1
|
Zha S, Wang Z, Li X, Chen Z, Wang J, Li H, Cai W, Tian L. Microstructural Adaptation for Prey Manipulation in the Millipede Assassin Bugs (Hemiptera: Reduviidae: Ectrichodiinae). BIOLOGY 2023; 12:1299. [PMID: 37887009 PMCID: PMC10604205 DOI: 10.3390/biology12101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Species in Ectrichodiinae are known for their prey specialization on millipedes. However, knowledge of the morphological adaptations to this unique feeding habit was limited. In the current study, we examined the microstructures of the antennae, mouthparts, and legs of four millipede feeding ectrichodiines, Ectrychotes andreae (Thunberg, 1888), Haematoloecha limbata Miller, 1953, Labidocoris pectoralis (Stål, 1863), and Neozirta eidmanni (Taueber, 1930), and compared them with those of three species of tribelocephalines, a group closely related to Ectrichodiinae. On the antennae, we found four types of antennal sensilla. On the mouthparts, we recognized four types of labial sensilla. Sampled ectrichodiines have distinctly more and denser slightly transverse ridges on the external side of mandibles than tribelocephalines. E. andreae and H. limbata possess numerous small papillae fringed with densely arranged finger-print-like grains on the trochanter and femur; these probably facilitate the immobilization of prey. Overall, our study illustrates, at a microstructural level, the remarkable morphological adaption of prey manipulation in ectrichodiine, and has enhanced our understanding about stenophagy in the family Reduviidae.
Collapse
Affiliation(s)
- Shiyu Zha
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Z.); (Z.W.); (X.L.); (Z.C.); (H.L.); (W.C.)
| | - Zhiyao Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Z.); (Z.W.); (X.L.); (Z.C.); (H.L.); (W.C.)
| | - Xinyu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Z.); (Z.W.); (X.L.); (Z.C.); (H.L.); (W.C.)
- College of Forestry, Beijing Forestry University, Qinghua East Road 35, Beijing 100083, China
| | - Zhaoyang Chen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Z.); (Z.W.); (X.L.); (Z.C.); (H.L.); (W.C.)
| | - Jianyun Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Z.); (Z.W.); (X.L.); (Z.C.); (H.L.); (W.C.)
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Z.); (Z.W.); (X.L.); (Z.C.); (H.L.); (W.C.)
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Z.); (Z.W.); (X.L.); (Z.C.); (H.L.); (W.C.)
| |
Collapse
|
2
|
Zha S, Wang Z, Tian L, Zhao Y, Bai X, Chen Z, Cai W, Li X, Li H. Scanning Electron Microscopy of Antennae and Mouthparts of Mezira yunnana Hsiao (Hemiptera: Aradidae): Specialized Microstructures Reflecting Adaptation to Mycetophagy. INSECTS 2023; 14:333. [PMID: 37103148 PMCID: PMC10145762 DOI: 10.3390/insects14040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Many species of the family Aradidae (also known as flat bugs) feed on fungal mycelia and fruiting bodies. In order to better understand the morphological adaptation to this unique feeding habit, we examined the microstructure of antennae and mouthparts of an aradid species, Mezira yunnana Hsiao, using scanning electron microscope, and documented the fungal feeding process under laboratory conditions. The antennal sensilla include three subtypes of sensilla trichodea, three subtypes of sensilla basiconica, two subtypes of sensilla chaetica, sensilla campaniformia, and sensilla styloconica. The apex of the second segment of flagellum has a large number of various sensilla forming a sensilla cluster. The labial tip is distally constricted, which is rarely observed in other Pentatomomorpha species. The labial sensilla include three subtypes of sensilla trichodea, three subtypes of sensilla basiconica, and a sensilla campaniformia. The tip of the labium has only three pairs of sensilla basiconica III and small comb-shaped cuticular processes. The external surface of the mandibular apex has 8-10 ridge-like central teeth. A series of key morphological structures associated with mycetophagous feeding habit were identified, which will facilitate future studies on adaptive evolution of species in Pentatomomorpha as well as in other heteropteran lineages.
Collapse
Affiliation(s)
- Shiyu Zha
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhiyao Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yisheng Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaoshuan Bai
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
| | - Zhaoyang Chen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xinyu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Scolari F, Girella A, Croce AC. Imaging and spectral analysis of autofluorescence patterns in larval head structures of mosquito vectors. Eur J Histochem 2022; 66. [PMID: 36128772 PMCID: PMC9528535 DOI: 10.4081/ejh.2022.3462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Autofluorescence (AF) in mosquitoes is currently poorly explored, despite its great potential as a marker of body structures and biological functions. Here, for the first time AF in larval heads of two mosquitoes of key public health importance, Aedes albopictus and Culex pipiens, is studied using fluorescence imaging and spectrofluorometry, similarly to a label-free histochemical approach. In generally conserved distribution patterns, AF shows differences between mouth brushes and antennae of the two species. The blue AF ascribable to resilin at the antennal bases, more extended in Cx. pipiens, suggests a potential need to support different antennal movements. The AF spectra larger in Cx. pipiens indicate a variability in material composition and properties likely relatable to mosquito biology, including diverse feeding and locomotion behaviours with implications for vector control.
Collapse
Affiliation(s)
- Francesca Scolari
- Institute of Molecular Genetics, Italian National Research Council (CNR), Pavia.
| | - Alessandro Girella
- Department of Chemistry - C.S.G.I., University of Pavia; Centro Interdipartimentale di Studi e Ricerche per la Conservazione del Patrimonio Culturale (CISRiC), University of Pavia.
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Pavia.
| |
Collapse
|
4
|
Wang XY, Ma N, Hua BZ. Mouthpart structure of the adult Bicaubittacus appendiculatus () (Mecoptera: Bittacidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 70:101176. [PMID: 35830786 DOI: 10.1016/j.asd.2022.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The structure and functional morphology of the mouthparts were investigated in adult hangingfly Bicaubittacus appendiculatus (Esben-Petersen, 1927) by scanning electron microscopy and histological serial sections. The mandibulate mouthparts consist of a labrum-epipharynx, paired mandibles and maxillae, and unpaired labium and hypopharynx. The labrum is elongated and tapered toward the apex. The epipharynx is furnished with numerous sensilla. The mandibles are sword-shaped, with an outer sharp tooth curved mesad and an inner blunt corner. The basal region of each mandible processes a conical projection. The maxillae are well-developed, each consisting of a sclerotized cardo, an elongated stipes, which bears an inner lacinia, an outer galea, and laterally a five-segmented maxillary palp. The labium is formed by a postmentum, a prementum and a pair of two-segmented labial palps. The hypopharynx is concave inward on the anterior side, with numerous microtrichia on the posterior surface. Seven types of sensilla were found on the mouthparts: sensilla basiconica on the epipharynx, and maxillary and labial palps; sensilla chaetica on the epipharynx; sensilla palmata, sensilla placoidea and sensilla trichodea on the epipharynx and maxillary palp; sensilla campaniformia and hair plates on the basal joints of palps. The sensillar function and the feeding mechanism of mouthparts in bittacids are briefly discussed.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Na Ma
- School of Life Sciences and Agricultural Engineering, Henan Provincial Key Laboratory of Funiu Mountain Insect Biology, Nanyang Normal University, Nanyang, Henan, 473061, China.
| | - Bao-Zhen Hua
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
5
|
Waldeck B, Schaub GA. "Natural infections" with Trypanosoma cruzi via the skin of mice: size of mouthparts of vectors and numbers of invading parasites. Parasitol Res 2022; 121:2033-2041. [PMID: 35507065 PMCID: PMC9192721 DOI: 10.1007/s00436-022-07516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
Investigating parameters influencing natural infections with Trypanosoma cruzi via the skin, the diameters of mouthparts of different stages of triatomines vectors were measured to determine the size of the channel accessible for T. cruzi during cutaneous infection. The mean diameters of the skin-penetrating mandibles of first to fifth instar nymphs of the vector Triatoma infestans increased from 18 to 65 µm. The mean diameter in fourth instar nymphs of Dipetalogaster maxima was 86 µm. Different numbers of isolated vector-derived metacyclic trypomastigotes (10–10,000) were injected intradermally into mice. Prepatent periods, parasitemia and mortality rates were compared with those of mice obtaining 10,000 metacyclic trypomastigotes that are usually present in the first drop of faeces onto the feeding wounds of fifth and fourth instar nymphs of T. infestans and D. maxima, respectively. After injection of 50–10,000 T. cruzi, in all 42 mice the infection developed. An injection of 10 parasites induced an infection in 8 out of 15 mice. With increasing doses of parasites, prepatent periods tended to decrease. The level of parasitemia was higher after injection of the lowest dose. Except for one mouse all infected mice died. After placement of 10,000 metacyclic trypomastigotes onto the feeding wound of fifth or fourth instar nymphs of T. infestans and D. maxima, respectively, the infection rates of the groups, prepatent periods and the levels of parasitemia of T. cruzi in mice indicated that about 10–1,000 metacyclic trypomastigotes entered the skin via this route. For the first time, the present data emphasise the risk of an infection by infectious excreta of triatomines deposited near the feeding wound and the low number of invading parasites.
Collapse
Affiliation(s)
- Barbara Waldeck
- Zoology-Parasitology, Ruhr University, 44780, Bochum, Germany
| | - Günter A Schaub
- Zoology-Parasitology, Ruhr University, 44780, Bochum, Germany.
| |
Collapse
|
6
|
Schaub GA. An Update on the Knowledge of Parasite-Vector Interactions of Chagas Disease. Res Rep Trop Med 2021; 12:63-76. [PMID: 34093053 PMCID: PMC8169816 DOI: 10.2147/rrtm.s274681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
This review focusses on the interactions between the etiologic agent of Chagas disease, Trypanosoma cruzi, and its triatomine vector. The flagellate mainly colonizes the intestinal tract of the insect. The effect of triatomines on trypanosomes is indicated by susceptibility and refractoriness phenomena that vary according to the combination of the strains. Other effects are apparent in the different regions of the gut. In the stomach, the majority of ingested blood trypomastigotes are killed while the remaining transform to round stages. In the small intestine, these develop into epimastigotes, the main replicative stage. In the rectum, the population density is the highest and is where the infectious stage develops, the metacyclic trypomastigote. In all regions of the gut, starvation and feeding of the triatomine affect T. cruzi. In the small intestine and rectum, starvation reduces the population density and more spheromastigotes develop. In the rectum, feeding after short-term starvation induces metacyclogenesis and after long-term starvation the development of specific cells, containing several nuclei, kinetoplasts and flagella. When considering the effects of T. cruzi on triatomines, the flagellate seems to be of low pathogenicity. However, during stressful periods, which are normal in natural populations, effects occur often on the behaviour, eg, in readiness to approach the host, the period of time before defecation, dispersal and aggregation. In nymphs, the duration of the different instars and the mortality rates increase, but this seems to be induced by repeated infections or blood quality by the feeding on infected hosts. Starvation resistance is often reduced by infection. Longevity and reproduction of adults is reduced, but only after infection with some strains of T. cruzi. Only components of the surface coat of blood trypomastigotes induce an immune reaction. However, this seems to act against gut bacteria and favours the development of T. cruzi.
Collapse
Affiliation(s)
- Günter A Schaub
- Zoology/Parasitology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Chen C, Tao Y, Li Y, Liu Q, Li S, Tang Z. A structure-function knowledge extraction method for bio-inspired design. COMPUT IND 2021. [DOI: 10.1016/j.compind.2021.103402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Wang XQ, Guo JS, Li DT, Yu Y, Hagoort J, Moussian B, Zhang CX. Three-dimensional reconstruction of a whole insect reveals its phloem sap-sucking mechanism at nano-resolution. eLife 2021; 10:62875. [PMID: 33620311 PMCID: PMC8016479 DOI: 10.7554/elife.62875] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/22/2021] [Indexed: 01/04/2023] Open
Abstract
Using serial block-face scanning electron microscopy, we report on the internal 3D structures of the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) at nanometer resolution for the first time. Within the reconstructed organs and tissues, we found many novel and fascinating internal structures in the planthopper such as naturally occurring three four-way rings connecting adjacent spiracles to facilitate efficient gas exchange, and fungal endosymbionts in a single huge insect cell occupying 22% of the abdomen volume to enable the insect to live on plant sap. To understand the muscle and stylet movement during phloem sap-sucking, the cephalic skeleton and muscles were reconstructed in feeding nymphs. The results revealed an unexpected contraction of the protractors of the stylets and suggested a novel feeding model for the phloem sap-sucking. Since the 19th century, scientists have been investigating how the organs of insects are shaped and arranged. However, classic microscopy methods have struggled to image these small, delicate structures. Understanding how the organs of insects are configured could help to identify new methods for controlling pests, such as chemicals that target the mouthparts that some insects use to feed on plants. Most insects that feed on the sap of plants suck out the nutrient via their stylet bundle – a thin, straw-like structure surrounded by a sheath called the labium. As well as drying out the plant and damaging its tissues, the stylet bundle also allows the insect to transmit viruses that cause further harm. To investigate these mouthparts in more detail, Wang, Guo et al. used a method called SBF-SEM to determine the three-dimensional structure of one of the most destructive pests of rice crops, the brown planthopper. In this technique, a picture of the planthopper was taken every time a thin slice of its body was removed. This continuous slicing and re-imaging generated thousands of images that were compiled into a three-dimensional model of the brown planthopper’s whole body and internal organs. Previously unknown features emerged from the reconstruction, including a huge cell in the planthopper’s abdomen which is full of fungi that provide the nutrients absent in plants. Next, Wang, Guo et al. used this technique to see how the muscles in the labium and surrounding the stylet move by imaging planthoppers that were frozen at different stages of the feeding process. This revealed that when brown planthoppers bow their heads to eat, the labium compresses and pushes out the stylet, allowing it to pierce deeper into the plant. This is the first time that the body of such a small insect has been reconstructed three-dimensionally using SBF-SEM. Furthermore, these findings help explain how brown planthoppers and other sap-feeding insects insert their stylet and damage plants, potentially providing a stepping stone towards identifying new strategies to stop these pests from destroying millions of crops.
Collapse
Affiliation(s)
- Xin-Qiu Wang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Jian-Sheng Guo
- Department of Pathology of Sir Run Run Shaw Hospital, and Center of Cryo-Electron Microscopy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan-Ting Li
- Institute of Insect Science, Zhejiang University, Hangzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yang Yu
- Carl Zeiss (Shanghai) Co., Ltd.60 Meiyue Road, China (Shanghai) Pilot Free Trade Zone, Shanghai, China
| | - Jaco Hagoort
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Université Côte d'Azur, Institute of Biology Valrose, Parc Valrose, Inserm, France
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|