1
|
Mao S, Kulbayeva S, Osadchuk M. Chest x-ray images: transfer learning model in COVID-19 detection. J Eval Clin Pract 2025; 31:e14215. [PMID: 39462985 DOI: 10.1111/jep.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Abstract
RATIONALE, AIMS AND OBJECTIVES This research aims to develop an effective algorithm for diagnosing COVID-19 in chest X-rays using the transfer learning method and support vector machines. METHOD In total, data was collected from 10 clinics, including both large city hospitals and smaller medical institutions. This ensured a diverse range of geographical and demographic information in the sample. An extensive data set was collected, including 10,000 chest X-ray images. 5000 images represent normal cases, 3993 images represent pneumonia cases, and 1007 images represent COVID-19 cases. Machine learning methods were applied to develop a classification model, and the results were compared with seven state-of-the-art models and a lightweight CNN architecture. RESULTS The results showed that the proposed method achieves high accuracy values (Accuracy): 0.95 for COVID-19, 0.89 for pneumonia, and 0.92 for normal images (p < 0.05). Comparison with other models demonstrates statistically significant superiority of our method in accuracy across all three classes. The EfficientNet-B0 model surpasses our method only in accuracy for normal images with p < 0.01, confirming the advantages of our method. Our method demonstrates high sensitivity values (Sensitivity): 0.96 for COVID-19, 0.88 for pneumonia, and 0.93 for normal images (p < 0.05), outperforming most of the compared models. Correlation analysis showed Pearson coefficients of 0.92, 0.89, and 0.94 for COVID-19, pneumonia, and normal images, respectively, confirming a high degree of consistency between predicted and true class labels. In addition, the model was validated on external datasets to assess its generalizability. This validation confirmed its high level of effectiveness in a variety of clinical settings. CONCLUSION This study confirms the importance of applying machine learning methods in medical applications and opens new perspectives for early diagnosis of infectious diseases. The practical application of the obtained results can enhance the efficiency of diagnosis and control the spread of COVID-19, as well as contribute to the development of innovative methods in medical practice.
Collapse
Affiliation(s)
- Siqi Mao
- Department of Statistics, Florida State University, Tallahassee, Florida, USA
| | - Saltanat Kulbayeva
- Department of Obstetrics and Gynaecology, JSC South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - Mikhail Osadchuk
- Department of Polyclinic Therapy, Institute of Clinical Medicine named after N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
2
|
Davidian M, Lahav A, Joshua BZ, Wand O, Lurie Y, Mark S. Exploring the Interplay of Dataset Size and Imbalance on CNN Performance in Healthcare: Using X-rays to Identify COVID-19 Patients. Diagnostics (Basel) 2024; 14:1727. [PMID: 39202215 PMCID: PMC11353409 DOI: 10.3390/diagnostics14161727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
INTRODUCTION Convolutional Neural Network (CNN) systems in healthcare are influenced by unbalanced datasets and varying sizes. This article delves into the impact of dataset size, class imbalance, and their interplay on CNN systems, focusing on the size of the training set versus imbalance-a unique perspective compared to the prevailing literature. Furthermore, it addresses scenarios with more than two classification groups, often overlooked but prevalent in practical settings. METHODS Initially, a CNN was developed to classify lung diseases using X-ray images, distinguishing between healthy individuals and COVID-19 patients. Later, the model was expanded to include pneumonia patients. To evaluate performance, numerous experiments were conducted with varied data sizes and imbalance ratios for both binary and ternary classifications, measuring various indices to validate the model's efficacy. RESULTS The study revealed that increasing dataset size positively impacts CNN performance, but this improvement saturates beyond a certain size. A novel finding is that the data balance ratio influences performance more significantly than dataset size. The behavior of three-class classification mirrored that of binary classification, underscoring the importance of balanced datasets for accurate classification. CONCLUSIONS This study emphasizes the fact that achieving balanced representation in datasets is crucial for optimal CNN performance in healthcare, challenging the conventional focus on dataset size. Balanced datasets improve classification accuracy, both in two-class and three-class scenarios, highlighting the need for data-balancing techniques to improve model reliability and effectiveness. MOTIVATION Our study is motivated by a scenario with 100 patient samples, offering two options: a balanced dataset with 200 samples and an unbalanced dataset with 500 samples (400 healthy individuals). We aim to provide insights into the optimal choice based on the interplay between dataset size and imbalance, enriching the discourse for stakeholders interested in achieving optimal model performance. LIMITATIONS Recognizing a single model's generalizability limitations, we assert that further studies on diverse datasets are needed.
Collapse
Affiliation(s)
- Moshe Davidian
- Guilford Glazer Faculty of Business and Management, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Adi Lahav
- Software Engineering Department, SCE—Shamoon College of Engineering, Beer-Sheva 84100, Israel;
| | - Ben-Zion Joshua
- Department of Otorhinolaryngology, Barzilai University Medical Center, Ashkelon 7830604, Israel;
| | - Ori Wand
- Division of Pulmonary Medicine, Barzilai University Medical Center, Ashkelon 7830604, Israel;
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yotam Lurie
- Guilford Glazer Faculty of Business and Management, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Shlomo Mark
- Software Engineering Department, SCE—Shamoon College of Engineering, Ashdod 77245, Israel;
| |
Collapse
|
3
|
Huang J, Zhu X, Chen Z, Lin G, Huang M, Feng Q. Pathological Priors Inspired Network for Vertebral Osteophytes Recognition. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2522-2536. [PMID: 38386579 DOI: 10.1109/tmi.2024.3367868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Automatic vertebral osteophyte recognition in Digital Radiography is of great importance for the early prediction of degenerative disease but is still a challenge because of the tiny size and high inter-class similarity between normal and osteophyte vertebrae. Meanwhile, common sampling strategies applied in Convolution Neural Network could cause detailed context loss. All of these could lead to an incorrect positioning predicament. In this paper, based on important pathological priors, we define a set of potential lesions of each vertebra and propose a novel Pathological Priors Inspired Network (PPIN) to achieve accurate osteophyte recognition. PPIN comprises a backbone feature extractor integrating with a Wavelet Transform Sampling module for high-frequency detailed context extraction, a detection branch for locating all potential lesions and a classification branch for producing final osteophyte recognition. The Anatomical Map-guided Filter between two branches helps the network focus on the specific anatomical regions via the generated heatmaps of potential lesions in the detection branch to address the incorrect positioning problem. To reduce the inter-class similarity, a Bilateral Augmentation Module based on the graph relationship is proposed to imitate the clinical diagnosis process and to extract discriminative contextual information between adjacent vertebrae in the classification branch. Experiments on the two osteophytes-specific datasets collected from the public VinDr-Spine database show that the proposed PPIN achieves the best recognition performance among multitask frameworks and shows strong generalization. The results on a private dataset demonstrate the potential in clinical application. The Class Activation Maps also show the powerful localization capability of PPIN. The source codes are available in https://github.com/Phalo/PPIN.
Collapse
|
4
|
Abubakar H, Al-Turjman F, Ameen ZS, Mubarak AS, Altrjman C. A hybridized feature extraction for COVID-19 multi-class classification on computed tomography images. Heliyon 2024; 10:e26939. [PMID: 38463848 PMCID: PMC10920381 DOI: 10.1016/j.heliyon.2024.e26939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
COVID-19 has killed more than 5 million individuals worldwide within a short time. It is caused by SARS-CoV-2 which continuously mutates and produces more transmissible new different strains. It is therefore of great significance to diagnose COVID-19 early to curb its spread and reduce the death rate. Owing to the COVID-19 pandemic, traditional diagnostic methods such as reverse-transcription polymerase chain reaction (RT-PCR) are ineffective for diagnosis. Medical imaging is among the most effective techniques of respiratory disorders detection through machine learning and deep learning. However, conventional machine learning methods depend on extracted and engineered features, whereby the optimum features influence the classifier's performance. In this study, Histogram of Oriented Gradient (HOG) and eight deep learning models were utilized for feature extraction while K-Nearest Neighbour (KNN) and Support Vector Machines (SVM) were used for classification. A combined feature of HOG and deep learning feature was proposed to improve the performance of the classifiers. VGG-16 + HOG achieved 99.4 overall accuracy with SVM. This indicates that our proposed concatenated feature can enhance the SVM classifier's performance in COVID-19 detection.
Collapse
Affiliation(s)
- Hassana Abubakar
- Biomedical Engineering Department, Faculty of Engineering, Near East University, Mersin 10, Turkey
| | - Fadi Al-Turjman
- Artificial Intelligence Engineering Department, AI and Robotics Institute, Near East University, Mersin 10, Turkey
- Research Center for AI and IoT, Faculty of Engineering, University of Kyrenia, Mersin 10, Turkey
| | - Zubaida S. Ameen
- Operational Research Center in Healthcare, Near East University, Mersin 10, Turkey
| | - Auwalu S. Mubarak
- Operational Research Center in Healthcare, Near East University, Mersin 10, Turkey
| | - Chadi Altrjman
- Waterloo University, 200 University Avenue West. Waterloo, ON, Canada
| |
Collapse
|
5
|
Kabir MM, Mridha M, Rahman A, Hamid MA, Monowar MM. Detection of COVID-19, pneumonia, and tuberculosis from radiographs using AI-driven knowledge distillation. Heliyon 2024; 10:e26801. [PMID: 38444490 PMCID: PMC10912466 DOI: 10.1016/j.heliyon.2024.e26801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Chest radiography is an essential diagnostic tool for respiratory diseases such as COVID-19, pneumonia, and tuberculosis because it accurately depicts the structures of the chest. However, accurate detection of these diseases from radiographs is a complex task that requires the availability of medical imaging equipment and trained personnel. Conventional deep learning models offer a viable automated solution for this task. However, the high complexity of these models often poses a significant obstacle to their practical deployment within automated medical applications, including mobile apps, web apps, and cloud-based platforms. This study addresses and resolves this dilemma by reducing the complexity of neural networks using knowledge distillation techniques (KDT). The proposed technique trains a neural network on an extensive collection of chest X-ray images and propagates the knowledge to a smaller network capable of real-time detection. To create a comprehensive dataset, we have integrated three popular chest radiograph datasets with chest radiographs for COVID-19, pneumonia, and tuberculosis. Our experiments show that this knowledge distillation approach outperforms conventional deep learning methods in terms of computational complexity and performance for real-time respiratory disease detection. Specifically, our system achieves an impressive average accuracy of 0.97, precision of 0.94, and recall of 0.97.
Collapse
Affiliation(s)
- Md Mohsin Kabir
- Department of Computer Science & Engineering, Bangladesh University of Business & Technology, Dhaka-1216, Bangladesh
| | - M.F. Mridha
- Department of Computer Science, American International University-Bangladesh, Dhaka-1229, Bangladesh
| | - Ashifur Rahman
- Department of Computer Science & Engineering, Bangladesh University of Business & Technology, Dhaka-1216, Bangladesh
| | - Md. Abdul Hamid
- Department of Information Technology, Faculty of Computing & Information Technology, King Abdulaziz University, Jeddah-21589, Kingdom of Saudi Arabia
| | - Muhammad Mostafa Monowar
- Department of Information Technology, Faculty of Computing & Information Technology, King Abdulaziz University, Jeddah-21589, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Wang P, Wu S, Tian M, Liu K, Cong J, Zhang W, Wei B. A conformal regressor for predicting negative conversion time of Omicron patients. Med Biol Eng Comput 2024:10.1007/s11517-024-03029-8. [PMID: 38363486 DOI: 10.1007/s11517-024-03029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
In light of the situation and the characteristics of Omicron, the country has continuously optimized the rules for the prevention and control of COVID-19. The global epidemic is still spreading, and new cases of infection continue to emerge in China. To facilitate the infected person to estimate the course of virus infection, a prediction model for predicting negative conversion time is proposed in this article. The clinical features of Omicron-infected patients in Shandong Province in the first half of 2022 are retrospectively studied. These features are grouped by disease diagnosis result, clinical sign, traditional Chinese medicine symptoms, and drug use. These features are input to the eXtreme Gradient Boosting (XGBoost) model, and the output is the predicted number of negative conversion days. At the same time, XGBoost is used as the underlying algorithm of the conformal prediction (CP) framework, which can realize the probability interval estimation with a controllable error rate. The results show that the proposed model has a mean absolute error of 3.54 days and has the shortest interval prediction result. This shows that the method in this paper can carry more decision-making information and help people better understand the disease and self-estimate the course of the disease to a certain extent.
Collapse
Affiliation(s)
- Pingping Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China
| | - Shenjing Wu
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China
| | - Mei Tian
- Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, 250011, China
| | - Kunmeng Liu
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China
| | - Jinyu Cong
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China
| | - Wei Zhang
- Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, 250011, China.
| | - Benzheng Wei
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China.
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, 266112, China.
| |
Collapse
|
7
|
Huang ML, Liao YC. Stacking Ensemble and ECA-EfficientNetV2 Convolutional Neural Networks on Classification of Multiple Chest Diseases Including COVID-19. Acad Radiol 2023; 30:1915-1935. [PMID: 36526533 PMCID: PMC9748720 DOI: 10.1016/j.acra.2022.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
RATIONALE AND OBJECTIVES Early detection and treatment of COVID-19 patients is crucial. Convolutional neural networks have been proven to accurately extract features in medical images, which accelerates time required for testing and increases the effectiveness of COVID-19 diagnosis. This study proposes two classification models for multiple chest diseases including COVID-19. MATERIALS AND METHODS The first is Stacking-ensemble model, which stacks six pretrained models including EfficientNetV2-B0, EfficientNetV2-B1, EfficientNetV2-B2, EfficientNetV2-B3, EfficientNetV2-S and EfficientNetV2-M. The second model is self-designed model ECA-EfficientNetV2 based on ECA-Net and EfficientNetV2. Ten-fold cross validation was performed for each model on chest X-ray and CT images. One more dataset, COVID-CT dataset, was tested to verify the performance of the proposed Stacking-ensemble and ECA-EfficientNetV2 models. RESULTS The best performance comes from the proposed ECA-EfficientNetV2 model with the highest Accuracy of 99.21%, Precision of 99.23%, Recall of 99.25%, F1-score of 99.20%, and (area under the curve) AUC of 99.51% on chest X-ray dataset; the best performance comes from the proposed ECA-EfficientNetV2 model with the highest Accuracy of 99.81%, Precision of 99.80%, Recall of 99.80%, F1-score of 99.81%, and AUC of 99.87% on chest CT dataset. The differences for five metrics between Stacking-ensemble and ECA-EfficientNetV2 models are not significant. CONCLUSION Ensemble model achieves better performance than single pretrained models. Compared to the SOTA, Stacking-ensemble and ECA-EfficientNetV2 models proposed in this study demonstrate promising performance on classification of multiple chest diseases including COVID-19.
Collapse
Affiliation(s)
- Mei-Ling Huang
- Department of Industrial Engineering & Management, National Chin-Yi University of Technology, 57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung, 411030, Taiwan.
| | - Yu-Chieh Liao
- Department of Industrial Engineering & Management, National Chin-Yi University of Technology, 57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung, 411030, Taiwan
| |
Collapse
|
8
|
Casey AE, Ansari S, Nakisa B, Kelly B, Brown P, Cooper P, Muhammad I, Livingstone S, Reddy S, Makinen VP. Application of a Comprehensive Evaluation Framework to COVID-19 Studies: Systematic Review of Translational Aspects of Artificial Intelligence in Health Care. JMIR AI 2023; 2:e42313. [PMID: 37457747 PMCID: PMC10337329 DOI: 10.2196/42313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 03/22/2023] [Indexed: 07/18/2023]
Abstract
Background Despite immense progress in artificial intelligence (AI) models, there has been limited deployment in health care environments. The gap between potential and actual AI applications is likely due to the lack of translatability between controlled research environments (where these models are developed) and clinical environments for which the AI tools are ultimately intended. Objective We previously developed the Translational Evaluation of Healthcare AI (TEHAI) framework to assess the translational value of AI models and to support successful transition to health care environments. In this study, we applied the TEHAI framework to the COVID-19 literature in order to assess how well translational topics are covered. Methods A systematic literature search for COVID-19 AI studies published between December 2019 and December 2020 resulted in 3830 records. A subset of 102 (2.7%) papers that passed the inclusion criteria was sampled for full review. The papers were assessed for translational value and descriptive data collected by 9 reviewers (each study was assessed by 2 reviewers). Evaluation scores and extracted data were compared by a third reviewer for resolution of discrepancies. The review process was conducted on the Covidence software platform. Results We observed a significant trend for studies to attain high scores for technical capability but low scores for the areas essential for clinical translatability. Specific questions regarding external model validation, safety, nonmaleficence, and service adoption received failed scores in most studies. Conclusions Using TEHAI, we identified notable gaps in how well translational topics of AI models are covered in the COVID-19 clinical sphere. These gaps in areas crucial for clinical translatability could, and should, be considered already at the model development stage to increase translatability into real COVID-19 health care environments.
Collapse
Affiliation(s)
- Aaron Edward Casey
- South Australian Health and Medical Research Institute Adelaide Australia
- Australian Centre for Precision Health Cancer Research Institute University of South Australia Adelaide Australia
| | - Saba Ansari
- School of Medicine Deakin University Geelong Australia
| | - Bahareh Nakisa
- School of Information Technology Deakin University Geelong Australia
| | | | | | - Paul Cooper
- School of Medicine Deakin University Geelong Australia
| | | | | | - Sandeep Reddy
- School of Medicine Deakin University Geelong Australia
| | - Ville-Petteri Makinen
- South Australian Health and Medical Research Institute Adelaide Australia
- Australian Centre for Precision Health Cancer Research Institute University of South Australia Adelaide Australia
- Computational Medicine Faculty of Medicine University of Oulu Oulu Finland
- Centre for Life Course Health Research Faculty of Medicine University of Oulu Oulu Finland
| |
Collapse
|
9
|
Zgheib R, Chahbandarian G, Kamalov F, Messiry HE, Al-Gindy A. Towards an ML-based semantic IoT for pandemic management: A survey of enabling technologies for COVID-19. Neurocomputing 2023; 528:160-177. [PMID: 36647510 PMCID: PMC9833856 DOI: 10.1016/j.neucom.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/03/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
The connection between humans and digital technologies has been documented extensively in the past decades but needs to be evaluated through the current global pandemic. Artificial Intelligence(AI), with its two strands, Machine Learning (ML) and Semantic Reasoning, has proven to be a great solution to provide efficient ways to prevent, diagnose and limit the spread of COVID-19. IoT solutions have been widely proposed for COVID-19 disease monitoring, infection geolocation, and social applications. In this paper, we investigate the usage of the three technologies for handling the COVID-19 pandemic. For this purpose, we surveyed the existing ML applications and algorithms proposed during the pandemic to detect COVID-19 disease using symptom factors and image processing. The survey includes existing approaches including semantic technologies and IoT systems for COVID-19. Based on the survey result, we classified the main challenges and the solutions that could solve them. The study proposes a conceptual framework for pandemic management and discusses challenges and trends for future research.
Collapse
Affiliation(s)
- Rita Zgheib
- Department of Computer Engineering, Canadian University Dubai, Dubai, United Arab Emirates
| | | | - Firuz Kamalov
- Department of Electrical Engineering, Canadian University Dubai, Dubai, United Arab Emirates
| | - Haythem El Messiry
- University of Science and Technology of Fujairah, Fujairah, United Arab Emirates
- University of Ain Shams, Cairo, Egypt
| | - Ahmed Al-Gindy
- Department of Electrical Engineering, Canadian University Dubai, Dubai, United Arab Emirates
| |
Collapse
|
10
|
Wali A, Ahmad M, Naseer A, Tamoor M, Gilani S. StynMedGAN: Medical images augmentation using a new GAN model for improved diagnosis of diseases. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2023. [DOI: 10.3233/jifs-223996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Deep networks require a considerable amount of training data otherwise these networks generalize poorly. Data Augmentation techniques help the network generalize better by providing more variety in the training data. Standard data augmentation techniques such as flipping, and scaling, produce new data that is a modified version of the original data. Generative Adversarial networks (GANs) have been designed to generate new data that can be exploited. In this paper, we propose a new GAN model, named StynMedGAN for synthetically generating medical images to improve the performance of classification models. StynMedGAN builds upon the state-of-the-art styleGANv2 that has produced remarkable results generating all kinds of natural images. We introduce a regularization term that is a normalized loss factor in the existing discriminator loss of styleGANv2. It is used to force the generator to produce normalized images and penalize it if it fails. Medical imaging modalities, such as X-Rays, CT-Scans, and MRIs are different in nature, we show that the proposed GAN extends the capacity of styleGANv2 to handle medical images in a better way. This new GAN model (StynMedGAN) is applied to three types of medical imaging: X-Rays, CT scans, and MRI to produce more data for the classification tasks. To validate the effectiveness of the proposed model for the classification, 3 classifiers (CNN, DenseNet121, and VGG-16) are used. Results show that the classifiers trained with StynMedGAN-augmented data outperform other methods that only used the original data. The proposed model achieved 100%, 99.6%, and 100% for chest X-Ray, Chest CT-Scans, and Brain MRI respectively. The results are promising and favor a potentially important resource that can be used by practitioners and radiologists to diagnose different diseases.
Collapse
Affiliation(s)
- Aamir Wali
- Department of Computer Science, National University of Computer and Emerging Science, Faisal Town, Lahore, Pakistan
| | - Muzammil Ahmad
- Department of Computer Science, National University of Computer and Emerging Science, Faisal Town, Lahore, Pakistan
| | - Asma Naseer
- Department of Computer Science, National University of Computer and Emerging Science, Faisal Town, Lahore, Pakistan
| | - Maria Tamoor
- Department of Computer Science, Forman Christian College University, Zahoor Ilahi Road, Lahore, Pakistan
| | - S.A.M. Gilani
- Department of Computer Science, National University of Computer and Emerging Science, Faisal Town, Lahore, Pakistan
| |
Collapse
|
11
|
Zhu H, Wang J, Wang SH, Raman R, Górriz JM, Zhang YD. An Evolutionary Attention-Based Network for Medical Image Classification. Int J Neural Syst 2023; 33:2350010. [PMID: 36655400 DOI: 10.1142/s0129065723500107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deep learning has become a primary choice in medical image analysis due to its powerful representation capability. However, most existing deep learning models designed for medical image classification can only perform well on a specific disease. The performance drops dramatically when it comes to other diseases. Generalizability remains a challenging problem. In this paper, we propose an evolutionary attention-based network (EDCA-Net), which is an effective and robust network for medical image classification tasks. To extract task-related features from a given medical dataset, we first propose the densely connected attentional network (DCA-Net) where feature maps are automatically channel-wise weighted, and the dense connectivity pattern is introduced to improve the efficiency of information flow. To improve the model capability and generalizability, we introduce two types of evolution: intra- and inter-evolution. The intra-evolution optimizes the weights of DCA-Net, while the inter-evolution allows two instances of DCA-Net to exchange training experience during training. The evolutionary DCA-Net is referred to as EDCA-Net. The EDCA-Net is evaluated on four publicly accessible medical datasets of different diseases. Experiments showed that the EDCA-Net outperforms the state-of-the-art methods on three datasets and achieves comparable performance on the last dataset, demonstrating good generalizability for medical image classification.
Collapse
Affiliation(s)
- Hengde Zhu
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Jian Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Shui-Hua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Rajeev Raman
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Juan M Górriz
- Department of Signal Theory, Networking and Communications, University of Granada, Granada 52005, Spain
| | - Yu-Dong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
12
|
Han Y, Holste G, Ding Y, Tewfik A, Peng Y, Wang Z. Radiomics-Guided Global-Local Transformer for Weakly Supervised Pathology Localization in Chest X-Rays. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:750-761. [PMID: 36288235 PMCID: PMC10081959 DOI: 10.1109/tmi.2022.3217218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Before the recent success of deep learning methods for automated medical image analysis, practitioners used handcrafted radiomic features to quantitatively describe local patches of medical images. However, extracting discriminative radiomic features relies on accurate pathology localization, which is difficult to acquire in real-world settings. Despite advances in disease classification and localization from chest X-rays, many approaches fail to incorporate clinically-informed domainspecific radiomic features. For these reasons, we propose a Radiomics-Guided Transformer (RGT) that fuses global image information with local radiomics-guided auxiliary information to provide accurate cardiopulmonary pathology localization and classification without any bounding box annotations. RGT consists of an image Transformer branch, a radiomics Transformer branch, and fusion layers that aggregate image and radiomics information. Using the learned self-attention of its image branch, RGT extracts a bounding box for which to compute radiomic features, which are further processed by the radiomics branch; learned image and radiomic features are then fused and mutually interact via cross-attention layers. Thus, RGT utilizes a novel end-to-end feedback loop that can bootstrap accurate pathology localization only using image-level disease labels. Experiments on the NIH ChestXRay dataset demonstrate that RGT outperforms prior works in weakly supervised disease localization (by an average margin of 3.6% over various intersection-over-union thresholds) and classification (by 1.1% in average area under the receiver operating characteristic curve). We publicly release our codes and pre-trained models at https://github.com/VITAGroup/chext.
Collapse
|
13
|
Balan E, Saraniya O. Novel neural network architecture using sharpened cosine similarity for robust classification of Covid-19, pneumonia and tuberculosis diseases from X-rays. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2023. [DOI: 10.3233/jifs-222840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
COVID-19 is a rapidly proliferating transmissible virus that substantially impacts the world population. Consequently, there is an increasing demand for fast testing, diagnosis, and treatment. However, there is a growing need for quick testing, diagnosis, and treatment. In order to treat infected individuals, stop the spread of the disease, and cure severe pneumonia, early covid-19 detection is crucial. Along with covid-19, various pneumonia etiologies, including tuberculosis, provide additional difficulties for the medical system. In this study, covid-19, pneumonia, tuberculosis, and other specific diseases are categorized using Sharpened Cosine Similarity Network (SCS-Net) rather than dot products in neural networks. In order to benchmark the SCS-Net, the model’s performance is evaluated on binary class (covid-19 and normal), and four-class (tuberculosis, covid-19, pneumonia, and normal) based X-ray images. The proposed SCS-Net for distinguishing various lung disorders has been successfully validated. In multiclass classification, the proposed SCS-Net succeeded with an accuracy of 94.05% and a Cohen’s kappa score of 90.70% ; in binary class, it achieved an accuracy of 96.67% and its Cohen’s kappa score of 93.70%. According to our investigation, SCS in deep neural networks significantly lowers the test error with lower divergence. SCS significantly increases classification accuracy in neural networks and speeds up training.
Collapse
Affiliation(s)
- Elakkiya Balan
- Department of Electronics and Communication Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, India
| | - O. Saraniya
- Department of Electronics and Communication Engineering, Government College of Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
14
|
Yang M, Lim MK, Qu Y, Ni D, Xiao Z. Supply chain risk management with machine learning technology: A literature review and future research directions. COMPUTERS & INDUSTRIAL ENGINEERING 2023; 175:108859. [PMID: 36475042 PMCID: PMC9715461 DOI: 10.1016/j.cie.2022.108859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has placed tremendous pressure on supply chain risk management (SCRM) worldwide. Recent technological advances, especially machine learning (ML) technology, have shown the possibility to prevent supply chain risk (SCR) by decreasing the need for human labor, increasing response speed, and predicting risk. However, the literature lacks a comprehensive analysis of the relationship between ML and SCRM. This work conducts a comprehensive review of the relatively limited literature in this field. An analysis of 67 shortlisted articles from 9 databases shows that this area is still in the rapid development stage and that researchers have shown extraordinary interest in it. The main purpose of this study is to review the current research status so that researchers have a clear understanding of the research gaps in this area. Moreover, this study provides an opportunity for researchers and practitioners to pay attention to ML algorithms for SCRM during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Mei Yang
- School of Economics and Business Administration, Chongqing University, Chongqing 400030, PR China
- Chongqing Key Laboratory of Logistics, Chongqing University, Chongqing 400030, PR China
| | - Ming K Lim
- Adam Smith Business School, University of Glasgow, Glasgow G14 8QQ, UK
| | - Yingchi Qu
- School of Economics and Business Administration, Chongqing University, Chongqing 400030, PR China
- Chongqing Key Laboratory of Logistics, Chongqing University, Chongqing 400030, PR China
| | - Du Ni
- School of Management, Nanjing University of Posts and Telecommunications, Jiangsu 210003, PR China
| | - Zhi Xiao
- School of Economics and Business Administration, Chongqing University, Chongqing 400030, PR China
- Chongqing Key Laboratory of Logistics, Chongqing University, Chongqing 400030, PR China
| |
Collapse
|
15
|
Celik G. Detection of Covid-19 and other pneumonia cases from CT and X-ray chest images using deep learning based on feature reuse residual block and depthwise dilated convolutions neural network. Appl Soft Comput 2023; 133:109906. [PMID: 36504726 PMCID: PMC9726212 DOI: 10.1016/j.asoc.2022.109906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Covid-19 has become a worldwide epidemic which has caused the death of millions in a very short time. This disease, which is transmitted rapidly, has mutated and different variations have emerged. Early diagnosis is important to prevent the spread of this disease. In this study, a new deep learning-based architecture is proposed for rapid detection of Covid-19 and other symptoms using CT and X-ray chest images. This method, called CovidDWNet, is based on a structure based on feature reuse residual block (FRB) and depthwise dilated convolutions (DDC) units. The FRB and DDC units efficiently acquired various features in the chest scan images and it was seen that the proposed architecture significantly improved its performance. In addition, the feature maps obtained with the CovidDWNet architecture were estimated with the Gradient boosting (GB) algorithm. With the CovidDWNet+GB architecture, which is a combination of CovidDWNet and GB, a performance increase of approximately 7% in CT images and between 3% and 4% in X-ray images has been achieved. The CovidDWNet+GB architecture achieved the highest success compared to other architectures, with 99.84% and 100% accuracy rates, respectively, on different datasets containing binary class (Covid-19 and Normal) CT images. Similarly, the proposed architecture showed the highest success with 96.81% accuracy in multi-class (Covid-19, Lung Opacity, Normal and Viral Pneumonia) X-ray images and 96.32% accuracy in the dataset containing X-ray and CT images. When the time to predict the disease in CT or X-ray images is examined, it is possible to say that it has a high speed because the CovidDWNet+GB method predicts thousands of images within seconds.
Collapse
Affiliation(s)
- Gaffari Celik
- Agri Ibrahim Cecen University, Department of Computer Technology, Agri, Turkey
| |
Collapse
|
16
|
Aminu M, Yadav D, Hong L, Young E, Edelkamp P, Saad M, Salehjahromi M, Chen P, Sujit SJ, Chen MM, Sabloff B, Gladish G, de Groot PM, Godoy MCB, Cascone T, Vokes NI, Zhang J, Brock KK, Daver N, Woodman SE, Tawbi HA, Sheshadri A, Lee JJ, Jaffray D, Wu CC, Chung C, Wu J. Habitat Imaging Biomarkers for Diagnosis and Prognosis in Cancer Patients Infected with COVID-19. Cancers (Basel) 2022; 15:275. [PMID: 36612278 PMCID: PMC9818576 DOI: 10.3390/cancers15010275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Cancer patients have worse outcomes from the COVID-19 infection and greater need for ventilator support and elevated mortality rates than the general population. However, previous artificial intelligence (AI) studies focused on patients without cancer to develop diagnosis and severity prediction models. Little is known about how the AI models perform in cancer patients. In this study, we aim to develop a computational framework for COVID-19 diagnosis and severity prediction particularly in a cancer population and further compare it head-to-head to a general population. METHODS We have enrolled multi-center international cohorts with 531 CT scans from 502 general patients and 420 CT scans from 414 cancer patients. In particular, the habitat imaging pipeline was developed to quantify the complex infection patterns by partitioning the whole lung regions into phenotypically different subregions. Subsequently, various machine learning models nested with feature selection were built for COVID-19 detection and severity prediction. RESULTS These models showed almost perfect performance in COVID-19 infection diagnosis and predicting its severity during cross validation. Our analysis revealed that models built separately on the cancer population performed significantly better than those built on the general population and locked to test on the cancer population. This may be because of the significant difference among the habitat features across the two different cohorts. CONCLUSIONS Taken together, our habitat imaging analysis as a proof-of-concept study has highlighted the unique radiologic features of cancer patients and demonstrated effectiveness of CT-based machine learning model in informing COVID-19 management in the cancer population.
Collapse
Affiliation(s)
- Muhammad Aminu
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Divya Yadav
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Lingzhi Hong
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Elliana Young
- Department of Enterprise Data Engineering & Analytics, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Paul Edelkamp
- Department of Enterprise Data Engineering & Analytics, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Maliazurina Saad
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Morteza Salehjahromi
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Pingjun Chen
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Sheeba J. Sujit
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Melissa M. Chen
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Bradley Sabloff
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Gregory Gladish
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Patricia M. de Groot
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Myrna C. B. Godoy
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Natalie I. Vokes
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kristy K. Brock
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Scott E. Woodman
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - David Jaffray
- Office of the Chief Technology and Digital Officer, MD Anderson Cancer Center, Houston, TX 77054, USA
| | | | - Carol C. Wu
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Caroline Chung
- Office of the Chief Data Officer, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jia Wu
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
17
|
You C, Zhao R, Liu F, Dong S, Chinchali S, Topcu U, Staib L, Duncan JS. Class-Aware Adversarial Transformers for Medical Image Segmentation. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 2022; 35:29582-29596. [PMID: 37533756 PMCID: PMC10395073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Transformers have made remarkable progress towards modeling long-range dependencies within the medical image analysis domain. However, current transformer-based models suffer from several disadvantages: (1) existing methods fail to capture the important features of the images due to the naive tokenization scheme; (2) the models suffer from information loss because they only consider single-scale feature representations; and (3) the segmentation label maps generated by the models are not accurate enough without considering rich semantic contexts and anatomical textures. In this work, we present CASTformer, a novel type of adversarial transformers, for 2D medical image segmentation. First, we take advantage of the pyramid structure to construct multi-scale representations and handle multi-scale variations. We then design a novel class-aware transformer module to better learn the discriminative regions of objects with semantic structures. Lastly, we utilize an adversarial training strategy that boosts segmentation accuracy and correspondingly allows a transformer-based discriminator to capture high-level semantically correlated contents and low-level anatomical features. Our experiments demonstrate that CASTformer dramatically outperforms previous state-of-the-art transformer-based approaches on three benchmarks, obtaining 2.54%-5.88% absolute improvements in Dice over previous models. Further qualitative experiments provide a more detailed picture of the model's inner workings, shed light on the challenges in improved transparency, and demonstrate that transfer learning can greatly improve performance and reduce the size of medical image datasets in training, making CASTformer a strong starting point for downstream medical image analysis tasks.
Collapse
|
18
|
Duong LT, Nguyen PT, Iovino L, Flammini M. Automatic detection of Covid-19 from chest X-ray and lung computed tomography images using deep neural networks and transfer learning. Appl Soft Comput 2022; 132:109851. [PMCID: PMC9686054 DOI: 10.1016/j.asoc.2022.109851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
The world has been undergoing the most ever unprecedented circumstances caused by the coronavirus pandemic, which is having a devastating global effect in different aspects of life. Since there are not effective antiviral treatments for Covid-19 yet, it is crucial to early detect and monitor the progression of the disease, thereby helping to reduce mortality. While different measures are being used to combat the virus, medical imaging techniques have been examined to support doctors in diagnosing the disease. In this paper, we present a practical solution for the detection of Covid-19 from chest X-ray (CXR) and lung computed tomography (LCT) images, exploiting cutting-edge Machine Learning techniques. As the main classification engine, we make use of EfficientNet and MixNet, two recently developed families of deep neural networks. Furthermore, to make the training more effective and efficient, we apply three transfer learning algorithms. The ultimate aim is to build a reliable expert system to detect Covid-19 from different sources of images, making it be a multi-purpose AI diagnosing system. We validated our proposed approach using four real-world datasets. The first two are CXR datasets consist of 15,000 and 17,905 images, respectively. The other two are LCT datasets with 2,482 and 411,528 images, respectively. The five-fold cross-validation methodology was used to evaluate the approach, where the dataset is split into five parts, and accordingly the evaluation is conducted in five rounds. By each evaluation, four parts are combined to form the training data, and the remaining one is used for testing. We obtained an encouraging prediction performance for all the considered datasets. In all the configurations, the obtained accuracy is always larger than 95.0%. Compared to various existing studies, our approach yields a substantial performance gain. Moreover, such an improvement is statistically significant.
Collapse
Affiliation(s)
- Linh T. Duong
- Institute of Research and Development, Duy Tan University, Viet Nam
| | - Phuong T. Nguyen
- Department of Information Engineering, Computer Science and Mathematics University of L’Aquila, Italy,Corresponding author
| | | | | |
Collapse
|
19
|
Nawaz M, Nazir T, Javed A, Malik KM, Saudagar AKJ, Khan MB, Abul Hasanat MH, AlTameem A, AlKhathami M. Efficient-ECGNet framework for COVID-19 classification and correlation prediction with the cardio disease through electrocardiogram medical imaging. Front Med (Lausanne) 2022; 9:1005920. [PMID: 36405585 PMCID: PMC9672089 DOI: 10.3389/fmed.2022.1005920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
In the last 2 years, we have witnessed multiple waves of coronavirus that affected millions of people around the globe. The proper cure for COVID-19 has not been diagnosed as vaccinated people also got infected with this disease. Precise and timely detection of COVID-19 can save human lives and protect them from complicated treatment procedures. Researchers have employed several medical imaging modalities like CT-Scan and X-ray for COVID-19 detection, however, little concentration is invested in the ECG imaging analysis. ECGs are quickly available image modality in comparison to CT-Scan and X-ray, therefore, we use them for diagnosing COVID-19. Efficient and effective detection of COVID-19 from the ECG signal is a complex and time-taking task, as researchers usually convert them into numeric values before applying any method which ultimately increases the computational burden. In this work, we tried to overcome these challenges by directly employing the ECG images in a deep-learning (DL)-based approach. More specifically, we introduce an Efficient-ECGNet method that presents an improved version of the EfficientNetV2-B4 model with additional dense layers and is capable of accurately classifying the ECG images into healthy, COVID-19, myocardial infarction (MI), abnormal heartbeats (AHB), and patients with Previous History of Myocardial Infarction (PMI) classes. Moreover, we introduce a module to measure the similarity of COVID-19-affected ECG images with the rest of the diseases. To the best of our knowledge, this is the first effort to approximate the correlation of COVID-19 patients with those having any previous or current history of cardio or respiratory disease. Further, we generate the heatmaps to demonstrate the accurate key-points computation ability of our method. We have performed extensive experimentation on a publicly available dataset to show the robustness of the proposed approach and confirmed that the Efficient-ECGNet framework is reliable to classify the ECG-based COVID-19 samples.
Collapse
Affiliation(s)
- Marriam Nawaz
- Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan
- Department of Software Engineering, University of Engineering and Technology, Taxila, Pakistan
| | - Tahira Nazir
- Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan
- Department of Computer Science, Faculty of Computing, Riphah International University Gulberg Green Campus, Islamabad, Pakistan
| | - Ali Javed
- Department of Software Engineering, University of Engineering and Technology, Taxila, Pakistan
| | - Khalid Mahmood Malik
- Department of Computer Science and Engineering, Oakland University, Rochester, NY, United States
| | - Abdul Khader Jilani Saudagar
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- *Correspondence: Abdul Khader Jilani Saudagar,
| | - Muhammad Badruddin Khan
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mozaherul Hoque Abul Hasanat
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah AlTameem
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed AlKhathami
- Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Nallakaruppan MK, Ramalingam S, Somayaji SRK, Prathiba SB. Comparative Analysis of Deep Learning Models Used in Impact Analysis of Coronavirus Chest X-ray Imaging. Biomedicines 2022; 10:2791. [PMID: 36359310 PMCID: PMC9687278 DOI: 10.3390/biomedicines10112791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The impact analysis of deep learning models for COVID-19-infected X-ray images is an extremely challenging task. Every model has unique capabilities that can provide suitable solutions for some given problem. The prescribed work analyzes various deep learning models that are used for capturing the chest X-ray images. Their performance-defining factors, such as accuracy, f1-score, training and the validation loss, are tested with the support of the training dataset. These deep learning models are multi-layered architectures. These parameters fluctuate based on the behavior of these layers, learning rate, training efficiency, or over-fitting of models. This may in turn introduce sudden changes in the values of training accuracy, testing accuracy, loss or validation loss, f1-score, etc. Some models produce linear responses with respect to the training and testing data, such as Xception, but most of the models provide a variation of these parameters either in the accuracy or the loss functions. The prescribed work performs detailed experimental analysis of deep learning image neural network models and compares them with the above said parameters with detailed analysis of these parameters with their responses regarding accuracy and loss functions. This work also analyses the suitability of these model based on the various parameters, such as the accuracy and loss functions to various applications. This prescribed work also lists out various challenges on the implementation and experimentation of these models. Solutions are provided for enhancing the performance of these deep learning models. The deep learning models that are used in the prescribed work are Resnet, VGG16, Resnet with VGG, Inception V3, Xception with transfer learning, and CNN. The model is trained with more than 1500 images of the chest-X-ray data and tested with around 132 samples of the X-ray image dataset. The prescribed work analyzes the accuracy, f1-score, recall, and precision of these models and analyzes these parameters. It also measures parameters such as training accuracy, testing accuracy, loss, and validation loss. Each epoch of every model is recorded to measure the changes in these parameters during the experimental analysis. The prescribed work provides insight for future research through various challenges and research findings with future directions.
Collapse
Affiliation(s)
| | - Subhashini Ramalingam
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | | | - Sahaya Beni Prathiba
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India
| |
Collapse
|
21
|
Ahila T, Subhajini AC. E-GCS: Detection of COVID-19 through classification by attention bottleneck residual network. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2022; 116:105398. [PMID: 36158870 PMCID: PMC9485443 DOI: 10.1016/j.engappai.2022.105398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/30/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Background Recently, the coronavirus disease 2019 (COVID-19) has caused mortality of many people globally. Thus, there existed a need to detect this disease to prevent its further spread. Hence, the study aims to predict COVID-19 infected patients based on deep learning (DL) and image processing. Objectives The study intends to classify the normal and abnormal cases of COVID-19 by considering three different medical imaging modalities namely ultrasound imaging, X-ray images and CT scan images through introduced attention bottleneck residual network (AB-ResNet). It also aims to segment the abnormal infected area from normal images for localizing localising the disease infected area through the proposed edge based graph cut segmentation (E-GCS). Methodology AB-ResNet is used for classifying images whereas E-GCS segment the abnormal images. The study possess various advantages as it rely on DL and possess capability for accelerating the training speed of deep networks. It also enhance the network depth leading to minimum parameters, minimising the impact of vanishing gradient issue and attaining effective network performance with respect to better accuracy. Results/Conclusion Performance and comparative analysis is undertaken to evaluate the efficiency of the introduced system and results explores the efficiency of the proposed system in COVID-19 detection with high accuracy (99%).
Collapse
Affiliation(s)
- T Ahila
- Department of Computer Applications, Noorul Islam Centre For Higher Education, Kumaracoil, 629180, India
| | - A C Subhajini
- Department of Computer Applications, Noorul Islam Centre For Higher Education, Kumaracoil, 629180, India
| |
Collapse
|
22
|
Elen A. Covid-19 detection from radiographs by feature-reinforced ensemble learning. CONCURRENCY AND COMPUTATION : PRACTICE & EXPERIENCE 2022; 34:e7179. [PMID: 35941889 PMCID: PMC9350261 DOI: 10.1002/cpe.7179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 05/27/2023]
Abstract
The coronavirus (Covid-19) epidemic continues to have a negative influence on the global population's well-being and health. Scientists in many fields around the world are working non-stop to find a solution to the prevention of this epidemic. In the field of computer science, this struggle is supported by studies on especially the analysis of X-ray and CT images with artificial intelligence. In this study, two different ensemble learning models, including deep learning and a combination of machine learning methods, are presented for the detection of SARS-CoV-2 infection from X-ray images. The main purpose of this study is to increase the classification ability of Residual Convolutional Neural Network (ResCNN), which is used as a deep learning method, with the assist of machine learning algorithms and extracted features from images. The proposed models were validated on a total of 5228 chest X-ray images categorized as Normal, Pneumonia, and Covid-19. The images in the dataset were sized in four different ways, 32 × 32, 64 × 64, 128 × 128, and 256 × 256, in order to analyze the validity of the proposed models in more detail. These four datasets were partitioned with the 10-fold cross-validation technique and converted into a total of 40 training and test data. Both proposed models use features derived from the ResCNN as the basis and test a certain number of machine learning algorithms with a majority voting technique by dividing them into subsets. In the architecture of the second model, it combines the features extracted from the Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG) methods in addition to the features obtained from the ResCNN. It has been seen that the classification ability of both proposed models is better than the ResCNN in the experiments. In particular, the second model gives a similar classification score even though it is tested with images four-times smaller (e.g., 32 × 32 vs. 128 × 128) than those used in the ResCNN. This shows that the model can give ideal results with lower computational cost.
Collapse
Affiliation(s)
- Abdullah Elen
- Department of Software Engineering, Faculty of Engineering and Natural SciencesBandirma Onyedi Eylul UniversityBandirmaBalikesirTurkey
| |
Collapse
|
23
|
Saheb SK, Narayanan B, Rao TVN. ADL-CDF: A Deep Learning Framework for COVID-19 Detection from CT Scans Towards an Automated Clinical Decision Support System. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 48:1-13. [PMID: 36212631 PMCID: PMC9531859 DOI: 10.1007/s13369-022-07271-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
The emergence of deep learning has paved to solve many problems in the real world. COVID-19 pandemic, since the late 2019, has been affecting lives of people across the globe. Chest CT scan images are used to detect it and know its severity in patients. The problem with many existing solutions in COVID-19 detection using CT scan images is that inability to detect the infection when it is in initial stages. As the infection can exist on varied scales, there is need for more comprehensive approach that can ascertain the disease at all scales. Towards this end, we proposed a deep learning-based framework known as Automated Deep Learning-based COVID-19 Detection Framework (ADL-CDF). It does not need a human medical expert in diagnosis as it is capable of detecting automatically. The framework is assisted by two algorithms that involve image processing and deep learning. The first algorithm known as Region of Interest (ROI)-based Image Filtering (ROI-IF) which analyses given input CT scan images of a patient and discards the ones where ROI is missing. This algorithm minimizes time taken for processing besides reducing false positive rate. The second algorithm is known as Multi-Scale Feature Selection algorithm that fits into the deep learning framework's pipeline to leverage detection performance of the ADL-CDF. The proposed framework is evaluated against ResNet50V2 and Xception. Our empirical study revealed that our model outperforms the state of the art.
Collapse
Affiliation(s)
- Shaik Khasim Saheb
- Department of CSE, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu India
- Department of Computer Science and Engineering, Sreenidhi Institute of Science and Technology, Yamnampet, Ghatkesar, Hyderabad, Telangana India
| | - B. Narayanan
- Department of CSE, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu India
| | - Thota Venkat Narayana Rao
- Department of Computer Science and Engineering, Sreenidhi Institute of Science and Technology, Yamnampet, Ghatkesar, Hyderabad, Telangana India
| |
Collapse
|
24
|
Rashed BM, Popescu N. Critical Analysis of the Current Medical Image-Based Processing Techniques for Automatic Disease Evaluation: Systematic Literature Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:7065. [PMID: 36146414 PMCID: PMC9501859 DOI: 10.3390/s22187065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Medical image processing and analysis techniques play a significant role in diagnosing diseases. Thus, during the last decade, several noteworthy improvements in medical diagnostics have been made based on medical image processing techniques. In this article, we reviewed articles published in the most important journals and conferences that used or proposed medical image analysis techniques to diagnose diseases. Starting from four scientific databases, we applied the PRISMA technique to efficiently process and refine articles until we obtained forty research articles published in the last five years (2017-2021) aimed at answering our research questions. The medical image processing and analysis approaches were identified, examined, and discussed, including preprocessing, segmentation, feature extraction, classification, evaluation metrics, and diagnosis techniques. This article also sheds light on machine learning and deep learning approaches. We also focused on the most important medical image processing techniques used in these articles to establish the best methodologies for future approaches, discussing the most efficient ones and proposing in this way a comprehensive reference source of methods of medical image processing and analysis that can be very useful in future medical diagnosis systems.
Collapse
Affiliation(s)
| | - Nirvana Popescu
- Computer Science Department, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
25
|
Umer MJ, Amin J, Sharif M, Anjum MA, Azam F, Shah JH. An integrated framework for COVID-19 classification based on classical and quantum transfer learning from a chest radiograph. CONCURRENCY AND COMPUTATION : PRACTICE & EXPERIENCE 2022; 34:e6434. [PMID: 34512201 PMCID: PMC8420477 DOI: 10.1002/cpe.6434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 05/07/2023]
Abstract
COVID-19 is a quickly spreading over 10 million persons globally. The overall number of infected patients worldwide is estimated to be around 133,381,413 people. Infection rate is being increased on daily basis. It has also caused a devastating effect on the world economy and public health. Early stage detection of this disease is mandatory to reduce the mortality rate. Artificial intelligence performs a vital role for COVID-19 detection at an initial stage using chest radiographs. The proposed methods comprise of the two phases. Deep features (DFs) are derived from its last fully connected layers of pre-trained models like AlexNet and MobileNet in phase-I. Later these feature vectors are fused serially. Best features are selected through feature selection method of PCA and passed to the SVM and KNN for classification. In phase-II, quantum transfer learning model is utilized, in which a pre-trained ResNet-18 model is applied for DF collection and then these features are supplied as an input to the 4-qubit quantum circuit for model training with the tuned hyperparameters. The proposed technique is evaluated on two publicly available x-ray imaging datasets. The proposed methodology achieved an accuracy index of 99.0% with three classes including corona virus-positive images, normal images, and pneumonia radiographs. In comparison to other recently published work, the experimental findings show that the proposed approach outperforms it.
Collapse
Affiliation(s)
- Muhammad Junaid Umer
- Department of Computer ScienceComsats University Islamabad, Wah CampusRawalpindiPakistan
| | - Javeria Amin
- Department of Computer ScienceUniversity of WahRawalpindiPakistan
| | - Muhammad Sharif
- Department of Computer ScienceComsats University Islamabad, Wah CampusRawalpindiPakistan
| | | | - Faisal Azam
- Department of Computer ScienceComsats University Islamabad, Wah CampusRawalpindiPakistan
| | - Jamal Hussain Shah
- Department of Computer ScienceComsats University Islamabad, Wah CampusRawalpindiPakistan
| |
Collapse
|
26
|
Liang S, Nie R, Cao J, Wang X, Zhang G. FCF: Feature complement fusion network for detecting COVID-19 through CT scan images. Appl Soft Comput 2022; 125:109111. [PMID: 35693545 PMCID: PMC9167685 DOI: 10.1016/j.asoc.2022.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
COVID-19 spreads and contracts people rapidly, to diagnose this disease accurately and timely is essential for quarantine and medical treatment. RT-PCR plays a crucial role in diagnosing the COVID-19, whereas computed tomography (CT) delivers a faster result when combining artificial assistance. Developing a Deep Learning classification model for detecting the COVID-19 through CT images is conducive to assisting doctors in consultation. We proposed a feature complement fusion network (FCF) for detecting COVID-19 through lung CT scan images. This framework can extract both local features and global features by CNN extractor and ViT extractor severally, which successfully complement the deficiency problem of the receptive field of the other. Due to the attention mechanism in our designed feature complement Transformer (FCT), extracted local and global feature embeddings achieve a better representation. We combined a supervised with a weakly supervised strategy to train our model, which can promote CNN to guide the VIT to converge faster. Finally, we got a 99.34% accuracy on our test set, which surpasses the current state-of-art popular classification model. Moreover, this proposed structure can easily extend to other classification tasks when changing other proper extractors.
Collapse
Affiliation(s)
- Shu Liang
- School of Information Science and Engineering, Yunnan University, Kunming, 650500, Yunnan, China
| | - Rencan Nie
- School of Information Science and Engineering, Yunnan University, Kunming, 650500, Yunnan, China.,School of Automation, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Jinde Cao
- School of Mathematics, Southeast University, Nanjing, 210096, Jiangsu, China.,Yonsei Frontier Lab, Yonsei University, Seoul, 03722, South Korea
| | - Xue Wang
- School of Information Science and Engineering, Yunnan University, Kunming, 650500, Yunnan, China
| | - Gucheng Zhang
- School of Information Science and Engineering, Yunnan University, Kunming, 650500, Yunnan, China
| |
Collapse
|
27
|
Filchakova O, Dossym D, Ilyas A, Kuanysheva T, Abdizhamil A, Bukasov R. Review of COVID-19 testing and diagnostic methods. Talanta 2022; 244:123409. [PMID: 35390680 PMCID: PMC8970625 DOI: 10.1016/j.talanta.2022.123409] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 01/09/2023]
Abstract
More than six billion tests for COVID-19 has been already performed in the world. The testing for SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) virus and corresponding human antibodies is essential not only for diagnostics and treatment of the infection by medical institutions, but also as a pre-requisite for major semi-normal economic and social activities such as international flights, off line work and study in offices, access to malls, sport and social events. Accuracy, sensitivity, specificity, time to results and cost per test are essential parameters of those tests and even minimal improvement in any of them may have noticeable impact on life in the many countries of the world. We described, analyzed and compared methods of COVID-19 detection, while representing their parameters in 22 tables. Also, we compared test performance of some FDA approved test kits with clinical performance of some non-FDA approved methods just described in scientific literature. RT-PCR still remains a golden standard in detection of the virus, but a pressing need for alternative less expensive, more rapid, point of care methods is evident. Those methods that may eventually get developed to satisfy this need are explained, discussed, quantitatively compared. The review has a bioanalytical chemistry prospective, but it may be interesting for a broader circle of readers who are interested in understanding and improvement of COVID-19 testing, helping eventually to leave COVID-19 pandemic in the past.
Collapse
Affiliation(s)
- Olena Filchakova
- Biology Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Dina Dossym
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Aisha Ilyas
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Tamila Kuanysheva
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Altynay Abdizhamil
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Rostislav Bukasov
- Chemistry Department, SSH, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| |
Collapse
|
28
|
Din M, Gurbuz S, Akbal E, Dogan S, Durak M, Yildirim I, Tuncer T. Exemplar deep and hand-modeled features based automated and accurate cerebral hemorrhage classification method. Med Eng Phys 2022; 105:103819. [DOI: 10.1016/j.medengphy.2022.103819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
|
29
|
Automated Screening of COVID-19-Based Tongue Image on Chinese Medicine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6825576. [PMID: 35782081 PMCID: PMC9246631 DOI: 10.1155/2022/6825576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022]
Abstract
Objective Artificial intelligence-powered screening systems of coronavirus disease 2019 (COVID-19) are urgently demanding since the ongoing outbreak of SARS-CoV-2 worldwide. Chest CT or X-ray is not sufficient to support the large-scale screening of COVID-19 because mildly-infected patients do not have imaging features on these images. Therefore, it is imperative to exploit supplementary medical imaging strategies. Traditional Chinese medicine has played an essential role in the fight against COVID-19. Methods In this paper, we conduct two kinds of verification experiments based on a newly-collected multi-modality dataset, which consists of three types of modalities: tongue images, chest CT scans, and X-ray images. First, we study a binary classification experiment on tongue images to verify the discriminative ability between COVID-19 and non-COVID-19. Second, we design extensive multimodality experiments to validate whether introducing tongue image can improve the screening accuracy of COVID-19 based on chest CT or X-ray images. Results Tongue image screening of COVID-19 showed that the accuracy (ACC), sensitivity (SEN), specificity (SPEC), and Matthew correlation coefficient (MCC) of the improved AlexNet and Googlenet both reached 98.39%, 98.97%, 96.67%, and 99.11%. The fusion of chest CT and tongue images used a tandem multimodal classifier fusion strategy to achieve optimal classification, and the results and screening accuracy of COVID-19 reached 98.98%, resulting in a significant improvement of 4.75% the highest accuracy in 375 years compared with the single-modality model. The fusion of chest x-rays and tongue images also had good classification accuracy. Conclusions Both experimental results demonstrate that tongue image not only has an excellent discriminative ability for screening COVID-19 but also can improve the screening accuracy based on chest CT or X-rays. To the best of our knowledge, it is the first work that verifies the effectiveness of tongue image on screening COVID-19. This paper provides a new perspective and a novel solution that contributes to large-scale screening toward fast stopping the pandemic of COVID-19.
Collapse
|
30
|
Ullah F, Moon J, Naeem H, Jabbar S. Explainable artificial intelligence approach in combating real-time surveillance of COVID19 pandemic from CT scan and X-ray images using ensemble model. THE JOURNAL OF SUPERCOMPUTING 2022; 78:19246-19271. [PMID: 35754515 PMCID: PMC9206105 DOI: 10.1007/s11227-022-04631-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 06/01/2023]
Abstract
Population size has made disease monitoring a major concern in the healthcare system, due to which auto-detection has become a top priority. Intelligent disease detection frameworks enable doctors to recognize illnesses, provide stable and accurate results, and lower mortality rates. An acute and severe disease known as Coronavirus (COVID19) has suddenly become a global health crisis. The fastest way to avoid the spreading of Covid19 is to implement an automated detection approach. In this study, an explainable COVID19 detection in CT scan and chest X-ray is established using a combination of deep learning and machine learning classification algorithms. A Convolutional Neural Network (CNN) collects deep features from collected images, and these features are then fed into a machine learning ensemble for COVID19 assessment. To identify COVID19 disease from images, an ensemble model is developed which includes, Gaussian Naive Bayes (GNB), Support Vector Machine (SVM), Decision Tree (DT), Logistic Regression (LR), K-Nearest Neighbor (KNN), and Random Forest (RF). The overall performance of the proposed method is interpreted using Gradient-weighted Class Activation Mapping (Grad-CAM), and t-distributed Stochastic Neighbor Embedding (t-SNE). The proposed method is evaluated using two datasets containing 1,646 and 2,481 CT scan images gathered from COVID19 patients, respectively. Various performance comparisons with state-of-the-art approaches were also shown. The proposed approach beats existing models, with scores of 98.5% accuracy, 99% precision, and 99% recall, respectively. Further, the t-SNE and explainable Artificial Intelligence (AI) experiments are conducted to validate the proposed approach.
Collapse
Affiliation(s)
- Farhan Ullah
- School of Software, Northwestern Polytechnical University, Xian, 710072 Shaanxi People’s Republic of China
| | - Jihoon Moon
- Department of Industrial Security, Chung-Ang University, Seoul, 06974 Korea
| | - Hamad Naeem
- School of Computer Science and Technology, Zhoukou Normal University, Zhoukou, 466000 Henan People’s Republic of China
| | - Sohail Jabbar
- Department of Computational Sciences, The University of Faisalabad, Faisalabad, 38000 Pakistan
| |
Collapse
|
31
|
Mondal AK. COVID-19 prognosis using limited chest X-ray images. Appl Soft Comput 2022; 122:108867. [PMID: 35494338 PMCID: PMC9035620 DOI: 10.1016/j.asoc.2022.108867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/18/2022] [Accepted: 04/09/2022] [Indexed: 01/31/2023]
Abstract
The COrona VIrus Disease 2019 (COVID-19) pandemic is an ongoing global pandemic that has claimed millions of lives till date. Detecting COVID-19 and isolating affected patients at an early stage is crucial to contain its rapid spread. Although accurate, the primary viral test 'Reverse Transcription Polymerase Chain Reaction' (RT-PCR) for COVID-19 diagnosis has an elaborate test kit, and the turnaround time is high. This has motivated the research community to develop CXR based automated COVID-19 diagnostic methodologies. However, COVID-19 being a novel disease, there is no annotated large-scale CXR dataset for this particular disease. To address the issue of limited data, we propose to exploit a large-scale CXR dataset collected in the pre-COVID era and train a deep neural network in a self-supervised fashion to extract CXR specific features. Further, we compute attention maps between the global and the local features of the backbone convolutional network while finetuning using a limited COVID-19 CXR dataset. We empirically demonstrate the effectiveness of the proposed method. We provide a thorough ablation study to understand the effect of each proposed component. Finally, we provide visualizations highlighting the critical patches instrumental to the predictive decision made by our model. These saliency maps are not only a stepping stone towards explainable AI but also aids radiologists in localizing the infected area.
Collapse
|
32
|
Cihan P, Ozger ZB. A new approach for determining SARS-CoV-2 epitopes using machine learning-based in silico methods. Comput Biol Chem 2022; 98:107688. [PMID: 35561658 PMCID: PMC9055767 DOI: 10.1016/j.compbiolchem.2022.107688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 01/25/2023]
Abstract
The emergence of machine learning-based in silico tools has enabled rapid and high-quality predictions in the biomedical field. In the COVID-19 pandemic, machine learning methods have been used in many topics such as predicting the death of patients, modeling the spread of infection, determining future effects, diagnosis with medical image analysis, and forecasting the vaccination rate. However, there is a gap in the literature regarding identifying epitopes that can be used in fast, useful, and effective vaccine design using machine learning methods and bioinformatics tools. Machine learning methods can give medical biotechnologists an advantage in designing a faster and more successful vaccine. The motivation of this study is to propose a successful hybrid machine learning method for SARS-CoV-2 epitope prediction and to identify nonallergen, nontoxic, antigen peptides that can be used in vaccine design from the predicted epitopes with bioinformatics tools. The identified epitopes will be effective not only in the design of the COVID-19 vaccine but also against viruses from the SARS family that may be encountered in the future. For this purpose, epitope prediction performances of random forest, support vector machine, logistic regression, bagging with decision tree, k-nearest neighbor and decision tree methods were examined. In the SARS-CoV and B-cell datasets used for education in the study, epitope estimation was performed again after the datasets were balanced with the synthetic minority oversampling technique (SMOTE) method since the epitope class samples were in the minority compared to the nonepitope class. The experimental results obtained were compared and the most successful predictions were obtained with the random forest (RF) method. The epitope prediction performance in balanced datasets was found to be higher than that in the original datasets (94.0% AUC and 94.4% PRC for the SMOTE-SARS-CoV dataset; 95.6% AUC and 95.3% PRC for the SMOTE-B-cell dataset). In this study, 252 peptides out of 20312 peptides were determined to be epitopes with the SMOTE-RF-SVM hybrid method proposed for SARS-CoV-2 epitope prediction. Determined epitopes were analyzed with AllerTOP 2.0, VaxiJen 2.0 and ToxinPred tools, and allergic, nonantigen, and toxic epitopes were eliminated. As a result, 11 possible nonallergic, high antigen and nontoxic epitope candidates were proposed that could be used in protein-based COVID-19 vaccine design ("VGGNYNY", "VNFNFNGLTG", "RQIAPGQTGKI", "QIAPGQTGKIA", "SYECDIPIGAGI", "STFKCYGVSPTKL", "GVVFLHVTYVPAQ", "KNHTSPDVDLGDI", "NHTSPDVDLGDIS", "AGAAAYYVGYLQPR", "KKSTNLVKNKCVNF"). It is predicted that the few epitopes determined by machine learning-based in silico methods will help biotechnologists design fast and accurate vaccines by reducing the number of trials in the laboratory environment.
Collapse
Affiliation(s)
- Pınar Cihan
- Department of Computer Engineering, Tekirdag Namik Kemal University, Tekirdag, Turkey.
| | - Zeynep Banu Ozger
- Department of Computer Engineering, Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
33
|
Pandey SK, Janghel RR, Mishra PK, Kaabra R. Machine learning based COVID -19 disease recognition using CT images of SIRM database. J Med Eng Technol 2022; 46:590-603. [PMID: 35639099 DOI: 10.1080/03091902.2022.2080883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The COVID-19 pandemic, probably one of the most widespread pandemics humanity has encountered in the twenty first century, caused death to almost 1.75 M people worldwide, impacting almost 80 M lives with direct contact. In order to contain the spread of coronavirus, it is necessary to develop a reliant and quick method to identify those who are affected and isolate them until full recovery is made. The imagery knowledge has been shown to be useful for quick COVID-19 diagnosis. Though the scans of computational tomography (CT) demonstrate a range of viral infection signals, considering the vast number of images, certain visual characteristics are challenging to distinguish and can take a long time to be identified by radiologists. In this study for detection of the COVID-19, a dataset is formed by taking 3764 images. The feature extraction process is applied to the dataset to increase the classification performance. Techniques like Grey Level Co-occurrence Matrix (GLCM) and Discrete Wavelet Transform (DWT) are used for feature extraction. Then various machine learning algorithms applied such as Support Vector Machines (SVM), Linear Discriminant Analysis (LDA), Multi- Level Perceptron, Naive Bayes, K-Nearest Neighbours and Random Forests are used for classification of COVID-19 disease detection. Sensitivity, Specificity, Accuracy, Precision, and F-score are the metrics used to measure the performance of different machine learning models. Among these machine learning models SVM with GLCM as feature extraction technique using 10-fold cross validation gives the best classification result with 99.70% accuracy, 99.80% sensitivity and 97.03% F-score. We also ran these tests on different data sets and found that the results are similar across those too, as discussed later in the results section.
Collapse
Affiliation(s)
- Saroj Kumar Pandey
- Department of Computer Engineering & Applications, GLA University, Mathura, India
| | - Rekh Ram Janghel
- Department of Information Technology, National Institute of Information Technology, Raipur, India
| | | | - Rachana Kaabra
- Department of Information Technology, RCET, Bhilai, India
| |
Collapse
|
34
|
Aslan MF, Hasikin K, Yusefi A, Durdu A, Sabanci K, Azizan MM. COVID-19 Isolation Control Proposal via UAV and UGV for Crowded Indoor Environments: Assistive Robots in the Shopping Malls. Front Public Health 2022; 10:855994. [PMID: 35734764 PMCID: PMC9208298 DOI: 10.3389/fpubh.2022.855994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Artificial intelligence researchers conducted different studies to reduce the spread of COVID-19. Unlike other studies, this paper isn't for early infection diagnosis, but for preventing the transmission of COVID-19 in social environments. Among the studies on this is regarding social distancing, as this method is proven to prevent COVID-19 to be transmitted from one to another. In the study, Robot Operating System (ROS) simulates a shopping mall using Gazebo, and customers are monitored by Turtlebot and Unmanned Aerial Vehicle (UAV, DJI Tello). Through frames analysis captured by Turtlebot, a particular person is identified and followed at the shopping mall. Turtlebot is a wheeled robot that follows people without contact and is used as a shopping cart. Therefore, a customer doesn't touch the shopping cart that someone else comes into contact with, and also makes his/her shopping easier. The UAV detects people from above and determines the distance between people. In this way, a warning system can be created by detecting places where social distance is neglected. Histogram of Oriented-Gradients (HOG)-Support Vector Machine (SVM) is applied by Turtlebot to detect humans, and Kalman-Filter is used for human tracking. SegNet is performed for semantically detecting people and measuring distance via UAV. This paper proposes a new robotic study to prevent the infection and proved that this system is feasible.
Collapse
Affiliation(s)
- Muhammet Fatih Aslan
- Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Center of Image and Signal Processing (CISIP), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Abdullah Yusefi
- Computer Engineering, Konya Technical University, Konya, Turkey
| | - Akif Durdu
- Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey
| | - Kadir Sabanci
- Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Muhammad Mokhzaini Azizan
- Department of Electrical and Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Malaysia
| |
Collapse
|
35
|
Aslan N, Ozmen Koca G, Kobat MA, Dogan S. Multi-classification deep CNN model for diagnosing COVID-19 using iterative neighborhood component analysis and iterative ReliefF feature selection techniques with X-ray images. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS : AN INTERNATIONAL JOURNAL SPONSORED BY THE CHEMOMETRICS SOCIETY 2022; 224:104539. [PMID: 35368832 PMCID: PMC8964480 DOI: 10.1016/j.chemolab.2022.104539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND The acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease seriously affected worldwide health. It remains an important worldwide concern as the number of patients infected with this virus and the death rate is increasing rapidly. Early diagnosis is very important to hinder the spread of the coronavirus. Therefore, this article is intended to facilitate radiologists automatically determine COVID-19 early on X-ray images. Iterative Neighborhood Component Analysis (INCA) and Iterative ReliefF (IRF) feature selection methods are applied to increase the accuracy of the performance criteria of trained deep Convolutional Neural Networks (CNN). MATERIALS AND METHODS The COVID-19 dataset consists of a total of 15153 X-ray images for 4961 patient cases. The work includes thirteen different deep CNN model architectures. Normalized data of lung X-ray image for each deep CNN mesh model are analyzed to classify disease status in the category of Normal, Viral Pneumonia and COVID-19. The performance criteria are improved by applying the INCA and IRF feature selection methods to the trained CNN in order to improve the analysis, forecasting results, make a faster and more accurate decision. RESULTS Thirteen different deep CNN experiments and evaluations are successfully performed based on 80-20% of lung X-ray images for training and testing, respectively. The highest predictive values are seen in the analysis using INCA feature selection in the VGG16 network. The means of performance criteria obtained using the accuracy, sensitivity, F-score, precision, MCC, dice, Jaccard, and specificity are 99.14%, 97.98%, 99.58%, 98.80%, 97.81%, 98.83%, 97.68%, and 99.56%, respectively. This proposed study is indicated the useful application of deep CNN models to classify COVID-19 in X-ray images.
Collapse
Affiliation(s)
- Narin Aslan
- Department of Mechatronics Engineering, Faculty of Technology, Firat University, Elazig, Turkey
| | - Gonca Ozmen Koca
- Department of Mechatronics Engineering, Faculty of Technology, Firat University, Elazig, Turkey
| | - Mehmet Ali Kobat
- Department of Cardiology, Firat University Hospital, Elazig, Turkey
| | - Sengul Dogan
- Department of Digital Forensics Engineering, Faculty of Technology, Firat University, Elazig, Turkey
| |
Collapse
|
36
|
Classification of COVID-19 and Influenza Patients Using Deep Learning. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8549707. [PMID: 35280712 PMCID: PMC8884121 DOI: 10.1155/2022/8549707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
Coronavirus (COVID-19) is a deadly virus that initially starts with flu-like symptoms. COVID-19 emerged in China and quickly spread around the globe, resulting in the coronavirus epidemic of 2019–22. As this virus is very similar to influenza in its early stages, its accurate detection is challenging. Several techniques for detecting the virus in its early stages are being developed. Deep learning techniques are a handy tool for detecting various diseases. For the classification of COVID-19 and influenza, we proposed tailored deep learning models. A publicly available dataset of X-ray images was used to develop proposed models. According to test results, deep learning models can accurately diagnose normal, influenza, and COVID-19 cases. Our proposed long short-term memory (LSTM) technique outperformed the CNN model in the evaluation phase on chest X-ray images, achieving 98% accuracy.
Collapse
|
37
|
Alshehri E, Kalkatawi M, Abukhodair F, Khashoggi K, Alotaibi R. COVID-19 Diagnosis from Medical Images Using Transfer Learning. SAUDI JOURNAL OF HEALTH SYSTEMS RESEARCH 2022. [PMCID: PMC9059094 DOI: 10.1159/000521658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Introduction The novel coronavirus (COVID-19) originated in Wuhan, China, in December 2019. To date, the virus has infected more than 110 million people worldwide and claimed 2.5 million lives. With the rapid increase in the number of infected cases, some countries face a shortage of testing resources. Computational methods such as deep learning algorithms can help in such a situation to expedite and automate the diagnosis of COVID-19. Methods In this research, we trained eight convolutional neural network models to automatically detect and diagnose COVID-19 from medical imaging, including X-ray and CT scan images. Those deep learning networks have a predefined structure in which we re-train on medical images to serve our purpose, which is called transfer learning. Results We used two different medical images known as X-ray and CT scan. The experimental results show that CT scan achieved better performance than X-ray. Specifically, the Xception network model has achieved an overall performance on CT scan of 84%, 91%, and 77% for accuracy, sensitivity, and specificity, respectively. That was the highest in all models that we trained. On the other hand, the same network model (Xception) was applied on X-ray and performed 69%, 83%, and 55% for accuracy, sensitivity, and specificity, respectively. Conclusion The performance of our proposed model to detect COVID-19 from CT scan is acceptable and promising to start in the field. We target the medical sectors to help them by providing rapid and accurate diagnosis of COVID-19 cases using an alternative detection approach to the traditional ones.
Collapse
Affiliation(s)
- Elaf Alshehri
- King Abdulaziz and His Companions Foundation for Giftedness and Creativity (Mawhiba), Riyadh, Saudi Arabia
| | - Manal Kalkatawi
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
- *Manal Kalkatawi,
| | - Felwa Abukhodair
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Khashoggi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Alotaibi
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
38
|
Ozger ZB, Cihan P. A novel ensemble fuzzy classification model in SARS-CoV-2 B-cell epitope identification for development of protein-based vaccine. Appl Soft Comput 2022; 116:108280. [PMID: 34931117 PMCID: PMC8673934 DOI: 10.1016/j.asoc.2021.108280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022]
Abstract
B-cell epitope prediction research has received growing interest since the development of the first method. B-cell epitope identification with the aid of an accurate prediction method is one of the most important steps in epitope-based vaccine development, immunodiagnostic testing, antibody production, disease diagnosis, and treatment. Nevertheless, using experimental methods in epitope mapping is very time-consuming, costly, and labor-intensive. Therefore, although successful predictions with in silico methods are very important in epitope prediction, there are limited studies in this area. The aim of this study is to propose a new approach for successfully predicting B-cell epitopes for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, the SARS-CoV B-cell epitope prediction performances of different fuzzy learning classification models genetic cooperative competitive learning (GCCL), fuzzy genetics-based machine learning (GBML), Chi's method (CHI), Ishibuchi's method with weight factor (W), structural learning algorithm on vague environment (SLAVE) and the state-of-the-art ensemble fuzzy classification model were compared. The obtained results showed that the proposed ensemble approach has the lowest error in SARS-CoV B-cell epitope estimation compared to the base fuzzy learners (average error rates; ensemble fuzzy=8.33, GCCL=30.42, GBML=23.82, CHI=29.17, W=46.25, and SLAVE=20.42). SARS-CoV and SARS-CoV-2 have high genome similarities. Therefore, the most successful method determined for SARS-CoV B-cell epitope prediction was used in SARS-CoV-2 cell epitope prediction. Finally, the eventual B-cell epitope prediction results obtained for SARS-CoV-2 with the ensemble fuzzy classification model were compared with the epitope sequences predicted by the BepiPred server and immunoinformatics studies in the literature for the same protein sequences according to VaxiJen 2.0 scores. We hope that the developed epitope prediction method will help design effective vaccines and drugs against future outbreaks of the coronavirus family, especially SARS-CoV-2 and its possible mutations.
Collapse
Affiliation(s)
- Zeynep Banu Ozger
- Department of Computer Engineering, Sutcu Imam University, 46040, Kahramanmaras, Turkey
| | - Pınar Cihan
- Department of Computer Engineering, Tekirdag Namik Kemal University, 59860, Corlu, Tekirdag, Turkey
| |
Collapse
|
39
|
Irene D S, Beulah JR, K. A, K. K. An efficient COVID-19 detection from CT images using ensemble support vector machine with Ludo game-based swarm optimisation. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2022. [DOI: 10.1080/21681163.2021.2024088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shiny Irene D
- Department of Computing Technologies, School of Computing, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, TN, India
| | - J. Rene Beulah
- Department of Computing Technologies, School of Computing, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, TN, India
| | - Anitha K.
- Department of Computer Science and Engineering Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Saveetha nagar, Thandalam, Chennai, Tamil Nadu, India
| | - Kannan K.
- Department of Electronics and Communication Engineering, R.M.K College of Engineering And Technology, R.S.M. Nagar, Puduvoyal, Gummidipoondi (TK), Thiruvallur (DT), Tamilnadu, India
| |
Collapse
|
40
|
Saeed U, Shah SY, Ahmad J, Imran MA, Abbasi QH, Shah SA. Machine learning empowered COVID-19 patient monitoring using non-contact sensing: An extensive review. J Pharm Anal 2022; 12:193-204. [PMID: 35003825 PMCID: PMC8724017 DOI: 10.1016/j.jpha.2021.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the coronavirus disease 2019 (COVID-19) pandemic, has affected more than 400 million people worldwide. With the recent rise of new Delta and Omicron variants, the efficacy of the vaccines has become an important question. The goal of various studies has been to limit the spread of the virus by utilizing wireless sensing technologies to prevent human-to-human interactions, particularly for healthcare workers. In this paper, we discuss the current literature on invasive/contact and non-invasive/non-contact technologies (including Wi-Fi, radar, and software-defined radio) that have been effectively used to detect, diagnose, and monitor human activities and COVID-19 related symptoms, such as irregular respiration. In addition, we focused on cutting-edge machine learning algorithms (such as generative adversarial networks, random forest, multilayer perceptron, support vector machine, extremely randomized trees, and k-nearest neighbors) and their essential role in intelligent healthcare systems. Furthermore, this study highlights the limitations related to non-invasive techniques and prospective research directions. This article describes cutting-edge technology (invasive/non-invasive) and its role in the recognition of COVID-19 symptoms. This article summarizes state-of-art machine-learning algorithms and their roles in modern healthcare systems. This article presents the challenges associated with wireless sensing techniques and potential future research directions.
Collapse
Affiliation(s)
- Umer Saeed
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Syed Yaseen Shah
- School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Jawad Ahmad
- School of Computing, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Muhammad Ali Imran
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Qammer H Abbasi
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Syed Aziz Shah
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| |
Collapse
|
41
|
Kaur T, Gandhi TK. Classifier Fusion for Detection of COVID-19 from CT Scans. CIRCUITS, SYSTEMS, AND SIGNAL PROCESSING 2022; 41:3397-3414. [PMID: 35002014 PMCID: PMC8722646 DOI: 10.1007/s00034-021-01939-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 05/31/2023]
Abstract
The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. COVID-19 is found to be the most infectious disease in last few decades. This disease has infected millions of people worldwide. The inadequate availability and the limited sensitivity of the testing kits have motivated the clinicians and the scientist to use Computer Tomography (CT) scans to screen COVID-19. Recent advances in technology and the availability of deep learning approaches have proved to be very promising in detecting COVID-19 with increased accuracy. However, deep learning approaches require a huge labeled training dataset, and the current availability of benchmark COVID-19 data is still small. For the limited training data scenario, the CNN usually overfits after several iterations. Hence, in this work, we have investigated different pre-trained network architectures with transfer learning for COVID-19 detection that can work even on a small medical imaging dataset. Various variants of the pre-trained ResNet model, namely ResNet18, ResNet50, and ResNet101, are investigated in the current paper for the detection of COVID-19. The experimental results reveal that transfer learned ResNet50 model outperformed other models by achieving a recall of 98.80% and an F1-score of 98.41%. To further improvise the results, the activations from different layers of best performing model are also explored for the detection using the support vector machine, logistic regression and K-nearest neighbor classifiers. Moreover, a classifier fusion strategy is also proposed that fuses the predictions from the different classifiers via majority voting. Experimental results reveal that via using learned image features and classification fusion strategy, the recall, and F1-score have improvised to 99.20% and 99.40%.
Collapse
Affiliation(s)
- Taranjit Kaur
- Department of Electrical Engineering, Indian Institute of Technology, Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016 India
| | - Tapan Kumar Gandhi
- Department of Electrical Engineering, Indian Institute of Technology, Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016 India
| |
Collapse
|
42
|
Swain S, Bhushan B, Dhiman G, Viriyasitavat W. Appositeness of Optimized and Reliable Machine Learning for Healthcare: A Survey. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2022; 29:3981-4003. [PMID: 35342282 PMCID: PMC8939887 DOI: 10.1007/s11831-022-09733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/09/2022] [Indexed: 05/04/2023]
Abstract
Machine Learning (ML) has been categorized as a branch of Artificial Intelligence (AI) under the Computer Science domain wherein programmable machines imitate human learning behavior with the help of statistical methods and data. The Healthcare industry is one of the largest and busiest sectors in the world, functioning with an extensive amount of manual moderation at every stage. Most of the clinical documents concerning patient care are hand-written by experts, selective reports are machine-generated. This process elevates the chances of misdiagnosis thereby, imposing a risk to a patient's life. Recent technological adoptions for automating manual operations have witnessed extensive use of ML in its applications. The paper surveys the applicability of ML approaches in automating medical systems. The paper discusses most of the optimized statistical ML frameworks that encourage better service delivery in clinical aspects. The universal adoption of various Deep Learning (DL) and ML techniques as the underlying systems for a variety of wellness applications, is delineated by challenges and elevated by myriads of security. This work tries to recognize a variety of vulnerabilities occurring in medical procurement, admitting the concerns over its predictive performance from a privacy point of view. Finally providing possible risk delimiting facts and directions for active challenges in the future.
Collapse
Affiliation(s)
- Subhasmita Swain
- Department of Computer Science and Engineering, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Bharat Bhushan
- Department of Computer Science and Engineering, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Gaurav Dhiman
- Department of Computer Science, Government Bikram College of Commerce, Patiala, India
- University Centre for Research and Development, Department of Computer Science and Engineering, Chandigarh University, Gharuan, Mohali, India
- Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun, India
| | - Wattana Viriyasitavat
- Department of Statistics, Faculty of Commerce and Accountancy, Chulalongkorn Business School, Bangkok, Thailand
| |
Collapse
|
43
|
de Moura J, Novo J, Ortega M. Fully automatic deep convolutional approaches for the analysis of COVID-19 using chest X-ray images. Appl Soft Comput 2021; 115:108190. [PMID: 34899109 PMCID: PMC8645263 DOI: 10.1016/j.asoc.2021.108190] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/24/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022]
Abstract
Covid-19 is a new infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given the seriousness of the situation, the World Health Organization declared a global pandemic as the Covid-19 rapidly around the world. Among its applications, chest X-ray images are frequently used for an early diagnostic/screening of Covid-19 disease, given the frequent pulmonary impact in the patients, critical issue to prevent further complications caused by this highly infectious disease. In this work, we propose 4 fully automatic approaches for the classification of chest X-ray images under the analysis of 3 different categories: Covid-19, pneumonia and healthy cases. Given the similarity between the pathological impact in the lungs between Covid-19 and pneumonia, mainly during the initial stages of both lung diseases, we performed an exhaustive study of differentiation considering different pathological scenarios. To address these classification tasks, we evaluated 6 representative state-of-the-art deep network architectures on 3 different public datasets: (I) Chest X-ray dataset of the Radiological Society of North America (RSNA); (II) Covid-19 Image Data Collection; (III) SIRM dataset of the Italian Society of Medical Radiology. To validate the designed approaches, several representative experiments were performed using 6,070 chest X-ray radiographs. In general, satisfactory results were obtained from the designed approaches, reaching a global accuracy values of 0.9706 ± 0.0044, 0.9839 ± 0.0102, 0.9744 ± 0.0104 and 0.9744 ± 0.0104, respectively, thus helping the work of clinicians in the diagnosis and consequently in the early treatment of this relevant pandemic pathology.
Collapse
Affiliation(s)
- Joaquim de Moura
- Centro de Investigación CITIC, Universidade da Coruña, Campus de Elviña, s/n, 15071, A Coruña, Spain.,Grupo VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, Xubias de Arriba, 84, 15006, A Coruña, Spain
| | - Jorge Novo
- Centro de Investigación CITIC, Universidade da Coruña, Campus de Elviña, s/n, 15071, A Coruña, Spain.,Grupo VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, Xubias de Arriba, 84, 15006, A Coruña, Spain
| | - Marcos Ortega
- Centro de Investigación CITIC, Universidade da Coruña, Campus de Elviña, s/n, 15071, A Coruña, Spain.,Grupo VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, Xubias de Arriba, 84, 15006, A Coruña, Spain
| |
Collapse
|
44
|
Fischer G, De Silvestro A, Müller M, Frauenfelder T, Martini K. Computer-Aided Detection of Seven Chest Pathologies on Standard Posteroanterior Chest X-Rays Compared to Radiologists Reading Dual-Energy Subtracted Radiographs. Acad Radiol 2021; 29:e139-e148. [PMID: 34706849 DOI: 10.1016/j.acra.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 11/01/2022]
Abstract
RATIONALE AND OBJECTIVES Retrospective performance evaluation of a computer-aided detection (CAD) system on standard posteroanterior (PA) chest radiographs (PA-CXR) in detection of pulmonary nodules, infectious consolidation, pneumothorax, pleural effusion, aortic calcification, cardiomegaly and rib fractures compared to radiologists analyzing PA-CXR including dual-energy subtraction radiography (further termed as DESR). MATERIALS AND METHODS PA-CXR/DESR images of 197 patients were included. All patients underwent chest CT (gold standard) within a short interval (mean 28 hours). All images were evaluated by three blinded readers for the presence of pulmonary nodules, infectious consolidation, pneumothorax, pleural effusion, aortic calcification, cardiomegaly, and rib fractures. Meanwhile PA-CXR were analyzed by a CAD software. CAD results were compared to the majority result of the three readers. Sensitivity and specificity were calculated. McNemar's test was applied to test for significant differences. Interobserver agreement was defined using Cohen's kappa (κ). RESULTS Sensitivity of the CAD software was significantly higher (p < 0.05) for detection of infectious consolidation and pulmonary nodules (67.9% vs 26.8% and 54% vs 35.6%, respectively; p < 0.001) compared to radiologists analyzing DESR images. For the residual evaluated pathologies no statistical significant differences could be found. Overall, mean inter observer agreement between the three radiologists was moderate (k = 0.534). The best interobserver agreement could be reached for pneumothorax (k = 0.708) and pleural effusion (k = 0.699), while the worst was obtained for rib fractures (k = 0.412). CONCLUSION The CAD system has the potential to improve the detection of infectious consolidation and pulmonary nodules on CXR images.
Collapse
|
45
|
Chen C, Zhou J, Zhou K, Wang Z, Xiao R. DW-UNet: Loss Balance under Local-Patch for 3D Infection Segmentation from COVID-19 CT Images. Diagnostics (Basel) 2021; 11:1942. [PMID: 34829289 PMCID: PMC8623821 DOI: 10.3390/diagnostics11111942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
(1) Background: COVID-19 has been global epidemic. This work aims to extract 3D infection from COVID-19 CT images; (2) Methods: Firstly, COVID-19 CT images are processed with lung region extraction and data enhancement. In this strategy, gradient changes of voxels in different directions respond to geometric characteristics. Due to the complexity of tubular tissues in lung region, they are clustered to the lung parenchyma center based on their filtered possibility. Thus, infection is improved after data enhancement. Then, deep weighted UNet is established to refining 3D infection texture, and weighted loss function is introduced. It changes cost calculation of different samples, causing target samples to dominate convergence direction. Finally, the trained network effectively extracts 3D infection from CT images by adjusting driving strategy of different samples. (3) Results: Using Accuracy, Precision, Recall and Coincidence rate, 20 subjects from a private dataset and eight subjects from Kaggle Competition COVID-19 CT dataset tested this method in hold-out validation framework. This work achieved good performance both in the private dataset (99.94-00.02%, 60.42-11.25%, 70.79-09.35% and 63.15-08.35%) and public dataset (99.73-00.12%, 77.02-06.06%, 41.23-08.61% and 52.50-08.18%). We also applied some extra indicators to test data augmentation and different models. The statistical tests have verified the significant difference of different models. (4) Conclusions: This study provides a COVID-19 infection segmentation technology, which provides an important prerequisite for the quantitative analysis of COVID-19 CT images.
Collapse
Affiliation(s)
- Cheng Chen
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China; (C.C.); (K.Z.); (Z.W.)
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Kangneng Zhou
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China; (C.C.); (K.Z.); (Z.W.)
| | - Zhiliang Wang
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China; (C.C.); (K.Z.); (Z.W.)
| | - Ruoxiu Xiao
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China; (C.C.); (K.Z.); (Z.W.)
| |
Collapse
|
46
|
Hasan NI. A Hybrid Method of Covid-19 Patient Detection from Modified CT-Scan/Chest-X-Ray Images Combining Deep Convolutional Neural Network And Two- Dimensional Empirical Mode Decomposition. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE UPDATE 2021; 1:100022. [PMID: 34337590 PMCID: PMC8299229 DOI: 10.1016/j.cmpbup.2021.100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 05/02/2023]
Abstract
The outbreak of the SARS-CoV-2/Covid-19 virus in 2019-2020 has made the world look for fast and accurate detection methods of the disease. The most commonly used tools for detecting Covid patients are Chest-X-ray or Chest-CT-scans of the patient. However, sometimes it's hard for the physicians to diagnose the SARS-CoV-2 infection from the raw image. Moreover, sometimes, deep-learning-based techniques, using raw images, fail to detect the infection. Hence, this paper represents a hybrid method employing both traditional signal processing and deep learning technique for quick detection of SARS-CoV-2 patients based on the CT-scan and Chest-X-ray images of a patient. Unlike the other AI-based methods, here, a CT-scan/Chest-X-ray image is decomposed by two-dimensional Empirical Mode Decomposition (2DEMD), and it generates different orders of Intrinsic Mode Functions (IMFs). Next, The decomposed IMF signals are fed into a deep Convolutional Neural Network (CNN) for feature extraction and classification of Covid patients and Non-Covid patients. The proposed method is validated on three publicly available SARS-CoV-2 data sets using two deep CNN architectures. In all the databases, the modified CT-scan/Chest-X-ray image provides a better result than the raw image in terms of classification accuracy of two fundamental CNNs. This paper represents a new viewpoint of extracting preprocessed features from the raw image using 2DEMD.
Collapse
Affiliation(s)
- Nahian Ibn Hasan
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
47
|
A new composite approach for COVID-19 detection in X-ray images using deep features. Appl Soft Comput 2021; 111:107669. [PMID: 34248447 PMCID: PMC8255192 DOI: 10.1016/j.asoc.2021.107669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/23/2021] [Accepted: 06/25/2021] [Indexed: 11/23/2022]
Abstract
The new type of coronavirus, COVID 19, appeared in China at the end of 2019. It has become a pandemic that is spreading all over the world in a very short time. The detection of this disease, which has serious health and socio-economic damages, is of vital importance. COVID-19 detection is performed by applying PCR and serological tests. Additionally, COVID detection is possible using X-ray and computed tomography images. Disease detection has an important position in scientific researches that includes artificial intelligence methods. The combined models, which consist of different phases, are frequently used for classification problems. In this paper, a new combined approach is proposed to detect COVID-19 cases using deep features obtained from X-ray images. Two main variances of the approach can be presented as single layer-based (SLB) and feature fusion-based (FFB). SLB model consists of pre-processing, deep feature extraction, post-processing, and classification phases. On the other side, the FFB model consists of pre-processing, deep feature extraction, feature fusion, post-processing, and classification phases. Four different SLB and six different FFB models were developed according to the number and binary combination of layers used in the feature extraction phase. Each model is employed for binary and multi-class classification experiments. According to experimental results, the accuracy performance for COVID-19 and no-findings classification of the proposed FFB3 model is 99.52%, which is better than the best performance accuracy (of 98.08%) in the literature. Concurrently, for multi-class classification, the proposed FFB3 model has an accuracy performance of 87.64% outperforming the best existing work (which reported an 87.02% classification performance). Various metrics, including sensitivity, specificity, precision, and F1-score metrics are used for performance analysis. For all performance metrics, the FFB3 model recorded a higher success rate than existing work in the literature. To the best of our knowledge, these accuracy rates are the best in the literature for the dataset and data split type (five-fold cross-validation). Composite models (SLBs and FFBs), which are generated in this paper, are successful ways to detect COVID-19. Experimental results show that feature extraction, pre-processing, post-processing, and hyperparameter tuning are the steps are necessary to obtain a higher success. For prospective works, different types of pre-trained models and other hyperparameter tuning methods can be implemented.
Collapse
|
48
|
A CNN-based novel solution for determining the survival status of heart failure patients with clinical record data: numeric to image. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|