1
|
Stanchak KE, Deora T, Weber AI, Hickner MK, Moalin A, Abdalla L, Daniel TL, Brunton BW. Intraspecific Variation in the Placement of Campaniform Sensilla on the Wings of the Hawkmoth Manduca Sexta. Integr Org Biol 2024; 6:obae007. [PMID: 38715720 PMCID: PMC11074993 DOI: 10.1093/iob/obae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 05/15/2024] Open
Abstract
Flight control requires active sensory feedback, and insects have many sensors that help them estimate their current locomotor state, including campaniform sensilla (CS), which are mechanoreceptors that sense strain resulting from deformation of the cuticle. CS on the wing detect bending and torsional forces encountered during flight, providing input to the flight feedback control system. During flight, wings experience complex spatio-temporal strain patterns. Because CS detect only local strain, their placement on the wing is presumably critical for determining the overall representation of wing deformation; however, how these sensilla are distributed across wings is largely unknown. Here, we test the hypothesis that CS are found in stereotyped locations across individuals of Manduca sexta, a hawkmoth. We found that although CS are consistently found on the same veins or in the same regions of the wings, their total number and distribution can vary extensively. This suggests that there is some robustness to variation in sensory feedback in the insect flight control system. The regions where CS are consistently found provide clues to their functional roles, although some patterns might be reflective of developmental processes. Collectively, our results on intraspecific variation in CS placement on insect wings will help reshape our thinking on the utility of mechanosensory feedback for insect flight control and guide further experimental and comparative studies.
Collapse
Affiliation(s)
- K E Stanchak
- University of Washington, Department of Biology, Seattle 98195, WA
| | - T Deora
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - A I Weber
- University of Washington, Department of Biology, Seattle 98195, WA
| | - M K Hickner
- University of Washington, Department of Mechanical Engineering, Seattle 98195, WA
| | - A Moalin
- University of Washington, Department of Biology, Seattle 98195, WA
| | - L Abdalla
- University of Washington, Department of Biology, Seattle 98195, WA
| | - T L Daniel
- University of Washington, Department of Biology, Seattle 98195, WA
| | - B W Brunton
- University of Washington, Department of Biology, Seattle 98195, WA
| |
Collapse
|
2
|
Dinges GF, Zyhowski WP, Lucci A, Friend J, Szczecinski NS. Mechanical modeling of mechanosensitive insect strain sensors as a tool to investigate exoskeletal interfaces. BIOINSPIRATION & BIOMIMETICS 2024; 19:026012. [PMID: 38211340 DOI: 10.1088/1748-3190/ad1db9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
During walking, sensory information is measured and monitored by sensory organs that can be found on and within various limb segments. Strain can be monitored by insect load sensors, campaniform sensilla (CS), which have components embedded within the exoskeleton. CS vary in eccentricity, size, and orientation, which can affect their sensitivity to specific strains. Directly investigating the mechanical interfaces that these sensors utilize to encode changes in load bears various obstacles, such as modeling of viscoelastic properties. To circumvent the difficulties of modeling and performing biological experiments in small insects, we developed 3-dimensional printed resin models based on high-resolution imaging of CS. Through the utilization of strain gauges and a motorized tensile tester, physiologically plausible strain can be mimicked while investigating the compression and tension forces that CS experience; here, this was performed for a field of femoral CS inDrosophila melanogaster. Different loading scenarios differentially affected CS compression and the likely neuronal activity of these sensors and elucidate population coding of stresses acting on the cuticle.
Collapse
Affiliation(s)
- Gesa F Dinges
- Neuro-Mechanical Intelligence Laboratory, Department of Mechanical, Materials, and Aerospace Engineering, West Virginia University, Morgantown, WV, United States of America
| | - William P Zyhowski
- Neuro-Mechanical Intelligence Laboratory, Department of Mechanical, Materials, and Aerospace Engineering, West Virginia University, Morgantown, WV, United States of America
| | - Anastasia Lucci
- Lane Innovation Hub, West Virginia University, Morgantown, WV, United States of America
| | - Jordan Friend
- Lane Innovation Hub, West Virginia University, Morgantown, WV, United States of America
| | - Nicholas S Szczecinski
- Neuro-Mechanical Intelligence Laboratory, Department of Mechanical, Materials, and Aerospace Engineering, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
3
|
Zill SN, Dallmann CJ, Zyhowski W, Chaudhry H, Gebehart C, Szczecinski NS. Mechanosensory encoding of forces in walking uphill and downhill: force feedback can stabilize leg movements in stick insects. J Neurophysiol 2024; 131:198-215. [PMID: 38166479 PMCID: PMC11286306 DOI: 10.1152/jn.00414.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/04/2024] Open
Abstract
Force feedback could be valuable in adapting walking to diverse terrains, but the effects of changes in substrate inclination on discharges of sensory receptors that encode forces have rarely been examined. In insects, force feedback is provided by campaniform sensilla, mechanoreceptors that monitor forces as cuticular strains. We neurographically recorded responses of stick insect tibial campaniform sensilla to "naturalistic" forces (joint torques) that occur at the hind leg femur-tibia (FT) joint in uphill, downhill, and level walking. The FT joint torques, obtained in a previous study that used inverse dynamics to analyze data from freely moving stick insects, are quite variable during level walking (including changes in sign) but are larger in magnitude and more consistent when traversing sloped surfaces. Similar to vertebrates, insects used predominantly extension torque in propulsion on uphill slopes and flexion torques to brake forward motion when going downhill. Sensory discharges to joint torques reflected the torque direction but, unexpectedly, often occurred as multiple bursts that encoded the rate of change of positive forces (dF/dt) even when force levels were high. All discharges also showed hysteresis (history dependence), as firing substantially decreased or ceased during transient force decrements. These findings have been tested in simulation in a mathematical model of the sensilla (Szczecinski NS, Dallmann CJ, Quinn RD, Zill SN. Bioinspir Biomim 16: 065001, 2021) that accurately reproduced the biological data. Our results suggest the hypothesis that sensory feedback from the femoro-tibial joint indicating force dynamics (dF/dt) can be used to counter the instability in traversing sloped surfaces in animals and, potentially, in walking machines.NEW & NOTEWORTHY Discharges of sensory receptors (campaniform sensilla) in the hind legs of stick insects can differentially signal forces that occur in walking uphill versus walking downhill. Unexpectedly, sensory firing most closely reflects the rate of change of force (dF/dt) even when the force levels are high. These signals have been replicated in a mathematical model of the receptors and could be used to stabilize leg movements both in the animal and in a walking robot.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Chris J Dallmann
- Department of Neurobiology and Genetics, Julius-Maximilians-Universität-Würzburg, Würzburg, Germany
| | - William Zyhowski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, United States
| | - Hibba Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States
| | - Corinna Gebehart
- Champalimaud Foundation, Champalimaud Research, Lisbon, Portugal
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, United States
| |
Collapse
|
4
|
Gebehart C, Hooper SL, Büschges A. Non-linear multimodal integration in a distributed premotor network controls proprioceptive reflex gain in the insect leg. Curr Biol 2022; 32:3847-3854.e3. [PMID: 35896118 DOI: 10.1016/j.cub.2022.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/30/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
Producing context-appropriate motor acts requires integrating multiple sensory modalities. Presynaptic inhibition of proprioceptive afferent neurons1-4 and afferents of different modalities targeting the same motor neurons (MNs)5-7 underlies some of this integration. However, in most systems, an interneuronal network is interposed between sensory afferents and MNs. How these networks contribute to this integration, particularly at single-neuron resolution, is little understood. Context-specific integration of load and movement sensory inputs occurs in the stick insect locomotory system,6,8-12 and both inputs feed into a network of premotor nonspiking interneurons (NSIs).8 We analyzed how load altered movement signal processing in the stick insect femur-tibia (FTi) joint control system by tracing the interaction of FTi movement13-15 (femoral chordotonal organ [fCO]) and load13,15,16 (tibial campaniform sensilla [CS]) signals through the NSI network to the slow extensor tibiae (SETi) MN, the extensor MN primarily active in non-walking animals.17-19 On the afferent level, load reduced movement signal gain by presynaptic inhibition. In the NSI network, graded responses to movement and load inputs summed nonlinearly, increasing the gain of NSIs opposing movement-induced reflexes and thus decreasing the SETi and extensor tibiae muscle movement reflex responses. Gain modulation was movement-parameter specific and required presynaptic inhibition. These data suggest that gain changes in distributed premotor networks, specifically the relative weighting of antagonistic pathways, could be a general mechanism by which multiple sensory modalities are integrated to generate context-appropriate motor activity.
Collapse
Affiliation(s)
- Corinna Gebehart
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany.
| | - Scott L Hooper
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany; Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
5
|
Dinges GF, Bockemühl T, Iacoviello F, Shearing PR, Büschges A, Blanke A. Ultra high-resolution biomechanics suggest that substructures within insect mechanosensors decisively affect their sensitivity. J R Soc Interface 2022; 19:20220102. [PMID: 35506211 PMCID: PMC9065962 DOI: 10.1098/rsif.2022.0102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insect load sensors, called campaniform sensilla (CS), measure strain changes within the cuticle of appendages. This mechanotransduction provides the neuromuscular system with feedback for posture and locomotion. Owing to their diverse morphology and arrangement, CS can encode different strain directions. We used nano-computed tomography and finite-element analysis to investigate how different CS morphologies within one location—the femoral CS field of the leg in the fruit fly Drosophila—interact under load. By investigating the influence of CS substructures' material properties during simulated limb displacement with naturalistic forces, we could show that CS substructures (i.e. socket and collar) influence strain distribution throughout the whole CS field. Altered socket and collar elastic moduli resulted in 5% relative differences in displacement, and the artificial removal of all sockets caused differences greater than 20% in cap displacement. Apparently, CS sockets support the distribution of distal strain to more proximal CS, while collars alter CS displacement more locally. Harder sockets can increase or decrease CS displacement depending on sensor location. Furthermore, high-resolution imaging revealed that sockets are interconnected in subcuticular rows. In summary, the sensitivity of individual CS is dependent on the configuration of other CS and their substructures.
Collapse
Affiliation(s)
- Gesa F Dinges
- Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Till Bockemühl
- Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Francesco Iacoviello
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, WC1DE 6BT London, UK
| | - Paul R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, WC1DE 6BT London, UK
| | - Ansgar Büschges
- Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Alexander Blanke
- Institute of Zoology, University of Cologne, 50674 Cologne, Germany.,Institute of Evolutionary Biology and Ecology, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
6
|
Gebehart C, Büschges A. Temporal differences between load and movement signal integration in the sensorimotor network of an insect leg. J Neurophysiol 2021; 126:1875-1890. [PMID: 34705575 DOI: 10.1152/jn.00399.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nervous systems face a torrent of sensory inputs, including proprioceptive feedback. Signal integration depends on spatially and temporally coinciding signals. It is unclear how relative time delays affect multimodal signal integration from spatially distant sense organs. We measured transmission times and latencies along all processing stages of sensorimotor pathways in the stick insect leg muscle control system, using intra- and extracellular recordings. Transmission times of signals from load-sensing tibial and trochanterofemoral campaniform sensilla (tiCS, tr/fCS) to the premotor network were longer than from the movement-sensing femoral chordotonal organ (fCO). We characterized connectivity patterns from tiCS, tr/fCS, and fCO afferents to identified premotor nonspiking interneurons (NSIs) and motor neurons (MNs) by distinguishing short- and long-latency responses to sensory stimuli. Functional NSI connectivity depended on sensory context. The timeline of multisensory integration in the NSI network showed an early phase of movement signal processing and a delayed phase of load signal integration. The temporal delay of load signals relative to movement feedback persisted into MN activity and muscle force development. We demonstrate differential delays in the processing of two distinct sensory modalities generated by the sensorimotor network and affecting motor output. The reported temporal differences in sensory processing and signal integration improve our understanding of sensory network computation and function in motor control.NEW & NOTEWORTHY Networks integrating multisensory input face the challenge of not only spatial but also temporal integration. In the local network controlling insect leg movements, proprioceptive signal delays differ between sensory modalities. Specifically, signal transmission times to and neuronal connectivity within the sensorimotor network lead to delayed information about leg loading relative to movement signals. Temporal delays persist up to the level of the motor output, demonstrating its relevance for motor control.
Collapse
Affiliation(s)
- Corinna Gebehart
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Haberkorn A, Özbagci B, Gruhn M, Büschges A. Optical inactivation of a proprioceptor in an insect by non-genetic tools. J Neurosci Methods 2021; 363:109322. [PMID: 34391793 DOI: 10.1016/j.jneumeth.2021.109322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The specific role of sensory organs in locomotor pattern generation is traditionally investigated by means of mechanical ablation in arthropods that currently do not allow genetic manipulation. Mechanical ablation is irreversible, and may lead to injury discharges and changes in the structural integrity of the cuticle. NEW METHOD Here, we present a new method to temporarily or permanently deprive parts of an insect nervous system of sensory feedback from leg proprioceptors by means of blue light application. We illuminated campaniform sensilla (CS) with a blue LED (420-480 nm) or a 473 nm laser at different light intensities to optically eliminate sensory and motor neuron responses to mechanical stimulation. RESULTS We were able to eliminate all stimulus-evoked responses of CS. Individual CS groups were precisely and selectively inactivated without affecting nearby proprioceptors, using an optical fiber (Ø 200 µm) to guide the light. Our results demonstrated that lower light intensities significantly increase the required exposure time, but also the chance for recovery, thus making the effect reversible. COMPARISON WITH EXISTING METHODS In contrast to mechanical ablation, optical inactivation of individual sensory organs is non-invasive and does not affect the behavioral state of the animal, nor does it induce escape behavior. This is especially relevant in non-model system experimental animals where optogenetic manipulation cannot be used, due to a lack of established methods of access. CONCLUSION Our results show that the proposed method is a reliable alternative to mechanical ablation and can be successfully applied to the CS, as it fulfills all requirements regarding selectivity, efficiency, and reproducibility.
Collapse
Affiliation(s)
- Anna Haberkorn
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Burak Özbagci
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Matthias Gruhn
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Ansgar Büschges
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
8
|
Zill SN, Dallmann CJ, S Szczecinski N, Büschges A, Schmitz J. Evaluation of force feedback in walking using joint torques as "naturalistic" stimuli. J Neurophysiol 2021; 126:227-248. [PMID: 34107221 PMCID: PMC8424542 DOI: 10.1152/jn.00120.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Control of adaptive walking requires the integration of sensory signals of muscle force and load. We have studied how mechanoreceptors (tibial campaniform sensilla) encode “naturalistic” stimuli derived from joint torques of stick insects walking on a horizontal substrate. Previous studies showed that forces applied to the legs using the mean torque profiles of a proximal joint were highly effective in eliciting motor activities. However, substantial variations in torque direction and magnitude occurred at the more distal femorotibial joint, which can generate braking or propulsive forces and provide lateral stability. To determine how these forces are encoded, we used torque waveforms of individual steps that had maximum values in stance in the directions of flexion or extension. Analysis of kinematic data showed that the torques in different directions tended to occur in different ranges of joint angles. Variations within stance were not accompanied by comparable changes in joint angle but often reflected vertical ground reaction forces and leg support of body load. Application of torque waveforms elicited sensory discharges with variations in firing frequency similar to those seen in freely walking insects. All sensilla directionally encoded the dynamics of force increases and showed hysteresis to transient force decreases. Smaller receptors exhibited more tonic firing. Our findings suggest that dynamic sensitivity in force feedback can modulate ongoing muscle activities to stabilize distal joints when large forces are generated at proximal joints. Furthermore, use of “naturalistic” stimuli can reproduce characteristics seen in freely moving animals that are absent in conventional restrained preparations. NEW & NOTEWORTHY Sensory encoding of forces during walking by campaniform sensilla was characterized in stick insects using waveforms of joint torques calculated by inverse dynamics as mechanical stimuli. Tests using the mean joint torque and torques of individual steps showed the system is highly sensitive to force dynamics (dF/dt). Use of “naturalistic” stimuli can reproduce characteristics of sensory discharges seen in freely walking insects, such as load transfer among legs.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Nicholas S Szczecinski
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
9
|
Gebehart C, Schmidt J, Büschges A. Distributed processing of load and movement feedback in the premotor network controlling an insect leg joint. J Neurophysiol 2021; 125:1800-1813. [PMID: 33788591 DOI: 10.1152/jn.00090.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In legged animals, integration of information from various proprioceptors in and on the appendages by local premotor networks in the central nervous system is crucial for controlling motor output. To ensure posture maintenance and precise active movements, information about limb loading and movement is required. In insects, various groups of campaniform sensilla (CS) measure forces and loads acting in different directions on the leg, and the femoral chordotonal organ (fCO) provides information about movement of the femur-tibia (FTi) joint. In this study, we used extra- and intracellular recordings of extensor tibiae (ExtTi) and retractor coxae (RetCx) motor neurons (MNs) and identified local premotor nonspiking interneurons (NSIs) and mechanical stimulation of the fCO and tibial or trochanterofemoral CS (tiCS, tr/fCS), to investigate the premotor network architecture underlying multimodal proprioceptive integration. We found that load feedback from tiCS altered the strength of movement-elicited resistance reflexes and determined the specificity of ExtTi and RetCx MN responses to various load and movement stimuli. These responses were mediated by a common population of identified NSIs into which synaptic inputs from the fCO, tiCS, and tr/fCS are distributed, and whose effects onto ExtTi MNs can be antagonistic for both stimulus modalities. Multimodal sensory signal interaction was found at the level of single NSIs and MNs. The results provide evidence that load and movement feedback are integrated in a multimodal, distributed local premotor network consisting of antagonistic elements controlling movements of the FTi joint, thus substantially extending current knowledge on how legged motor systems achieve fine-tuned motor control.NEW & NOTEWORTHY Proprioception is crucial for motor control in legged animals. We show the extent to which processing of movement (fCO) and load (CS) signals overlaps in the local premotor network of an insect leg. Multimodal signals converge onto the same set of interneurons, and our knowledge about distributed, antagonistic processing is extended to incorporate multiple modalities within one perceptual neuronal framework.
Collapse
Affiliation(s)
- Corinna Gebehart
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Joachim Schmidt
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Abd El-Ghany NM, Abd El-Aziz SE. Morphology of antennae and mouthpart sensillae in Lasioderma serricorne (fabricius) (Coleoptera: Anobiidae). JOURNAL OF STORED PRODUCTS RESEARCH 2021; 90:101754. [DOI: 10.1016/j.jspr.2020.101754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Harris CM, Dinges GF, Haberkorn A, Gebehart C, Büschges A, Zill SN. Gradients in mechanotransduction of force and body weight in insects. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 58:100970. [PMID: 32702647 DOI: 10.1016/j.asd.2020.100970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Posture and walking require support of the body weight, which is thought to be detected by sensory receptors in the legs. Specificity in sensory encoding occurs through the numerical distribution, size and response range of sense organs. We have studied campaniform sensilla, receptors that detect forces as strains in the insect exoskeleton. The sites of mechanotransduction (cuticular caps) were imaged by light and confocal microscopy in four species (stick insects, cockroaches, blow flies and Drosophila). The numbers of receptors and cap diameters were determined in projection images. Similar groups of receptors are present in the legs of each species (flies lack Group 2 on the anterior trochanter). The number of receptors is generally related to the body weight but similar numbers are found in blow flies and Drosophila, despite a 30 fold difference in their weight. Imaging data indicate that the gradient (range) of cap sizes may more closely correlate with the body weight: the range of cap sizes is larger in blow flies than in Drosophila but similar to that found in juvenile cockroaches. These studies support the idea that morphological properties of force-detecting sensory receptors in the legs may be tuned to reflect the body weight.
Collapse
Affiliation(s)
- Christian M Harris
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA
| | - Gesa F Dinges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Anna Haberkorn
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Corinna Gebehart
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA.
| |
Collapse
|
12
|
Location and arrangement of campaniform sensilla in
Drosophila melanogaster. J Comp Neurol 2020; 529:905-925. [DOI: 10.1002/cne.24987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 11/07/2022]
|
13
|
Strauß J. Neuronal Innervation of the Subgenual Organ Complex and the Tibial Campaniform Sensilla in the Stick Insect Midleg. INSECTS 2020; 11:E40. [PMID: 31947968 PMCID: PMC7022571 DOI: 10.3390/insects11010040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 01/30/2023]
Abstract
Mechanosensory organs in legs play are crucial receptors in the feedback control of walking and in the detection of substrate-borne vibrations. Stick insects serve as a model for the physiological role of chordotonal organs and campaniform sensilla. This study documents, by axonal tracing, the neural innervation of the complex chordotonal organs and groups of campaniform sensilla in the proximal tibia of the midleg in Sipyloidea sipylus. In total, 6 nerve branches innervate the different sensory structures, and the innervation pattern associates different sensilla types by their position. Sensilla on the anterior and posterior tibia are innervated from distinct nerve branches. In addition, the variation in innervation is studied for five anatomical branching points. The most common variation is the innervation of the subgenual organ sensilla by two nerve branches rather than a single one. The fusion of commonly separated nerve branches also occurred. However, a common innervation pattern can be demonstrated, which is found in >75% of preparations. The variation did not include crossings of nerves between the anterior and posterior side of the leg. The study corrects the innervation of the posterior subgenual organ reported previously. The sensory neuroanatomy and innervation pattern can guide further physiological studies of mechanoreceptor organs and allow evolutionary comparisons to related insect groups.
Collapse
Affiliation(s)
- Johannes Strauß
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26 (IFZ), 35392 Gießen, Germany
| |
Collapse
|
14
|
Stolz T, Diesner M, Neupert S, Hess ME, Delgado-Betancourt E, Pflüger HJ, Schmidt J. Descending octopaminergic neurons modulate sensory-evoked activity of thoracic motor neurons in stick insects. J Neurophysiol 2019; 122:2388-2413. [DOI: 10.1152/jn.00196.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuromodulatory neurons located in the brain can influence activity in locomotor networks residing in the spinal cord or ventral nerve cords of invertebrates. How inputs to and outputs of neuromodulatory descending neurons affect walking activity is largely unknown. With the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and immunohistochemistry, we show that a population of dorsal unpaired median (DUM) neurons descending from the gnathal ganglion to thoracic ganglia of the stick insect Carausius morosus contains the neuromodulatory amine octopamine. These neurons receive excitatory input coupled to the legs’ stance phases during treadmill walking. Inputs did not result from connections with thoracic central pattern-generating networks, but, instead, most are derived from leg load sensors. In excitatory and inhibitory retractor coxae motor neurons, spike activity in the descending DUM (desDUM) neurons increased depolarizing reflexlike responses to stimulation of leg load sensors. In these motor neurons, descending octopaminergic neurons apparently functioned as components of a positive feedback network mainly driven by load-detecting sense organs. Reflexlike responses in excitatory extensor tibiae motor neurons evoked by stimulations of a femur-tibia movement sensor either are increased or decreased or were not affected by the activity of the descending neurons, indicating different functions of desDUM neurons. The increase in motor neuron activity is often accompanied by a reflex reversal, which is characteristic for actively moving animals. Our findings indicate that some descending octopaminergic neurons can facilitate motor activity during walking and support a sensory-motor state necessary for active leg movements. NEW & NOTEWORTHY We investigated the role of descending octopaminergic neurons in the gnathal ganglion of stick insects. The neurons become active during walking, mainly triggered by input from load sensors in the legs rather than pattern-generating networks. This report provides novel evidence that octopamine released by descending neurons on stimulation of leg sense organs contributes to the modulation of leg sensory-evoked activity in a leg motor control system.
Collapse
Affiliation(s)
- Thomas Stolz
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| | - Max Diesner
- Department of Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Susanne Neupert
- Department of Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Martin E. Hess
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| | | | - Hans-Joachim Pflüger
- Institute für Biologie und Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Joachim Schmidt
- Departments of Biology and Animal Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Barth FG. Mechanics to pre-process information for the fine tuning of mechanoreceptors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:661-686. [PMID: 31270587 PMCID: PMC6726712 DOI: 10.1007/s00359-019-01355-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 11/17/2022]
Abstract
Non-nervous auxiliary structures play a significant role in sensory biology. They filter the stimulus and transform it in a way that fits the animal's needs, thereby contributing to the avoidance of the central nervous system's overload with meaningless stimuli and a corresponding processing task. The present review deals with mechanoreceptors mainly of invertebrates and some remarkable recent findings stressing the role of mechanics as an important source of sensor adaptedness, outstanding performance, and diversity. Instead of organizing the review along the types of stimulus energy (force) taken up by the sensors, processes associated with a few basic and seemingly simple mechanical principles like lever systems, viscoelasticity, resonance, traveling waves, and impedance matching are taken as the guideline. As will be seen, nature makes surprisingly competent use of such "simple mechanics".
Collapse
Affiliation(s)
- Friedrich G Barth
- Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Althanstr.14, 1090, Vienna, Austria.
| |
Collapse
|
16
|
Haberkorn A, Gruhn M, Zill SN, Büschges A. Identification of the origin of force-feedback signals influencing motor neurons of the thoraco-coxal joint in an insect. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:253-270. [DOI: 10.1007/s00359-019-01334-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 11/28/2022]
|
17
|
Zill SN, Dallmann CJ, Büschges A, Chaudhry S, Schmitz J. Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli. J Neurophysiol 2018; 120:1807-1823. [PMID: 30020837 DOI: 10.1152/jn.00371.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many sensory systems are tuned to specific parameters of behaviors and have effects that are task-specific. We have studied how force feedback contributes to activation of synergist muscles in serially homologous legs of stick insects. Forces were applied using conventional half-sine or ramp and hold functions. We also utilized waveforms of joint torques calculated from experiments in freely walking animals. In all legs, forces applied to either the tarsus (foot) or proximal leg segment (trochanter) activated synergist muscles that generate substrate grip and support, but coupling of the depressor muscle to tarsal forces was weak in the front legs. Activation of trochanteral receptors using ramp and hold functions generated positive feedback to the depressor muscle in all legs when animals were induced to seek substrate grip. However, discharges of the synergist flexor muscle showed adaptation at moderate force levels. In contrast, application of forces using torque waveforms, which do not have a static hold phase, produced sustained discharges in muscle synergies with little adaptation. Firing frequencies reflected the magnitude of ground reaction forces, were graded to changes in force amplitude, and could also be modulated by transient force perturbations added to the waveforms. Comparison of synergist activation by torques and ramp and hold functions revealed a strong influence of force dynamics (dF/d t). These studies support the idea that force receptors can act to tune muscle synergies synchronously to the range of force magnitudes and dynamics that occur in each leg according to their specific use in behavior. NEW & NOTEWORTHY The effects of force receptors (campaniform sensilla) on leg muscles and synergies were characterized in stick insects using both ramp and hold functions and waveforms of joint torques calculated by inverse dynamics. Motor responses were sustained and showed reduced adaptation to the more "natural" and nonlinear torque stimuli. Calculation of the first derivative (dF/d t) of the torque waveforms demonstrated that this difference was correlated with the dynamic sensitivities of the system.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Chris J Dallmann
- Department of Biological Cybernetics, Bielefeld University , Bielefeld , Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter, University of Cologne , Cologne , Germany
| | - Sumaiya Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | - Josef Schmitz
- Department of Biological Cybernetics, Bielefeld University , Bielefeld , Germany
| |
Collapse
|
18
|
Motor flexibility in insects: adaptive coordination of limbs in locomotion and near-range exploration. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2412-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Wöhrl T, Reinhardt L, Blickhan R. Propulsion in hexapod locomotion: how do desert ants traverse slopes? ACTA ACUST UNITED AC 2017; 220:1618-1625. [PMID: 28183867 DOI: 10.1242/jeb.137505] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/07/2017] [Indexed: 11/20/2022]
Abstract
The employment of an alternating tripod gait to traverse uneven terrains is a common characteristic shared among many Hexapoda. Because this could be one specific cause for their ecological success, we examined the alternating tripod gait of the desert ant Cataglyphis fortis together with their ground reaction forces and weight-specific leg impulses for level locomotion and on moderate (±30 deg) and steep (±60 deg) slopes in order to understand mechanical functions of individual legs during inclined locomotion. There were three main findings from the experimental data. (1) The hind legs acted as the main brake (negative weight-specific impulse in the direction of progression) on both the moderate and steep downslopes while the front legs became the main motor (positive weight-specific impulse in the direction of progression) on the steep upslope. In both cases, the primary motor or brake was found to be above the centre of mass. (2) Normalised double support durations were prolonged on steep slopes, which could enhance the effect of lateral shear loading between left and right legs with the presence of direction-dependent attachment structures. (3) The notable directional change in the lateral ground reaction forces between the moderate and steep slopes implied the utilisation of different coordination programs in the extensor-flexor system.
Collapse
Affiliation(s)
- Toni Wöhrl
- Friedrich Schiller University Jena, Seidelstraβe 20, 07749 Jena, Germany
| | - Lars Reinhardt
- Friedrich Schiller University Jena, Seidelstraβe 20, 07749 Jena, Germany
| | - Reinhard Blickhan
- Friedrich Schiller University Jena, Seidelstraβe 20, 07749 Jena, Germany
| |
Collapse
|
20
|
Strauß J, Lakes-Harlan R. Vibrational sensitivity of the subgenual organ complex in female Sipyloidea sipylus stick insects in different experimental paradigms of stimulus direction, leg attachment, and ablation of a connective tibial sense organ. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:100-108. [PMID: 27614184 DOI: 10.1016/j.cbpa.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 10/21/2022]
Abstract
We document the sensitivity to sinusoidal vibrations for chordotonal organs in the stick insect tibia (Sipyloidea sipylus). In the tibia, the scolopidial subgenual organ (~40 scolopidial sensilla), distal organ (~20 scolopidial sensilla), and distal tibial chordotonal organ (~7 scolopidial sensilla) are present. We study the sensitivity of tibial sensory organs in all leg pairs to vibration stimuli as sensory thresholds by recording summed action potentials from Nervus cruris in the femur. The tibia was stimulated with a minishaker delivering vibrational stimuli. Because different experimental procedures may affect the vibration sensitivity, we here analysed possible effects of different experimental conditions: (1) the stimulus direction delivered in either horizontal or vertical direction to the leg; (2) recording responses only from the subgenual organ complex after ablation of the distal tibial chordotonal organ, and (3) the attachment of the leg to the minishaker by plastilin, beeswax-colophony, or freely standing legs. The tibial scolopidial organs give summed responses to vibration stimuli with highest sensitivity between 500 and 1000Hz for all leg pairs. In the different experimental series, we find that (1) thresholds were influenced by stimulation direction with lower thresholds in response to vertical vibrations, (2) ablating the distal tibial chordotonal organ by cutting the distal-most tibia did not change the summed sensory thresholds significantly, and (3) the attachment material between legs and the minishaker (plastilin or beeswax-colophony mixture) did not significant influence the sensory thresholds against free-standing tarsi. The distal tibial chordotonal organ is a connective chordotonal organ attached to a tendon and is likely a proprioceptive organ. These results emphasise that vibrational thresholds are mainly direction-sensitive. Thus, the direction of stimulus delivery during electrophysiological recordings is relevant for comparisons of vibratory sensory thresholds.
Collapse
Affiliation(s)
- Johannes Strauß
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany.
| | - Reinhard Lakes-Harlan
- AG Integrative Sensory Physiology, Institute for Animal Physiology, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
21
|
Abstract
The ability of animals to flexibly navigate through complex environments depends on the integration of sensory information with motor commands. The sensory modality most tightly linked to motor control is mechanosensation. Adaptive motor control depends critically on an animal's ability to respond to mechanical forces generated both within and outside the body. The compact neural circuits of insects provide appealing systems to investigate how mechanical cues guide locomotion in rugged environments. Here, we review our current understanding of mechanosensation in insects and its role in adaptive motor control. We first examine the detection and encoding of mechanical forces by primary mechanoreceptor neurons. We then discuss how central circuits integrate and transform mechanosensory information to guide locomotion. Because most studies in this field have been performed in locusts, cockroaches, crickets, and stick insects, the examples we cite here are drawn mainly from these 'big insects'. However, we also pay particular attention to the tiny fruit fly, Drosophila, where new tools are creating new opportunities, particularly for understanding central circuits. Our aim is to show how studies of big insects have yielded fundamental insights relevant to mechanosensation in all animals, and also to point out how the Drosophila toolkit can contribute to future progress in understanding mechanosensory processing.
Collapse
Affiliation(s)
- John C Tuthill
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA.
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Berendes V, Zill SN, Büschges A, Bockemühl T. Speed-dependent interplay between local pattern-generating activity and sensory signals during walking in Drosophila. J Exp Biol 2016; 219:3781-3793. [DOI: 10.1242/jeb.146720] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/14/2016] [Indexed: 12/16/2022]
Abstract
In insects, the coordinated motor output required for walking is based on the interaction between local pattern-generating networks providing basic rhythmicity and leg sensory signals which modulate this output on a cycle-to-cycle basis. How this interplay changes speed-dependently and thereby gives rise to the different coordination patterns observed at different speeds is understood insufficiently. Here, we used amputation to reduce sensory signals in single legs and decouple them mechanically during walking in Drosophila. This allowed for the dissociation between locally-generated motor output in the stump and coordinating influences from intact legs. Leg stumps were still rhythmically active during walking. While the oscillatory frequency in intact legs was dependent on walking speed, stumps showed a high and relatively constant oscillation frequency at all walking speeds. At low walking speeds we found no strict cycle-to-cycle coupling between stumps and intact legs. In contrast, at high walking speeds stump oscillations were strongly coupled to the movement of intact legs on a 1-to-1 basis. While during slow walking there was no preferred phase between stumps and intact legs, we nevertheless found a preferred time interval between touch-down or lift-off events in intact legs and levation or depression of stumps. Based on these findings, we hypothesize that, as in other insects, walking speed in Drosophila is predominantly controlled by indirect mechanisms and that direct modulation of basic pattern-generating circuits plays a subsidiary role. Furthermore, inter-leg coordination strength seems to be speed-dependent and greater coordination is evident at higher walking speeds.
Collapse
Affiliation(s)
- Volker Berendes
- Department of Animal Physiology, Zoological Institute, University of Cologne, 50674 Cologne, Germany
| | - Sasha N. Zill
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA
| | - Ansgar Büschges
- Department of Animal Physiology, Zoological Institute, University of Cologne, 50674 Cologne, Germany
| | - Till Bockemühl
- Department of Animal Physiology, Zoological Institute, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
23
|
Tennenbaum M, Liu Z, Hu D, Fernandez-Nieves A. Mechanics of fire ant aggregations. NATURE MATERIALS 2016; 15:54-9. [PMID: 26501413 DOI: 10.1038/nmat4450] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/17/2015] [Indexed: 05/02/2023]
Abstract
Fire ants link their bodies to form aggregations; these can adopt a variety of structures, they can drip and spread, or withstand applied loads. Here, by using oscillatory rheology, we show that fire ant aggregations are viscoelastic. We find that, at the lowest ant densities probed and in the linear regime, the elastic and viscous moduli are essentially identical over the spanned frequency range, which highlights the absence of a dominant mode of structural relaxation. As ant density increases, the elastic modulus rises, which we interpret by alluding to ant crowding and subsequent jamming. When deformed beyond the linear regime, the aggregation flows, exhibiting shear-thinning behaviour with a stress load that is comparable to the maximum load the aggregation can withstand before individual ants are torn apart. Our findings illustrate the rich, collective mechanical behaviour that can arise in aggregations of active, interacting building blocks.
Collapse
Affiliation(s)
- Michael Tennenbaum
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Zhongyang Liu
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - David Hu
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | |
Collapse
|
24
|
Zill SN, Chaudhry S, Büschges A, Schmitz J. Force feedback reinforces muscle synergies in insect legs. ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:541-553. [PMID: 26193626 DOI: 10.1016/j.asd.2015.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
The nervous system solves complex biomechanical problems by activating muscles in modular, synergist groups. We have studied how force feedback in substrate grip is integrated with effects of sense organs that monitor support and propulsion in insects. Campaniform sensilla are mechanoreceptors that encode forces as cuticular strains. We tested the hypothesis that integration of force feedback from receptors of different leg segments during grip occurs through activation of specific muscle synergies. We characterized the effects of campaniform sensilla of the feet (tarsi) and proximal segments (trochanter and femur) on activities of leg muscles in stick insects and cockroaches. In both species, mechanical stimulation of tarsal sensilla activated the leg muscle that generates substrate grip (retractor unguis), as well as proximal leg muscles that produce inward pull (tibial flexor) and support/propulsion (trochanteral depressor). Stimulation of campaniform sensilla on proximal leg segments activated the same synergistic group of muscles. In stick insects, the effects of proximal receptors on distal leg muscles changed and were greatly enhanced when animals made active searching movements. In insects, the task-specific reinforcement of muscle synergies can ensure that substrate adhesion is rapidly established after substrate contact to provide a stable point for force generation.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA.
| | - Sumaiya Chaudhry
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA
| | - Ansgar Büschges
- Department of Animal Physiology, Zoological Institute, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, University of Bielefeld, 33501 Bielefeld, Germany
| |
Collapse
|
25
|
Berg EM, Hooper SL, Schmidt J, Büschges A. A leg-local neural mechanism mediates the decision to search in stick insects. Curr Biol 2015; 25:2012-7. [PMID: 26190069 DOI: 10.1016/j.cub.2015.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/13/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
In many animals, individual legs can either function independently, as in behaviors such as scratching or searching, or be used in coordinated patterns with other legs, as in walking or climbing. While the control of walking has been extensively investigated, the mechanisms mediating the behavioral choice to activate individual legs independently are poorly understood. We examined this issue in stick insects, in which each leg can independently produce a rhythmic searching motor pattern if it doesn't find a foothold [1-4]. We show here that one non-spiking interneuron, I4, controls searching behavior in individual legs. One I4 is present in each hemi-segment of the three thoracic ganglia [5, 6]. Search-inducing sensory input depolarizes I4. I4 activity was necessary and sufficient to initiate and maintain searching movements. When substrate contact was provided, I4 depolarization no longer induced searching. I4 therefore both integrates search-inducing sensory input and is gated out by other sensory input (substrate contact). Searching thus occurs only when it is behaviorally appropriate. I4 depolarization never elicited stepping. These data show that individual, locally activated neurons can mediate the behavioral choice to use individual legs independently. This mechanism may be particularly important in insects' front legs, which can function independently like vertebrate arms and hands [7]. Similar local command mechanisms that selectively activate the pattern generators controlling repeated functional units such as legs or body segments may be present in other systems.
Collapse
Affiliation(s)
- Eva M Berg
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50674 Cologne, Germany.
| | - Scott L Hooper
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50674 Cologne, Germany; Neurobiology Program, Department of Biological Sciences, Ohio University, Irvine Hall, Athens, OH 45701, USA
| | - Joachim Schmidt
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50674 Cologne, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, Biocenter Cologne, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
26
|
Schmitz J, Gruhn M, Büschges A. The role of leg touchdown for the control of locomotor activity in the walking stick insect. J Neurophysiol 2015; 113:2309-20. [PMID: 25652931 DOI: 10.1152/jn.00956.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/29/2015] [Indexed: 11/22/2022] Open
Abstract
Much is known on how select sensory feedback contributes to the activation of different motoneuron pools in the locomotor control system of stick insects. However, even though activation of the stance phase muscles depressor trochanteris, retractor unguis, flexor tibiae and retractor coxae is correlated with the touchdown of the leg, the potential sensory basis of this correlation or its connection to burst intensity remains unknown. In our experiments, we are using a trap door setup to investigate how ground contact contributes to stance phase muscle activation and burst intensity in different stick insect species, and which afferent input is involved in the respective changes. While the magnitude of activation is changed in all of the above stance phase muscles, only the timing of the flexor tibiae muscle is changed if the animal unexpectedly steps into a hole. Individual and combined ablation of different force sensors on the leg demonstrated influence from femoral campaniform sensilla on flexor muscle timing, causing a significant increase in the latencies during control and air steps. Our results show that specific load feedback signals determine the timing of flexor tibiae activation at the swing-to-stance transition in stepping stick insects, but that additional feedback may also be involved in flexor muscle activation during stick insect locomotion. With respect to timing, all other investigated stance phase muscles appear to be under sensory control other than that elicited through touchdown.
Collapse
Affiliation(s)
- Joscha Schmitz
- Department of Animal Physiology, Biocenter, University of Cologne, Köln, Germany
| | - Matthias Gruhn
- Department of Animal Physiology, Biocenter, University of Cologne, Köln, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Biocenter, University of Cologne, Köln, Germany
| |
Collapse
|
27
|
Mongeau JM, Sponberg SN, Miller JP, Full RJ. Sensory processing within antenna enables rapid implementation of feedback control for high-speed running maneuvers. J Exp Biol 2015; 218:2344-54. [DOI: 10.1242/jeb.118604] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/17/2015] [Indexed: 11/20/2022]
Abstract
Animals are remarkably stable during high-speed maneuvers. As the speed of locomotion increases, neural bandwidth and processing delays can limit the ability to achieve and maintain stable control. Processing the information of sensory stimuli into a control signal within the sensor itself could enable rapid implementation of whole-body feedback control during high-speed locomotion. Here, we show that processing in antennal afferents is sufficient to act as control signal for a fast sensorimotor loop. American cockroaches Periplaneta americana use their antennae to mediate escape running by tracking vertical surfaces such as walls. A control theoretic model of wall following predicts that stable control is possible if the animal can compute wall position (P) and velocity, its derivative, (D). Previous whole-nerve recordings from the antenna during simulated turning experiments demonstrated a population response consistent with P and D encoding, and suggested that the response was synchronized with the timing of a turn executed while wall following. Here, we record extracellularly from individual mechanoreceptors distributed along the antenna and show that these receptors encode D and have distinct latencies and filtering properties. When summed, receptors transform the stimulus into a control signal that could control rapid steering maneuvers. The D encoding within the antenna in addition to the temporal filtering properties and P dependence of the population of afferents support a sensory encoding hypothesis from control theory. Our findings support the hypothesis that peripheral sensory processing can enable rapid implementation of whole-body feedback control during rapid running maneuvers.
Collapse
Affiliation(s)
- Jean-Michel Mongeau
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, CA 94720-3220, USA
| | - Simon N. Sponberg
- Department of Integrative Biology, University of California – Berkeley, Berkeley, CA 94720-3140, USA
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - John P. Miller
- Center for Computational Biology, Montana State University, Bozeman, MT 59717-3148, USA
| | - Robert J. Full
- Department of Integrative Biology, University of California – Berkeley, Berkeley, CA 94720-3140, USA
| |
Collapse
|
28
|
Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J. Positive force feedback in development of substrate grip in the stick insect tarsus. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:441-455. [PMID: 24951882 DOI: 10.1016/j.asd.2014.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/09/2014] [Indexed: 06/03/2023]
Abstract
The mechanics of substrate adhesion has recently been intensively studied in insects but less is known about the sensorimotor control of substrate engagement. We characterized the responses and motor effects of tarsal campaniform sensilla in stick insects to understand how sensory signals of force could contribute to substrate grip. The tarsi consist of a chain of segments linked by highly flexible articulations. Morphological studies showed that one to four campaniform sensilla are located on the distal end of each segment. Activities of the receptors were recorded neurographically and sensilla were identified by stimulation and ablation of their cuticular caps. Responses were characterized to bending forces and axial loads, muscle contractions and to forces applied to the retractor apodeme (tendon). The tarsal sensilla effectively encoded both the rate and amplitude of loads and muscle forces, but only when movement was resisted. Mechanical stimulation of the receptors produced activation of motor neurons in the retractor unguis and tibial flexor muscles. These findings indicate that campaniform sensilla can provide information about the effectiveness of the leg muscles in generating substrate adherence. They can also produce positive force feedback that could contribute to the development of substrate grip and stabilization of the tarsal chain.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA.
| | - Sumaiya Chaudhry
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA
| | - Annelie Exter
- Department of Biological Cybernetics, University of Bielefeld, 33501 Bielefeld, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Zoological Institute, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, University of Bielefeld, 33501 Bielefeld, Germany
| |
Collapse
|
29
|
Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J. WITHDRAWN: Positive force feedback in development of substrate grip in the stick insect tarsus. ARTHROPOD STRUCTURE & DEVELOPMENT 2014:S1467-8039(14)00046-2. [PMID: 24904979 DOI: 10.1016/j.asd.2014.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.asd.2014.06.002. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Sasha N Zill
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA.
| | - Sumaiya Chaudhry
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA
| | - Annelie Exter
- Department of Biological Cybernetics, University of Bielefeld, 33501 Bielefeld, Germany
| | - Ansgar Büschges
- Department of Animal Physiology, Zoological Institute, Biocenter Cologne, University of Cologne, 50923 Cologne, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, University of Bielefeld, 33501 Bielefeld, Germany
| |
Collapse
|
30
|
Microscopic analysis of mechanosensory system monitoring the dynamic claw actions in the tenebrionid beetle Zophobas atratus. ZOOMORPHOLOGY 2014. [DOI: 10.1007/s00435-014-0225-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|