2038417
| | - David Edward Thompson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States, 2800 Plymouth Road, Bdlg 26 Rm G06W-B; Ann Arbor, MI 48109; 734-763-7104
| |
Collapse
|
16
|
BNCI Horizon 2020 – Towards a Roadmap for Brain/Neural Computer Interaction. UNIVERSAL ACCESS IN HUMAN-COMPUTER INTERACTION. DESIGN AND DEVELOPMENT METHODS FOR UNIVERSAL ACCESS 2014. [DOI: 10.1007/978-3-319-07437-5_45] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|