1
|
Yamamoto S, Umeno H, Sano Y, Koremoto M, Goda Y, Kaneko Y, Torisu S, Tsuruda T, Fujimoto S. A chronic intermittent haemodialysis pig model for functional evaluation of dialysis membranes. Int J Artif Organs 2024; 47:321-328. [PMID: 38738648 DOI: 10.1177/03913988241253152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Performance evaluation of new dialysis membranes is primarily performed in vitro, which can lead to differences in clinical results. Currently, data on dialysis membrane performance and safety are available only for haemodialysis patients. Herein, we aimed to establish an in vivo animal model of dialysis that could be extrapolated to humans. We created a bilateral nephrectomy pig model of renal failure, which placed a double-lumen catheter with the hub exposed dorsally. Haemodialysis was performed in the same manner as in humans, during which clinically relevant physiologic data were evaluated. Next, to evaluate the utility of this model, the biocompatibility of two kinds of membranes coated with or without vitamin E used in haemodiafiltration therapy were compared. Haemodialysis treatment was successfully performed in nephrectomized pigs under the same dialysis conditions (4 h per session, every other day, for 2 weeks). In accordance with human clinical data, regular dialysis alleviated renal failure in pigs. The vitamin E-coated membrane showed a significant reduction rate of advanced oxidation protein products during dialysis than non-coated membrane. In conclusion, this model mimics the pathophysiology and dialysis condition of patients undergoing haemodialysis. This dialysis treatment model of renal failure will be useful for evaluating the performance and safety of dialysis membranes.
Collapse
Affiliation(s)
- Shushi Yamamoto
- Division of Companion Animal Surgery, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido Prefecture, Japan
- Department of Hemo-Vascular Advanced Medicine, Cardiorenal Reseach Laboratory, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Umeno
- Medical Technology and Material Laboratory, Asahi Kasei Medical Co. Ltd., Fuji, Shizuoka, Japan
| | - Yusuke Sano
- Medical Technology and Material Laboratory, Asahi Kasei Medical Co. Ltd., Fuji, Shizuoka, Japan
| | - Masahide Koremoto
- Product Development Strategy Department, Asahi Kasei Medical Co. Ltd., Chiyoda-ku, Tokyo, Japan
| | - Yoshimichi Goda
- Department of Hemo-Vascular Advanced Medicine, Cardiorenal Reseach Laboratory, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yasuyuki Kaneko
- Veterinary Teaching Hospital, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Shidow Torisu
- Division of Companion Animal Surgery, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido Prefecture, Japan
| | - Toshihiro Tsuruda
- Department of Hemo-Vascular Advanced Medicine, Cardiorenal Reseach Laboratory, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shouichi Fujimoto
- M&M Collaboration Research Laboratory, Department of Medical Environment Innovation, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
2
|
Sha W, Wang Y, Cai F, Zhang C, Wang C, Chen J, Liu C, Wang R, Gao P. Regional distribution of the plastic additive tris(butoxyethyl) phosphate in Nanyang Lake estuary, China, and toxic effects on Cyprinus carpio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53566-53576. [PMID: 36862296 DOI: 10.1007/s11356-023-26168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
There is increasing concern regarding the toxicological effects of plastic additives on humans and aquatic organisms. This study investigated effects of the plastic additive tris(butoxyethyl) phosphate (TBEP) on Cyprinus carpio by measuring concentration distribution of TBEP in the Nanyang Lake estuary, as well as toxic effects of varying doses of TBEP exposure on carp liver. This also included measuring responses of superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cysteinyl aspartate-specific protease (caspase). Concentrations of TBEP in the polluted water environment (water company inlets, urban sewage pipes, etc.) in the survey area were as high as 76.17-3875.29 μg/L, and 3.12 μg/L in the river flowing through the urban area, and 1.18 μg/L in the estuary of the lake. In the subacute toxicity test, SOD activity in liver tissue with an increase in TBEP concentration was reduced significantly, while the MDA content continued to increase with an increase in TBEP concentration. Inflammatory response factors (TNF-α and IL-1β) and apoptotic proteins (caspase-3 and caspase-9) gradually increased with increasing concentrations of TBEP. Additionally, reduced organelles, increased lipid droplets, swelling of mitochondria, and disorder of mitochondrial cristae structure were observed in liver cells of TBEP-treated carp. Generally, TBEP exposure induced severe oxidative stress in carp liver tissue, resulting in release of inflammatory factors and inflammatory response, mitochondrial structure changes, and the expression of apoptotic proteins. These findings benefit our understanding about the toxicological effects of TBEP in aquatic pollution.
Collapse
Affiliation(s)
- Weilai Sha
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Ying Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Fengsen Cai
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Chen Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Chao Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Junfeng Chen
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Chunchen Liu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China.
| |
Collapse
|
3
|
Perkins RK, van Vliet S, Miranda ER, Fuller KNZ, Beisswenger PJ, Wilund KR, Paluska SA, Burd NA, Haus JM. Advanced Glycation End Products and Inflammatory Cytokine Profiles in Maintenance Hemodialysis Patients After the Ingestion of a Protein-Dense Meal. J Ren Nutr 2023; 33:181-192. [PMID: 34923111 PMCID: PMC10580815 DOI: 10.1053/j.jrn.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The goal of this investigation was to evaluate circulating and skeletal muscle inflammatory biomarkers between maintenance hemodialysis (MHD) and demographic-matched control subjects (CON) before and after ingestion of a protein-rich meal. DESIGN AND METHODS CON (n = 8; 50 ± 2 years; 31 ± 1 kg/m2) and MHD patients (n = 8; 56 ± 5 years; 32 ± 2 kg/m2) underwent a basal blood draw and muscle biopsy and serial blood draws after the ingestion of a mixed meal on a nondialysis day. Plasma advanced glycation end products (AGEs) and markers of oxidation were assessed via liquid chromatography-tandem mass spectrometry before and after the meal (+240 min). Circulating inflammatory cytokines and soluble receptors for AGE (sRAGE) isoforms (endogenous secretory RAGEs and cleaved RAGEs) were determined before and after the meal (+240 min). Basal muscle was probed for inflammatory cytokines and protein expression of related signaling components (RAGE, Toll-like receptor 4, oligosaccharyltransferase subunit 48, TIR-domain-containing adapter-inducing interferon-β, total IκBα, and pIκBα). RESULTS Basal circulating AGEs were 7- to 343-fold higher (P < .001) in MHD than those in CON, but only MG-H1 increased in CON after the meal (P < .001). There was a group effect (MHD > CON) for total sRAGEs (P = .02) and endogenous secretory RAGEs (P < .001) and a trend for cleaved RAGEs (P=.09), with no meal effect. In addition, there was a group effect (MHD < CON; P < .05) for circulating fractalkine, interleukin (IL)10, IL17A, and IL1β and a trend (P < .10) for IL6 and macrophage inflammatory protein 1 alpha, whereas tumor necrosis factor alpha was higher in MHD (P < .001). In muscle, Toll-like receptor 4 (P = .03), TIR-domain-containing adapter-inducing interferon-β (P = .002), and oligosaccharyltransferase subunit 48 (P = .02) expression was lower in MHD than that in CON, whereas IL6 was higher (P = .01) and IL8 (P = .08) tended to be higher in MHD. CONCLUSION Overall, MHD exhibited an exaggerated, circulating, and skeletal muscle inflammatory biomarker environment, and the meal did not appreciably affect the inflammatory status.
Collapse
Affiliation(s)
- Ryan K Perkins
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Stephan van Vliet
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | | | | | - Kenneth R Wilund
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
4
|
Zhu R, Wu XQ, Zhao XY, Qu ZH, Quan YN, Lu MH, Liu ZY, Wu LF. Taurine can improve intestinal function and integrity in juvenile Rhynchocypris lagowskii Dybowski fed high-dose glycinin. FISH & SHELLFISH IMMUNOLOGY 2022; 129:127-136. [PMID: 36055559 DOI: 10.1016/j.fsi.2022.08.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The present study evaluated the protective effect and the regulatory mechanism of taurine on growth inhibition and intestinal damage induced by glycinin in juvenile Rhynchocypris lagowskii Dybowski. The control diets had no glycinin and taurine, the glycinin diets contained only 80 g/kg glycinin, and the glycinin + taurine diets contained 80 g/kg glycinin+10 g/kg taurine. Juvenile Rhynchocypris lagowskii Dybowski (4.65 ± 0.03 g/tail) were respectively fed with these 3 diets for 8 weeks. The results showed that glycinin significantly decreased the final body weight, weight gain rate, specific growth rate, protein efficiency rate, feed efficiency rate and feeding rate of fish compared with the control group (P < 0.05). While taurine supplementation improved the growth performance and feed efficiency, but final body weight, weight gain rate, specific growth rate of the glycinin + taurine group were still significantly lower than the control group (P < 0.05). Compared with the glycinin group, taurine supplementation significantly increased whole-body and muscle crude protein content, and hepatopancreas and intestinal protease activities (P < 0.05). Distal intestinal villous dysplasia and mucosal damage, and increased intestinal mucosal permeability were observed in the glycinin group, while taurine supplementation alleviated these adverse effects. Usefully, taurine supplementation could also partially restore the impaired immune function and antioxidant capacity of fish fed glycinin diets. Compared with the glycinin group, taurine supplementation down-regulated pro-inflammatory cytokines TNF-α and IL-1β mRNA levels, and up-regulated anti-inflammatory cytokines IL-10 and TGF-β mRNA levels. Furthermore, taurine partially reversed the reduction of antioxidant genes Nrf2、HO-1, CAT and GPx mRNA levels in distal intestine induced by glycinin. Concluded, 80 g/kg glycinin led to intestinal damage, digestive dysfunction and increased intestinal mucosal permeability in juvenile Rhynchocypris lagowskii Dybowski, and these adverse effects were ultimately manifested in growth inhibition. But taurine supplementation could partially mitigate the negative effects induced by glycinin.
Collapse
Affiliation(s)
- Rui Zhu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Xue-Qin Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Xue-Yuan Zhao
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Zi-Hui Qu
- Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, 130119, China
| | - Ya-Nan Quan
- Jingyuetan Reservoir Management Office, Changchun, 130118, China
| | - Ming-Hui Lu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Zong-Yu Liu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Li-Fang Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
5
|
Chen D, Li R, Huang D, Tong H, Zhao X, Yan W, Shen S, Liu H, Zhu H. Altered retinal nerve fiber layer thickness in children with allergic conjunctivitis: the Nanjing eye study. BMC Ophthalmol 2022; 22:183. [PMID: 35459115 PMCID: PMC9028092 DOI: 10.1186/s12886-022-02399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background So far, few data are available on the relationship between allergic conjunctivitis (AC) and ocular fundus. Whether retinal parameters change in patients with AC remains unknown. In this study, we investigated the influence of AC on retinal thickness and vessel density among 7-years-old school-age children. Methods This large population-based study is part of the Nanjing Eye Study (NES). Comprehensive examinations including anthropometric parameters, refraction, ocular biometric parameters, intraocular pressure and retinal parameters were conducted on each child. Retinal thickness and vessel density were assessed using the optical coherence tomography angiography. Information on AC was obtained from a comprehensive questionnaire. Results A total of 739 children (mean age ± SD: 7.40 ± 0.29 years) had complete eye examination and questionnaire data we needed. Ninety-four children (12.7%) had AC, among which, 5 children had the history of corticosteroid use and were excluded from the final analysis. Spherical equivalent, axial length, body mass index and birth weight were correlated with retinal parameters. After adjusting for sex, age, spherical equivalent, axial length, body mass index, birth weight and premature history, children with AC had thinner retinal nerve fiber layer thickness for average (117.39 versus 120.97 μm, p = 0.007), temporal (80.73 versus 84.34 μm, p = 0.001), nasal (98.82 versus 102.18 μm, p = 0.049) and inferior (152.68 versus 157.06 μm, p = 0.034) quadrants than the control group. Conclusions Children with AC tended to have thinner retinal nerve fiber layer thickness. More attention is needed to fundus condition of children with AC. Supplementary information The online version contains supplementary material available at 10.1186/s12886-022-02399-7.
Collapse
Affiliation(s)
- Danni Chen
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Rui Li
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Dan Huang
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Haohai Tong
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Eye Center, Hangzhou, Zhejiang, China
| | - Xiaoyan Zhao
- Department of Ophthalmology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, Jiangsu Province, P.R. China
| | - Wen Yan
- Department of Ophthalmology, The Fourth Affiliated Hospital of Nantong University, The First people's Hospital of Yancheng, Yancheng, China
| | - Shiya Shen
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Hui Zhu
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Soliman GF, Abdel-Maksoud OM, Khalifa MM, Rashed LA, Ibrahim W, Morsi H, Abdallah H, Bastawy N. Effect of nebivolol on altered skeletal and cardiac muscles induced by dyslipidemia in rats: impact on oxidative and inflammatory machineries. Arch Physiol Biochem 2022; 128:463-473. [PMID: 31876193 DOI: 10.1080/13813455.2019.1693599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIM High cholesterol diet is greatly linked to deleterious health consequences. In this work we tried to explore direct effects of high cholesterol diet on striated (skeletal and cardiac) muscle tissues and the mechanisms by which nebivolol could improve such harmful effects. METHODS The study included 24 healthy adult male albino rats weighing 200-220 grams that were assigned into four groups: control group, control drug group, high cholesterol diet fed groups; one untreated the other was treated with nebivolol. RESULTS In the cholesterol fed group, we found decreased blood HDL and NO with elevated total cholesterol, triglycerides, myoglobin, CK, LDH, ALP, in addition to elevated muscle tissue levels of HIF-1, NF-kB, MDA, and decreased expression of both eNOS, reduced GSH. Wire hanging test time was shorter in the high cholesterol group than control group rats, which was confirmed histologically by increased striated muscle fibre thickness and cytochrome area %. Nebivolol treatment ameliorated the effects of high cholesterol diet. CONCLUSION High cholesterol diet caused myopathic changes in rat striated muscle tissues mostly due to oxidative stress associated with enhanced NF-kB and HIF-1 expression. Nebivolol appears beneficial in the management of hypercholesterolaemia-induced striated muscle injury.
Collapse
Affiliation(s)
| | | | | | | | - Walaa Ibrahim
- Department of Medical Biochemistry, Cairo University, Cairo, Egypt
| | - Heba Morsi
- Department of Medical Biochemistry, Cairo University, Cairo, Egypt
| | - Hanan Abdallah
- Department of Medical Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen Bastawy
- Department of Medical Physiology, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Steiger S, Rossaint J, Zarbock A, Anders HJ. Secondary Immunodeficiency Related to Kidney Disease (SIDKD)-Definition, Unmet Need, and Mechanisms. J Am Soc Nephrol 2022; 33:259-278. [PMID: 34907031 PMCID: PMC8819985 DOI: 10.1681/asn.2021091257] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Kidney disease is a known risk factor for poor outcomes of COVID-19 and many other serious infections. Conversely, infection is the second most common cause of death in patients with kidney disease. However, little is known about the underlying secondary immunodeficiency related to kidney disease (SIDKD). In contrast to cardiovascular disease related to kidney disease, which has triggered countless epidemiologic, clinical, and experimental research activities or interventional trials, investments in tracing, understanding, and therapeutically targeting SIDKD have been sparse. As a call for more awareness of SIDKD as an imminent unmet medical need that requires rigorous research activities at all levels, we review the epidemiology of SIDKD and the numerous aspects of the abnormal immunophenotype of patients with kidney disease. We propose a definition of SIDKD and discuss the pathogenic mechanisms of SIDKD known thus far, including more recent insights into the unexpected immunoregulatory roles of elevated levels of FGF23 and hyperuricemia and shifts in the secretome of the intestinal microbiota in kidney disease. As an ultimate goal, we should aim to develop therapeutics that can reduce mortality due to infections in patients with kidney disease by normalizing host defense to pathogens and immune responses to vaccines.
Collapse
Affiliation(s)
- Stefanie Steiger
- Division of Nephrology, Department of Medicine IV, Ludwig Maximilians University Hospital of Munich, Munich, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig Maximilians University Hospital of Munich, Munich, Germany
| |
Collapse
|
8
|
Jafarnejad S, Hooshiar S, Esmaili H, Taherian A. Exercise, Advanced Glycation End Products, and Their Effects on Cardiovascular Disorders: A Narrative Review. HEART AND MIND 2022. [DOI: 10.4103/hm.hm_31_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Wu Y, Jiang H, Chen G, Chen X, Hu C, Su X, Tan F, Zhao X. Preventive Effect of Gonggan (Citrus Reticulata Blanco Var. Gonggan) Peel Extract on Ethanol/HCl-Induced Gastric Injury in Mice via an Anti-oxidative Mechanism. Front Pharmacol 2021; 12:715306. [PMID: 34867323 PMCID: PMC8635765 DOI: 10.3389/fphar.2021.715306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Gonggan (Citrus reticulata Blanco var. gonggan) is one of the most popular citruses. In this study, the effect of Gonggan peel extract (GPE) on gastric injury was investigated. The components in GPE were analysed by HPLC and the gastric injury model in mice was established by ethanol/hydrochloric acid. After treatment by GPE, the pathological changes of gastric tissue were observed by optical microscope. The levels of oxidative stress and inflammation were measure by kit. And the mRNA expression of related gene was determined by qPCR assay. HPLC result showed GPE mainly contained the flavonoids narirutin, hesperidin, nobiletin, tangeretin and 5-demethylnobiletin. Morphological and pathological analysis of gastric tissue revealed that GPE could relieve gastric injury. Also, GPE increased the levels of SOD, GSH-Px, and CAT and decreased the level of MDA. Moreover, GPE decreased the levels of the inflammatory cytokines TNF-α, IFN-γ, IL-1β, and IL-6 to suppress inflammation. In addition, the q-PCR results showed that GPE upregulated the mRNA expression of SOD1, SOD2, γ-GCS, GSH-Px, CAT, and IκBα and downregulated the mRNA expression of NF-κB. In conclusion, GPE alleviated gastric injury caused by ethanol/hydrochloric acid by inhibiting oxidative stress and the inflammatory response. The mechanism by which GPE protects gastric tissues may involve the antioxidative pathway. Therefore, GPE has great potential to be developed as a product to prevent gastric injury.
Collapse
Affiliation(s)
- Ya Wu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Hua Jiang
- Department of TCM (Rheumatic Immunology/Geriatrics), People's Hospital of Chongqing Banan District, Chongqing, China
| | - Guangfang Chen
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Xingxing Chen
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Chengming Hu
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Xiaofei Su
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
10
|
Two Faces of Vitamin C in Hemodialysis Patients: Relation to Oxidative Stress and Inflammation. Nutrients 2021; 13:nu13030791. [PMID: 33673687 PMCID: PMC7997461 DOI: 10.3390/nu13030791] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Hemodialysis (HD) is the most common method of renal replacement therapy. Besides toxins, it eliminates nutrients from the circulation, such as ascorbic acid (AA). HD-patients present AA deficiency more often than representatives of the general population, also due to dietary restrictions. This condition aggravates oxidative stress and inflammation related to uremia and extracorporeal circulation and increases cardiovascular risk followed by mortality. Supplementation of AA seems to be a promising approach in the treatment of hemodialysis patients. Many successful interventions restored plasma AA concentration in HD patients by enteral or intravenous supplementation, concomitantly inhibiting oxidative stress and inflammation. A significant number of studies reported opposite, serious pro-oxidant effects of AA. In this narrative review, we present studies, commenting on their limitations; on AA plasma or serum concentration and the influence of its supplementation on protein and lipid peroxidation, DNA damage, reactive oxygen species generation, paraoxonase activity, advanced glycation endproducts, and C-reactive protein (CRP) concentration. Moreover, in terms of safety, the possible development of oxalosis in HD patients regarding the intravenous or enteral route of AA administration is discussed. Unequivocal clinical results of recent studies on hemodialysis patients are displayed.
Collapse
|
11
|
Colombo G, Reggiani F, Astori E, Altomare A, Finazzi S, Garavaglia ML, Angelini C, Milzani A, Badalamenti S, Dalle-Donne I. Advanced oxidation protein products in nondiabetic end stage renal disease patients on maintenance haemodialysis. Free Radic Res 2019; 53:1114-1124. [PMID: 31755327 DOI: 10.1080/10715762.2019.1690651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In chronic kidney disease (CKD), the impairment of the excretory function leads to elevation in the blood concentrations of urea, creatinine, and various protein metabolic products. Advanced oxidation protein products (AOPP), along with protein carbonyls, protein-bound di-tyrosines and S-thiolated proteins, are considered biomarkers of oxidative stress in end-stage renal disease (ESRD) patients on maintenance haemodialysis (HD). In this study, we evaluated the correlations between plasma levels of AOPP (measured by size exclusion/gel filtration high performance liquid chromatography) and those of protein-bound di-tyrosines, protein carbonyls, albumin and fibrinogen in 50 nondiabetic ESRD patients on maintenance HD. Considering that AOPP could represent the bridge between oxidative stress and inflammation, having been identified as proinflammatory mediators, we also evaluated the association between AOPP levels, C-reactive protein concentration and white blood cells count. Finally, we assessed the associations between plasma level of AOPP and serum concentrations of creatinine and urea, both of which showed a strong dependence on the chronological age of haemodialysed patients. Taken together, our results confirm the robust relationship between uraemia and oxidative stress, especially when measured as biomarkers of severe protein oxidative damage (e.g. plasma AOPP).
Collapse
Affiliation(s)
- Graziano Colombo
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, Milan, Italy
| | | | - Emanuela Astori
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Silvia Finazzi
- Nephrology Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Maria L Garavaglia
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, Milan, Italy
| | - Claudio Angelini
- Nephrology Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Aldo Milzani
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, Milan, Italy
| | | | - Isabella Dalle-Donne
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, Gugliucci A, Kapahi P. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell Metab 2018; 28:337-352. [PMID: 30184484 PMCID: PMC6355252 DOI: 10.1016/j.cmet.2018.08.014] [Citation(s) in RCA: 368] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation of advanced glycation end products (AGEs) on nucleotides, lipids, and peptides/proteins are an inevitable component of the aging process in all eukaryotic organisms, including humans. To date, a substantial body of evidence shows that AGEs and their functionally compromised adducts are linked to and perhaps responsible for changes seen during aging and for the development of many age-related morbidities. However, much remains to be learned about the biology of AGE formation, causal nature of these associations, and whether new interventions might be developed that will prevent or reduce the negative impact of AGEs-related damage. To facilitate achieving these latter ends, we show how invertebrate models, notably Drosophila melanogaster and Caenorhabditis elegans, can be used to explore AGE-related pathways in depth and to identify and assess drugs that will mitigate against the detrimental effects of AGE-adduct development.
Collapse
Affiliation(s)
- Jyotiska Chaudhuri
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | - Yasmin Bains
- Touro University College of Osteopathic Medicine, Glycation Oxidation and Research laboratory, Vallejo, CA, 94592, USA
| | - Sanjib Guha
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Arnold Kahn
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; University of California, Department of Urology, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - David Hall
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Neelanjan Bose
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; University of California, Department of Urology, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Alejandro Gugliucci
- Touro University College of Osteopathic Medicine, Glycation Oxidation and Research laboratory, Vallejo, CA, 94592, USA.
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; University of California, Department of Urology, 400 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Critical Appraisal of Advanced Glycation End Products (AGEs) and Circulating Soluble Receptors for Advanced Glycation End Products (sRAGE) as a Predictive Biomarkers for Cardiovascular Disease in Hemodialysis Patients. Med Sci (Basel) 2018; 6:medsci6020038. [PMID: 29789493 PMCID: PMC6024807 DOI: 10.3390/medsci6020038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/05/2018] [Accepted: 05/15/2018] [Indexed: 12/26/2022] Open
Abstract
The interaction of advanced glycation end products (AGE) and their receptors promote vascular complications of diabetes in hemodialysis (HD) patients. The soluble form of the receptor for the advanced glycation end-products (sRAGE) has been studied as a vascular biomarker in various diseases with controversial results. Our aim was to evaluate the association of the serum levels of the AGEs and their receptor sRAGE with cardiovascular disease (CVD) and the cardiovascular risk factors among HD patients. There were 130 HD patients and 80 age and gender matched control subjects were involved; 31.5% of the HD group were diabetic, which was an underlying cause of renal impairment; 36.1% had CVD, which was comprising 44.7% of diabetics and 55.3% of non-diabetic patients. The AGEs and sRAGE were assessed by enzyme linked immunosorbent assay (ELISA). In addition, the lipid profile, glycemic indices, pre-dialysis renal function tests, and hemoglobin % (Hb) were evaluated. The results show that the circulating AGEs and sRAGE levels were significantly higher in the HD patients. Those with underlying diabetes displayed higher sRAGE levels, which were positively correlated with hyperglycemia, HbA1C, and total cholesterol (TC). The HD patients with an increased serum sRAGE exhibited more cardiovascular risk factors (hypercholesterolemia and anemia) with a high prevalence of CVD. Using a linear regression analysis, we found a significant association of sRAGE with CVD and TC among HD patients, regardless of whether associating diabetes was an underlying cause of renal impairment. Overall, the HD patients displayed significantly higher serum AGEs with a concomitant increase in the circulating sRAGE levels, mainly in the diabetic HD, which were significantly associated with the CVD (independent predictors) and CV risk factors (hypercholesterolemia), mainly sRAGEs, regardless of the underlying diabetes mellitus. This highlights the prognostic role of AGEs and sRAGE in HD patients regardless of underlying cause in order to predict the risk for CVD.
Collapse
|
14
|
Koyama H, Yamamoto H, Nishizawa Y. Endogenous Secretory RAGE as a Novel Biomarker for Metabolic Syndrome and Cardiovascular Diseases. Biomark Insights 2017. [DOI: 10.1177/117727190700200021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Receptor for advanced glycation end-products (RAGE) is known to be involved in both micro- and macrovascular complications in diabetes. Among numerous truncated forms of RAGE recently described, the C-terminally truncated form of RAGE has received much attention. This form of RAGE, carrying all of the extracellular domains but devoid of the trans-membrane and intracytoplasmic domains, is released outside from cells, binds ligands including AGEs, and is capable of neutralizing RAGE signaling on endothelial cells in culture. This form of RAGE is generated as a splice variant and is named endogenous secretory RAGE (esRAGE). Adenoviral overexpression of esRAGE reverses diabetic impairment of vascular dysfunction, suggesting that esRAGE may be an important inhibitor of RAGE signaling in vivo and potentially be useful for prevention of diabetic vascular complications. An ELISA system to measure plasma esRAGE was recently developed, and the pathophysiological roles of esRAGE have begun to be unveiled clinically. Plasma esRAGE levels are decreased in patients with several metabolic diseases including type 1 and type 2 diabetes, metabolic syndrome and hypertension. In cross-sectional analysis, plasma esRAGE levels are inversely correlated with carotid or femoral atherosclerosis. In an observational cohort of patients with end-stage renal disease, cumulative incidence of cardiovascular death was significantly higher in subjects with lower plasma esRAGE levels. These findings suggest that plasma esRAGE may act as a protective factor against and a novel biomarker for the occurrence of metabolic syndrome and cardiovascular diseases.
Collapse
Affiliation(s)
- Hidenori Koyama
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa 920–8640, Japan
| | - Yoshiki Nishizawa
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
15
|
Kassan M, Choi SK, Galán M, Trebak M, Belmadani S, Matrougui K. Nuclear factor kappa B inhibition improves conductance artery function in type 2 diabetic mice. Diabetes Metab Res Rev 2015; 31:39-49. [PMID: 24652705 PMCID: PMC4829069 DOI: 10.1002/dmrr.2542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 01/27/2014] [Accepted: 03/02/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND We previously reported that enhanced nuclear factor kappa B (NFκB) activity is responsible for resistance arteries dysfunction in type 2 diabetic mice. METHODS In this study, we aimed to determine whether augmented NFκB activity also impairs conductance artery (thoracic aorta) function in type 2 diabetic mice. We treated type 2 diabetic (db(-) /db(-) ) and control (db(-) /db(+) ) mice with two NFκB inhibitors (dehydroxymethylepoxyquinomicin, 6 mg/kg, twice a week and IKK-NBD peptide, 500 µg/kg/day) for 4 weeks. RESULTS As expected, the NFκB inhibition did not affect blood glucose level and body weight. Thoracic aorta vascular endothelium-dependent relaxation (EDR), determined by the wire myograph, was impaired in diabetic mice compared with control and was significantly improved after NFκB inhibition. Interestingly, thoracic EDR was also rescued in db(-) /db(-p50NFκB-/-) and db(-) /db(-PARP-1-/-) double knockout mice compared with db(-) /db(-) mice. Similarly, the acute in vitro down regulation of NFκB-p65 using p65 shRNA lentiviral particles in arteries from db(-) /db(-) mice also improved thoracic aorta EDR. Western blot analysis showed that the p65NFκB phosphorylation, cleaved PARP-1 and COX-2 expression were increased in thoracic aorta from diabetic mice, which were restored after NFκB inhibition and in db(-) /db(-p-50NFκB-/-) and db(-) /db(-PARP-1-/-) mice. CONCLUSIONS The present results indicate that in male type 2 diabetic mice, the augmented NFκB activity also impairs conductance artery function through PARP-1 and COX-2-dependent mechanisms.
Collapse
Affiliation(s)
- Modar Kassan
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, 1430 Tulane Ave, New Orleans LA-70112
| | - Soo-Kyoung Choi
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, 1430 Tulane Ave, New Orleans LA-70112
| | - Maria Galán
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, 1430 Tulane Ave, New Orleans LA-70112
| | - Mohamed Trebak
- College of Nanoscale Science and Engineering University at Albany 257 Fuller Rd. Albany, NY 12203
| | - Souad Belmadani
- Department of Physiological Sciences, Eastern Virginia School of Medicine, 700 W Olney Rd, Norfolk, Virginia 23501
- Corresponding Authors: Khalid Matrougui, Ph.D. () & Souad Belmadani, PhD () Department of Physiological Sciences, 700 W Olney Rd, Norfolk, Virginia 23501. Phone: 757-446-5278. Fax: 757-624-2270
| | - Khalid Matrougui
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, 1430 Tulane Ave, New Orleans LA-70112
- Department of Physiological Sciences, Eastern Virginia School of Medicine, 700 W Olney Rd, Norfolk, Virginia 23501
- Corresponding Authors: Khalid Matrougui, Ph.D. () & Souad Belmadani, PhD () Department of Physiological Sciences, 700 W Olney Rd, Norfolk, Virginia 23501. Phone: 757-446-5278. Fax: 757-624-2270
| |
Collapse
|
16
|
Makulska I, Szczepańska M, Drożdż D, Polak-Jonkisz D, Zwolińska D. Skin autofluorescence as a novel marker of vascular damage in children and adolescents with chronic kidney disease. Pediatr Nephrol 2015; 30:811-9. [PMID: 25409659 PMCID: PMC4372673 DOI: 10.1007/s00467-014-2997-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Skin autofluorescence (sAF) was examined as a marker of the accumulation of advanced glycation end products (AGEs) in tissues of children with chronic kidney disease (CKD) in relation to renal function, dialysis modality and markers of endothelial inflammation and dysfunction. METHODS A total of 76 children with CKD were enrolled in the study, of whom 20 children were on hemodialysis (HD), 20 were on peritoneal dialysis (PD) and 36 were treated conservatively. A control group of 26 healthy subjects was also included in the study. In all children, sAF intensity, carotid intima-media (cIMT) thickness and plasma concentrations of sE-selectin, matrix metalloproteinase 9 (MMP-9), tissue inhibitor of metalloproteinase 1 (TIMP-1), asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and plasminogen activator inhibitor type 1 (PAI-1) were measured. RESULTS Compared to the controls, children with CKD had significantly elevated sAF levels. sAF in the children with CKD was positively correlated with sE-selectin, MMP-9, TIMP-1, ADMA, SDMA and PAI-1 levels. In the predialysis group (conservative treatment) sAF levels were positively correlated with sE-selectin and ADMA levels and negatively correlated with glomerular filtration rate. Multiple regression analysis showed a significant association of sAF with sE-selectin and MMP-9 in CKD children. CONCLUSIONS The results reveal that AGEs were accumulated in the children with CKD. This accumulation was related to early vascular changes and a number of biochemical vascular risk markers. sAF measurement, as a noninvasive method, may be useful for identification of clinical risk factors of vascular disease in CKD children.
Collapse
Affiliation(s)
- Irena Makulska
- Department of Pediatric Nephrology, Wrocław Medical University, ul. Borowska 213, 50-556, Wrocław, Poland,
| | - Maria Szczepańska
- Department of Pediatrics in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dorota Drożdż
- Dialysis Unit, Jagiellonian University Medical College, Krakow, Poland
| | - Dorota Polak-Jonkisz
- Department of Pediatric Nephrology, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland
| | - Danuta Zwolińska
- Department of Pediatric Nephrology, Wrocław Medical University, ul. Borowska 213, 50-556 Wrocław, Poland
| |
Collapse
|
17
|
Gugliucci A, Menini T. The axis AGE-RAGE-soluble RAGE and oxidative stress in chronic kidney disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 824:191-208. [PMID: 25039001 DOI: 10.1007/978-3-319-07320-0_14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic kidney disease (CKD) has been shown to be associated with high oxidative stress and cardiovascular disease. In this chapter our focus will be on the role of advanced glycation end products (AGE) and their receptor, RAGE in CKD progression and their role on cardiovascular complications. We provide a succinct, yet comprehensive summary of the current knowledge, the challenges and the future therapeutic avenues that are stemming out from novel recent findings. We first briefly review glycation and AGE formation and the role of the kidney in their metabolism. Next, we focus on the RAGE, its signaling and role in oxidative stress. We address the possible role of soluble RAGEs as decoys and the controversy regarding this issue. We then provide the latest information on the specific role of both AGE and RAGE in inflammation and perpetuation of kidney damage in diabetes and in CKD without diabetes, which is the main purpose of the review. Finally, we offer an update on new avenues to target the AGE-RAGE axis in CKD.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Department of Research, College of Osteopathic Medicine, Touro University-California, 1310 Club Drive, 94592, Vallejo, CA, USA,
| | | |
Collapse
|
18
|
Colombo G, Clerici M, Giustarini D, Portinaro N, Badalamenti S, Rossi R, Milzani A, Dalle-Donne I. A central role for intermolecular dityrosine cross-linking of fibrinogen in high molecular weight advanced oxidation protein product (AOPP) formation. Biochim Biophys Acta Gen Subj 2014; 1850:1-12. [PMID: 25280629 DOI: 10.1016/j.bbagen.2014.09.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Advanced oxidation protein products (AOPPs) are dityrosine cross-linked and carbonyl-containing protein products formed by the reaction of plasma proteins with chlorinated oxidants, such as hypochlorous acid (HOCl). Most studies consider human serum albumin (HSA) as the main protein responsible for AOPP formation, although the molecular composition of AOPPs has not yet been elucidated. Here, we investigated the relative contribution of HSA and fibrinogen to generation of AOPPs. METHODS AOPP formation was explored by SDS-PAGE, under both reducing and non-reducing conditions, as well as by analytical gel filtration HPLC coupled to fluorescence detection to determine dityrosine and pentosidine formation. RESULTS Following exposure to different concentrations of HOCl, HSA resulted to be carbonylated but did not form dityrosine cross-linked high molecular weight aggregates. Differently, incubation of fibrinogen or HSA/fibrinogen mixtures with HOCl at concentrations higher than 150 μM induced the formation of pentosidine and high molecular weight (HMW)-AOPPs (>200 k Da), resulting from intermolecular dityrosine cross-linking. Dityrosine fluorescence increased in parallel with increasing HMW-AOPP formation and increasing fibrinogen concentration in HSA/fibrinogen mixtures exposed to HOCl. This conclusion is corroborated by experiments where dityrosine fluorescence was measured in HOCl-treated human plasma samples containing physiological or supra-physiological fibrinogen concentrations or selectively depleted of fibrinogen, which highlighted that fibrinogen is responsible for the highest fluorescence from dityrosine. CONCLUSIONS A central role for intermolecular dityrosine cross-linking of fibrinogen in HMW-AOPP formation is shown. GENERAL SIGNIFICANCE These results highlight that oxidized fibrinogen, instead of HSA, is the key protein for intermolecular dityrosine formation in human plasma.
Collapse
Affiliation(s)
- Graziano Colombo
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Marco Clerici
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | | | - Nicola Portinaro
- Clinica ortopedica e traumatologica, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | | | - Ranieri Rossi
- Department of Evolutionary Biology, University of Siena, Siena, Italy
| | - Aldo Milzani
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
19
|
Chmielewski M, Cohen G, Wiecek A, Jesús Carrero J. The peptidic middle molecules: is molecular weight doing the trick? Semin Nephrol 2014; 34:118-34. [PMID: 24780468 DOI: 10.1016/j.semnephrol.2014.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chronic kidney disease (CKD) is characterized by a gradual endogenous intoxication caused by the progressive accumulation of bioactive compounds that in normal conditions would be excreted and/or metabolized by the kidney. Uremic toxicity now is understood as one of the potential causes for the excess of cardiovascular disease and mortality observed in CKD. An important family of uremic toxins is that of the peptidic middle molecules, with a molecular weight ranging between 500 and 60,000 Da, which makes them, as a consequence, difficult to remove in the process of dialysis unless the dialyzer pore size is large enough. This review provides an overview of the main and best-characterized peptidic middle molecules and their role as potential culprits of the cardiometabolic complications inherent to CKD patients.
Collapse
Affiliation(s)
- Michal Chmielewski
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Gerald Cohen
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrzej Wiecek
- Department of Nephrology, Endocrinology and Metabolic Diseases, Medical University of Silesia, Katowice, Poland
| | - Juan Jesús Carrero
- Division of Nephrology and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Hadi NR, Yousif NG, Abdulzahra MS, Mohammad BI, al-amran FG, Majeed ML, Yousif MG. Role of NF-κβ and Oxidative Pathways in Atherosclerosis: Cross-Talk Between Dyslipidemia and Candesartan. Cardiovasc Ther 2013; 31:381-7. [DOI: 10.1111/1755-5922.12033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Najah R. Hadi
- Departments of Pharmacology and Therapeutics; College of Medicine; Kufa University; Najaf Iraq
| | - Nasser Ghaly Yousif
- Department of Medicine and Surgery; University of Colorado Denver; Aurora CO 80045 USA
| | - Mohammed S. Abdulzahra
- Departments of Pharmacology and Therapeutics; College of Medicine; Kufa University; Najaf Iraq
| | - Bassim I. Mohammad
- Departments of Pharmacology and Therapeutics; College of Medicine; Kufa University; Najaf Iraq
| | - Fadhil G. al-amran
- Departments of Pharmacology and Therapeutics; College of Medicine; Kufa University; Najaf Iraq
| | - Murooge L. Majeed
- Departments of Pharmacology and Therapeutics; College of Medicine; Kufa University; Najaf Iraq
| | - Maitham G. Yousif
- Department of Biology; College of Science; Al-Qadysia University; Al Diwaniyah Iraq
| |
Collapse
|
21
|
Daffu G, del Pozo CH, O'Shea KM, Ananthakrishnan R, Ramasamy R, Schmidt AM. Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int J Mol Sci 2013; 14:19891-910. [PMID: 24084731 PMCID: PMC3821592 DOI: 10.3390/ijms141019891] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is a central mechanism by which the receptor for advanced glycation endproducts (RAGE) mediates its pathological effects. Multiple experimental inquiries in RAGE-expressing cultured cells have demonstrated that ligand-RAGE interaction mediates generation of reactive oxygen species (ROS) and consequent downstream signal transduction and regulation of gene expression. The primary mechanism by which RAGE generates oxidative stress is via activation of NADPH oxidase; amplification mechanisms in the mitochondria may further drive ROS production. Recent studies indicating that the cytoplasmic domain of RAGE binds to the formin mDia1 provide further support for the critical roles of this pathway in oxidative stress; mDia1 was required for activation of rac1 and NADPH oxidase in primary murine aortic smooth muscle cells treated with RAGE ligand S100B. In vivo, in multiple distinct disease models in animals, RAGE action generates oxidative stress and modulates cellular/tissue fate in range of disorders, such as in myocardial ischemia, atherosclerosis, and aneurysm formation. Blockade or genetic deletion of RAGE was shown to be protective in these settings. Indeed, beyond cardiovascular disease, evidence is accruing in human subjects linking levels of RAGE ligands and soluble RAGE to oxidative stress in disorders such as doxorubicin toxicity, acetaminophen toxicity, neurodegeneration, hyperlipidemia, diabetes, preeclampsia, rheumatoid arthritis and pulmonary fibrosis. Blockade of RAGE signal transduction may be a key strategy for the prevention of the deleterious consequences of oxidative stress, particularly in chronic disease.
Collapse
Affiliation(s)
- Gurdip Daffu
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, Smilow 901C, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Adesso S, Popolo A, Bianco G, Sorrentino R, Pinto A, Autore G, Marzocco S. The uremic toxin indoxyl sulphate enhances macrophage response to LPS. PLoS One 2013; 8:e76778. [PMID: 24098806 PMCID: PMC3786936 DOI: 10.1371/journal.pone.0076778] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/03/2013] [Indexed: 12/21/2022] Open
Abstract
Indoxyl sulphate (IS) is a protein-bound uremic toxin that results from the metabolism of dietary tryptophan normally excreted by kidney through the proximal tubules. Thus the toxin accumulates in the blood of patients with impaired renal function such as in chronic kidney disease (CKD). High IS serum levels in patients with CKD suggest its involvement in CKD progression and in the onset of complications. Its presence in plasma is also a powerful predictor of overall and cardiovascular morbidity/mortality. IS is a well known nephrovascular toxin but very little is known regarding its effects on the immune system and in particular during inflammation. In this study we examined the effect of IS on macrophage activation in response to lipopolysaccharide from E. coli (LPS), a gram negative bacterial endotoxin associated with inflammation and septic shock. To simulate the uremic condition, J774A.1 macrophages were incubated with IS at concentrations observed in uremic patients (1000-62.5 µM) both alone and during LPS challenge. IS alone induced release of reactive oxygen species (ROS), through a mechanism involving pro- and anti-oxidant systems, and alteration in intracellular calcium homeostasis. When added to J774A.1 macrophages in presence of LPS, IS significantly increased the nitric oxide (NO) release, inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2) expression. IS pre-treatment was also associated with an increase in tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production by macrophages stimulated with LPS. Mechanistic studies revealed that IS increased LPS-induced NF-kB nuclear translocation, ROS release and altered calcium concentrations, mainly because of mitochondrial calcium overloading. Moreover also in primary mouse peritoneal macrophages IS enhances the inflammatory response to LPS increasing ROS, NO, iNOS, COX-2, TNF-α, IL-6 and NF-kB levels. This study provides evidences that IS stimulates macrophage function and enhances inflammatory reasponse associated with LPS, thus contributing to altered immune response dysfunctions observed in CKD.
Collapse
Affiliation(s)
- Simona Adesso
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Ada Popolo
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Giuseppe Bianco
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Rosalinda Sorrentino
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Aldo Pinto
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Giuseppina Autore
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Stefania Marzocco
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano (SA), Italy
- * E-mail:
| |
Collapse
|
23
|
Kassan M, Choi SK, Galán M, Bishop A, Umezawa K, Trebak M, Belmadani S, Matrougui K. Enhanced NF-κB activity impairs vascular function through PARP-1-, SP-1-, and COX-2-dependent mechanisms in type 2 diabetes. Diabetes 2013; 62:2078-87. [PMID: 23349490 PMCID: PMC3661639 DOI: 10.2337/db12-1374] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Type 2 diabetes (T2D) is associated with vascular dysfunction. We hypothesized that increased nuclear factor-κB (NF-κB) signaling contributes to vascular dysfunction in T2D. We treated type 2 diabetic (db(-)/db(-)) and control (db(-)/db(+)) mice with two NF-κB inhibitors (6 mg/kg dehydroxymethylepoxyquinomicin twice a week and 500 μg/kg/day IKK-NBD peptide) for 4 weeks. Pressure-induced myogenic tone was significantly potentiated, while endothelium-dependent relaxation (EDR) was impaired in small coronary arterioles and mesenteric resistance artery from diabetic mice compared with controls. Interestingly, diabetic mice treated with NF-κB inhibitors had significantly reduced myogenic tone potentiation and improved EDR. Importantly, vascular function was also rescued in db(-)/db(-p50NF-κB-/-) and db(-)/db(-PARP-1-/-) double knockout mice compared with db(-)/db(-) mice. Additionally, the acute in vitro downregulation of NF-κB-p65 using p65NF-κB short hairpin RNA lentivirus in arteries from db(-)/db(-) mice also improved vascular function. The NF-κB inhibition did not affect blood glucose level or body weight. The RNA levels for Sp-1 and eNOS phosphorylation were decreased, while p65NF-κB phosphorylation, cleaved poly(ADP-ribose) polymerase (PARP)-1, and cyclooxygenase (COX)-2 expression were increased in arteries from diabetic mice, which were restored after NF-κB inhibition and in db(-)/db(-p50NF-κB-/-) and db(-)/db(-PARP-1-/-) mice. In the current study, we provided evidence that enhanced NF-κB activity impairs vascular function by PARP-1-, Sp-1-, and COX-2-dependent mechanisms in male type 2 diabetic mice. Therefore, NF-κB could be a potential target to overcome diabetes-induced vascular dysfunction.
Collapse
Affiliation(s)
- Modar Kassan
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana
- Department of Physiological Sciences, Eastern Virginia School of Medicine, Norfolk, Virginia
| | - Soo-Kyoung Choi
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana
| | - Maria Galán
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana
- Department of Physiological Sciences, Eastern Virginia School of Medicine, Norfolk, Virginia
| | - Alexander Bishop
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Kazuo Umezawa
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Mohamed Trebak
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Souad Belmadani
- Department of Physiological Sciences, Eastern Virginia School of Medicine, Norfolk, Virginia
- Corresponding author: Khalid Matrougui, , or Souad Belmadani,
| | - Khalid Matrougui
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana
- Department of Physiological Sciences, Eastern Virginia School of Medicine, Norfolk, Virginia
- Corresponding author: Khalid Matrougui, , or Souad Belmadani,
| |
Collapse
|
24
|
Makulska I, Szczepańska M, Drożdż D, Polak-Jonkisz D, Zwolińska D. Skin autofluorescence as a marker of cardiovascular risk in children with chronic kidney disease. Pediatr Nephrol 2013; 28:121-8. [PMID: 22976887 PMCID: PMC3505501 DOI: 10.1007/s00467-012-2280-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/13/2012] [Accepted: 07/13/2012] [Indexed: 01/20/2023]
Abstract
BACKGROUND We examined skin autofluorescence (sAF) in chronic kidney disease children (CKD) in relation to renal function and dialysis modality. METHODS Twenty children on hemodialysis (HD), 20 on peritoneal dialysis (PD), 36 treated conservatively, and 26 healthy subjects were enrolled into the study. In all children sAF, pulse-wave velocity indexed to height (PWV/ht), left ventricular mass index (LVMI), blood pressure (BP), serum lipid profile, phosphate (P), calcium (Ca), and homocysteine were measured. RESULTS sAF was significantly elevated in CKD groups vs. controls and was significantly associated with PWV/ht, LVMI, BP, P, Ca × P product and homocysteine. sAF in HD and PD groups was positively correlated with dialysis vintage, and in the predialysis group negatively correlated with glomerular filtration rate (eGFR). Multiple regression analysis showed significant association of sAF with LVMI and P in the CKD patient group, and with dialysis treatment duration and BP in dialyzed children. CONCLUSIONS In CKD children, tissue accumulation of advanced glycation end-products (AGEs) was observed. This was aggravated as eGFR declined and was related to early cardiovascular changes and some biochemical cardiovascular disease (CVD) risk markers. sAF as a non-invasive method may be a useful tool for identification of a clinical risk factors of cardiovascular disease in CKD children.
Collapse
Affiliation(s)
- Irena Makulska
- Department of Pediatric Nephrology, Wrocław Medical University, ul. Borowska 213, Wrocław, Poland
| | - Maria Szczepańska
- Pediatric Dialysis Unit, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dorota Drożdż
- Dialysis Unit, Jagiellonian University Medical College, Kraków, Poland
| | - Dorota Polak-Jonkisz
- Department of Pediatric Nephrology, Wrocław Medical University, ul. Borowska 213, Wrocław, Poland
| | - Danuta Zwolińska
- Department of Pediatric Nephrology, Wrocław Medical University, ul. Borowska 213, Wrocław, Poland
| |
Collapse
|
25
|
Holzer M, Zangger K, El-Gamal D, Binder V, Curcic S, Konya V, Schuligoi R, Heinemann A, Marsche G. Myeloperoxidase-derived chlorinating species induce protein carbamylation through decomposition of thiocyanate and urea: novel pathways generating dysfunctional high-density lipoprotein. Antioxid Redox Signal 2012; 17:1043-52. [PMID: 22462773 PMCID: PMC3810648 DOI: 10.1089/ars.2011.4403] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS Protein carbamylation through cyanate is considered as playing a causal role in promoting cardiovascular disease. We recently observed that the phagocyte protein myeloperoxidase (MPO) specifically induces high-density lipoprotein (HDL) carbamylation, rather than chlorination, in human atherosclerotic lesions, raising the possibility that MPO-derived chlorinating species are involved in cyanate formation. RESULTS Here, we show that MPO-derived chlorinating species rapidly decompose the plasma components thiocyanate (SCN) and urea, thereby promoting (lipo)protein carbamylation. Strikingly, the presence of physiologic concentrations of SCN completely prevented MPO-induced 3-chlorotyrosine formation in HDL. SCN scavenged a 2.5-fold molar excess of hypochlorous acid, promoting HDL carbamylation, but not chlorination. Cyanate significantly impaired (i) HDL's ability to activate lecithin-cholesterol acyltransferase; (ii) the activity of paraoxonase, a major HDL-associated anti-inflammatory enzyme; and (iii) the antioxidative activity of HDL. INNOVATION Here, we report that MPO-derived chlorinating species preferentially induce protein carbamylation-rather than chlorination-in the presence of physiologically relevant SCN concentrations. The carbamylation of HDL results in the loss of its anti-inflammatory and antioxidative activities. CONCLUSION MPO-mediated decomposition of SCN and/or urea might be a relevant mechanism for generating dysfunctional HDL in human disease.
Collapse
Affiliation(s)
- Michael Holzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Klaus Zangger
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of Graz, Austria
| | - Dalia El-Gamal
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Veronika Binder
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Sanja Curcic
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Viktoria Konya
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Rufina Schuligoi
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| |
Collapse
|
26
|
Sun X, Feinberg MW. NF-κB and hypoxia: a double-edged sword in atherosclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1513-7. [PMID: 22999810 DOI: 10.1016/j.ajpath.2012.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/05/2012] [Indexed: 01/05/2023]
Abstract
This Commentary highlights the article by Fang et al, which describes novel mouse models of chronic intermittent hypoxia (CIH)-induced atherosclerosis, revealing that loss of the NF-κB p50 subunit increased atherosclerosis in the presence of CIH.
Collapse
Affiliation(s)
- Xinghui Sun
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
27
|
Kovacic P, Somanathan R. Cell signaling and receptors in toxicity of advanced glycation end products (AGEs): α-dicarbonyls, radicals, oxidative stress and antioxidants. J Recept Signal Transduct Res 2012; 31:332-9. [PMID: 21929288 DOI: 10.3109/10799893.2011.607171] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Considerable attention has been paid to the toxicity of advanced glycation end products (AGEs), including relation to various illnesses. AGEs, generated nonenzymatically from carbohydrates and proteins, comprises large numbers of simple and more complicated compounds. Many reports deal with a role for receptors (RAGE) and cell signaling, including illnesses and aging. Reactive oxygen species appear to participate in signaling. RAGE include angiotensin II type 1 receptors. Many signaling pathways are involved, such as kinases, p38, p21, TGF-β, NF-κβ, TNF-α, JNK and STAT. A recent review puts focus on α-dicarbonyl metabolites, formed by carbohydrate oxidation, and imine derivatives from protein condensation, as a source via electron transfer (ET) of ROS and oxidative stress (OS). The toxic species have been related to illnesses and aging. Antioxidants alleviate the adverse effects.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
| | | |
Collapse
|
28
|
El-Gamal D, Holzer M, Gauster M, Schicho R, Binder V, Konya V, Wadsack C, Schuligoi R, Heinemann A, Marsche G. Cyanate is a novel inducer of endothelial icam-1 expression. Antioxid Redox Signal 2012; 16:129-37. [PMID: 21838543 PMCID: PMC3222099 DOI: 10.1089/ars.2011.4090] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/21/2011] [Accepted: 08/12/2011] [Indexed: 02/02/2023]
Abstract
AIM Recent work has shown that humans are significantly exposed to isocyanic acid/cyanate, which is generated when coal, biomass, or tobacco is burned. In vivo, cyanate is formed by the phagocyte protein myeloperoxidase and by breakdown of urea. Carbamylation of proteins through cyanate has been demonstrated to predict cardiovascular risk and is thought to promote vascular dysfunction; however, the underlying mechanisms remain unclear. RESULTS Here, we show that cyanate induces intercellular cell adhesion molecule-1 (ICAM-1) expression with subsequently enhanced neutrophil adhesion in human coronary artery endothelial cells. Cyanate triggers ICAM-1 expression through a mechanism depending on activation of the mitogen-activated protein kinase p38 and nuclear factor-kappaB. Endothelial ICAM-1 expression was not induced when low-molecular-weight substances were removed from cell culture medium, thus ruling out a role of carbamylated (lipo)proteins in ICAM-1 induction. In mice, oral administration of cyanate induced marked endothelial ICAM-1 expression in the aorta. Moreover, in patients with end-stage renal disease, the extent of plasma protein carbamylation (a marker for cyanate exposure) significantly correlated with plasma levels of soluble ICAM-1. INNOVATION Here, we demonstrate for the first time that cyanate, rather than carbamylated lipoproteins, induces vascular ICAM-1 expression in vivo. CONCLUSION Collectively, our data raise the possibility that cyanate amplifies vascular inflammation, linking inflammation, smoking, and uremia.
Collapse
Affiliation(s)
- Dalia El-Gamal
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Michael Holzer
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Martin Gauster
- Institute of Cell Biology, Histology, and Embryology, Medical University of Graz, Graz, Austria
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Veronika Binder
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Viktoria Konya
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Rufina Schuligoi
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
29
|
Selmeci L. Advanced oxidation protein products (AOPP): novel uremic toxins, or components of the non-enzymatic antioxidant system of the plasma proteome? Free Radic Res 2011; 45:1115-23. [DOI: 10.3109/10715762.2011.602074] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Tsai PY, Ka SM, Chao TK, Chang JM, Lin SH, Li CY, Kuo MT, Chen P, Chen A. Antroquinonol reduces oxidative stress by enhancing the Nrf2 signaling pathway and inhibits inflammation and sclerosis in focal segmental glomerulosclerosis mice. Free Radic Biol Med 2011; 50:1503-16. [PMID: 21376112 DOI: 10.1016/j.freeradbiomed.2011.02.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 02/24/2011] [Indexed: 12/24/2022]
Abstract
Oxidative stress, inflammation, and fibrosis are involved in the development and progression of focal segmental glomerulosclerosis (FSGS), a common form of idiopathic nephrotic syndrome that represents a therapeutic challenge because it has a poor response to steroids. Antroquinonol (Antroq), a purified compound, is a major active component of a mushroom, namely Antrodia camphorata, that grows in the camphor tree in Taiwan, and it has inhibitory effects on nitric oxide production and inflammatory reactions. We hypothesized that Antroq might ameliorate FSGS renal lesions by modulating the pathogenic pathways of oxidative stress, inflammation, and glomerular sclerosis in the kidney. We demonstrate that Antroq significantly (1) attenuates proteinuria, renal dysfunction, and glomerulopathy, including epithelial hyperplasia lesions and podocyte injury; (2) reduces oxidative stress, leukocyte infiltration, and expression of fibrosis-related proteins in the kidney; (3) increases renal nuclear factor E2-related factor 2 (Nrf2) and glutathione peroxidase activity; and (4) inhibits renal nuclear factor-κB (NF-κB) activation and decreases levels of transforming growth factor (TGF)-β1 in serum and kidney tissue in a mouse FSGS model. Our data suggest that Antroq might be a potential therapeutic agent for FSGS, acting by boosting Nrf2 activation and suppressing NF-κB-dependent inflammatory and TGF-β1-mediated fibrosis pathways in the kidney.
Collapse
Affiliation(s)
- Pei-Yi Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gross ML, Piecha G, Bierhaus A, Hanke W, Henle T, Schirmacher P, Ritz E. Glycated and carbamylated albumin are more "nephrotoxic" than unmodified albumin in the amphibian kidney. Am J Physiol Renal Physiol 2011; 301:F476-85. [PMID: 21367923 DOI: 10.1152/ajprenal.00342.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence that proteins in tubular fluid are "nephrotoxic." In vivo it is difficult to study protein loading of tubular epithelial cells in isolation, i.e., without concomitant glomerular damage or changes of renal hemodynamics, etc. Recently, a unique amphibian model has been described which takes advantage of the special anatomy of the amphibian kidney in which a subset of nephrons drains the peritoneal cavity (open nephrons) so that intraperitoneal injection of protein selectively causes protein storage in and peritubular fibrosis around open but not around closed tubules. There is an ongoing debate as to what degree albumin per se is nephrotoxic and whether modification of albumin alters its nephrotoxicity. We tested the hypothesis that carbamylation and glycation render albumin more nephrotoxic compared with native albumin and alternative albumin modifications, e.g., lipid oxidation and lipid depletion. Preparations of native and modified albumin were injected into the axolotl peritoneum. The kidneys were retrieved after 10 days and studied by light microscopy as well as by immunohistochemistry [transforming growth factor (TGF)-β, PDGF, NF-κB, collagen I and IV, RAGE], nonradioactive in situ hybridization, and Western blotting. Two investigators unaware of the animal groups evaluated and scored renal histology. Compared with unmodified albumin, glycated and carbamylated albumin caused more pronounced protein storage. After no more than 10 days, selective peritubular fibrosis was seen around nephrons draining the peritoneal cavity (open nephrons), but not around closed nephrons. Additionally, more intense expression of RAGE, NF-κB, as well as PDGF, TGF-β, EGF, ET-1, and others was noted by histochemistry and confirmed by RT-PCR for fibronectin and TGF-β as well as nonradioactive in situ hybridization for TGF-β and fibronectin. The data indicate that carbamylation and glycation increase the capacity of albumin to cause tubular cell damage and peritubular fibrosis.
Collapse
Affiliation(s)
- M-L Gross
- Institute of Pathology, University of Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Rosin DL, Okusa MD. Dangers within: DAMP responses to damage and cell death in kidney disease. J Am Soc Nephrol 2011; 22:416-25. [PMID: 21335516 DOI: 10.1681/asn.2010040430] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The response to exogenous pathogens leads to activation of innate immunity through the release of pathogen-associated molecular patterns (PAMPs) and their binding to pattern recognition receptors. A classic example is septic shock where Toll receptor 4 recognizes PAMPs. Although well accepted, this concept does not explain the activation of innate immunity and inflammation occurs with transplantation, autoimmunity, or trauma. Increasingly recognized is that endogenous molecules released by dying cells (damage-associated molecular patterns; DAMPs) activate cellular receptors leading to downstream inflammation. Thus endogenous danger signals and exogenous PAMPs elicit similar responses through seemingly similar mechanisms. Also emerging is our understanding that normal repair processes benefit from dampening the immune response to these endogenous danger molecules. Here we focus on the role of DAMPs and their putative receptors in the pathogenesis of acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Diane L Rosin
- Division of Nephrology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
33
|
Nakashima A, Carrero JJ, Qureshi AR, Miyamoto T, Anderstam B, Bárány P, Heimbürger O, Stenvinkel P, Lindholm B. Effect of circulating soluble receptor for advanced glycation end products (sRAGE) and the proinflammatory RAGE ligand (EN-RAGE, S100A12) on mortality in hemodialysis patients. Clin J Am Soc Nephrol 2010; 5:2213-9. [PMID: 20847094 DOI: 10.2215/cjn.03360410] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES The soluble receptor of advanced glycation end products (sRAGE) may exert anti-inflammatory protective roles on the vasculature. In contrast, the RAGE ligand S100A12 (also known as EN-RAGE) contributes to inflammation and the development of atherosclerosis in animal models. Whether alterations at this level contribute to the increased mortality observed in patients on dialysis is currently unknown. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Prospective study including 184 prevalent hemodialysis patients and 50 healthy controls matched for age and gender. Plasma concentrations of S100A12 and sRAGE were studied in relation to risk profile and mortality after a median follow-up period of 41 months. RESULTS S100A12 and sRAGE levels were significantly elevated in hemodialysis patients compared with healthy controls. S100A12 had a strong positive correlation with C-reactive protein and IL-6, whereas sRAGE negatively associated with C-reactive protein. S100A12, but not sRAGE, was independently and positively associated with clinical cardiovascular disease (CVD). During follow-up, 85 (33 cardiovascular-related) deaths occurred. Whereas sRAGE did not predict mortality, S100A12 was associated with both all-cause (per log(10) ng/ml hazard ratio [HR] 1.93, 95% confidence interval [CI] 1.18 to 3.15) and CVD-related (HR 3.23, 95% CI 1.48 to 7.01) mortality, even after adjustment for age, sex, vintage, and comorbidities. Further adjustment for inflammation made the predictive value of S100A12 disappear for all-cause mortality, but still persisted in CVD-related mortality. CONCLUSIONS Circulating S100A12 and sRAGE are both elevated in hemodialysis patients. However, only S100A12 associates with mortality, partly explained by its links with inflammation.
Collapse
Affiliation(s)
- Ayumu Nakashima
- Division of Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liang YJ, Jian JH, Liu YC, Juang SJ, Shyu KG, Lai LP, Wang BW, Leu JG. Advanced glycation end products-induced apoptosis attenuated by PPARdelta activation and epigallocatechin gallate through NF-kappaB pathway in human embryonic kidney cells and human mesangial cells. Diabetes Metab Res Rev 2010; 26:406-16. [PMID: 20583309 DOI: 10.1002/dmrr.1100] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Diabetic nephropathy has attracted many researchers' attention. Because of the emerging evidence about the effects of advanced glycation end products (AGEs) and receptor of AGE (RAGE) on the progression of diabetic nephropathy, a number of different therapies to inhibit AGE or RAGE are under investigation. The purpose of the present study was to examine whether peroxisome proliferator-activated receptor delta (PPARdelta) agonist (L-165041) or epigallocatechin gallate (EGCG) alters AGE-induced pro-inflammatory gene expression and apoptosis in human embryonic kidney cells (HEK293) and human mesangial cells (HMCs). METHODS The HEK cells and HMC were separated into the following groups: 100 microg/mL AGE alone for 18 h; AGE treated with 1 microM L-165041 or 10 microM EGCG, and untreated cells. Inflammatory cytokines, nuclear factor-kappaB pathway, RAGE expression, superoxide dismutase and cell apoptosis were determined. RESULTS AGE significantly increased tumour necrosis factor-alpha (TNF-alpha), a major pro-inflammatory cytokine. The mRNA and protein expression of RAGE were up-regulated. These effects were significantly attenuated by pre-treatment with L-165041 or EGCG. AGE-induced nuclear factor-kappaB pathway activation and both cells apoptosis were also inhibited by L-165041 or EGCG. Furthermore, both L-165041 and EGCG increased superoxide dismutase levels in AGE-treated HEK cells and HMC. CONCLUSIONS This study demonstrated that PPARdelta agonist and EGCG decreased the AGE-induced kidney cell inflammation and apoptosis. This study provides important insights into the molecular mechanisms of EGCG and PPARdelta agonist in attenuation of kidney cell inflammation and may serve as a therapeutic modality to treat patients with diabetic nephropathy.
Collapse
Affiliation(s)
- Yao-Jen Liang
- Department and Institute of Life Science, Fu-Jen Catholic University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
BACKGROUND Cardiovascular disease is the major cause of death in patients with renal insufficiency, accounting for 50% of all deaths in renal replacement therapy patients. Mortality from cardiovascular diseases in these patients is approximately 9% per year, which is about 30 times the risk in the general population. So far, intensive interventions to the general risk factors, such as high LDL-cholesterol or C-reactive protein, have not been successful in improving their cardiovascular outcomes, suggesting that the beneficial effect of risk reduction may be overwhelmed by accumulated risk memorized by long-term exposure to oxidative stress during the progression of renal failure. DESIGN In this review, we propose that this irreversible memory effect in renal failure may be mediated by advanced glycation end-products (AGEs). RESULTS The generation of AGEs has been implicated to be deeply associated with increased oxidative stress. Moreover, interaction of the receptor for AGEs (RAGE) with AGEs leads to crucial biomedical pathway generating intracellular oxidative stress and inflammatory mediators, which could result in further amplification of the pathway involved in AGE generation. Several lines of evidence suggest that AGEs/RAGE axis can profoundly be involved in cardiovascular diseases. Recent advances in AGEs and RAGE measurements led us to be capable of understanding more about the role of AGEs/RAGE axis as a risk for cardiovascular diseases in patients with renal failure. CONCLUSION AGEs/RAGE axis could be a crucial mediator of oxidative stress in renal failure. RAGE could be not only a useful biomarker, but also a potentially therapeutic target to overcome the accumulated adverse metabolic memory in renal failure.
Collapse
Affiliation(s)
- Hidenori Koyama
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan.
| | | |
Collapse
|
36
|
Cheung WW, Paik KH, Mak RH. Inflammation and cachexia in chronic kidney disease. Pediatr Nephrol 2010; 25:711-24. [PMID: 20111974 DOI: 10.1007/s00467-009-1427-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/19/2009] [Accepted: 12/09/2009] [Indexed: 11/28/2022]
Abstract
Chronic inflammation is associated with cachexia and increased mortality risk in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). Inflammation suppresses appetite and causes the loss of protein stores. In CKD patients, increased serum levels of pro-inflammatory cytokines may be caused by reduced renal function, volume overload, oxidative or carbonyl stress, decreased levels of antioxidants, increased susceptibility to infection in uremia, and the presence of comorbid conditions. Cachexia is brought about by the synergistic combination of a dramatic decrease in appetite and an increase in the catabolism of fat and lean body mass. Pro-inflammatory cytokines act on the central nervous system to alter appetite and energy metabolism and to provide a signal-through the nuclear factor-kappaB and ATP-ubiquitin-dependent proteolytic pathways-that causes muscle wasting. Further research into the molecular pathways leading to inflammation and cachexia may lead to novel therapeutic therapies for this devastating and potentially fatal complication of chronic disease.
Collapse
Affiliation(s)
- Wai W Cheung
- Division of Pediatrics Nephrology, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093-0634, USA
| | | | | |
Collapse
|
37
|
Abstract
Cardiovascular pathologies are still the primary cause of death worldwide. The molecular mechanisms behind these pathologies have not been fully elucidated. Unravelling them will bring us closer to therapeutic strategies to prevent or treat cardiovascular disease. One of the major transcription factors that has been linked to both cardiovascular health and disease is NF-kappaB (nuclear factor kappaB). The NF-kappaB family controls multiple processes, including immunity, inflammation, cell survival, differentiation and proliferation, and regulates cellular responses to stress, hypoxia, stretch and ischaemia. It is therefore not surprising that NF-kappaB has been shown to influence numerous cardiovascular diseases including atherosclerosis, myocardial ischaemia/reperfusion injury, ischaemic preconditioning, vein graft disease, cardiac hypertrophy and heart failure. The function of NF-kappaB is largely dictated by the genes that it targets for transcription and varies according to stimulus and cell type. Thus NF-kappaB has divergent functions and can protect cardiovascular tissues from injury or contribute to pathogenesis depending on the cellular and physiological context. The present review will focus on recent studies on the function of NF-kappaB in the cardiovascular system.
Collapse
|
38
|
D'Agati V, Yan SF, Ramasamy R, Schmidt AM. RAGE, glomerulosclerosis and proteinuria: roles in podocytes and endothelial cells. Trends Endocrinol Metab 2010; 21:50-6. [PMID: 19783154 DOI: 10.1016/j.tem.2009.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 01/30/2023]
Abstract
The multi-ligand Receptor for Advanced Glycation Endproducts (RAGE) is expressed in podocytes and endothelial cells in the human and murine glomerulus. Although present at low levels in homeostasis, RAGE expression is increased during disease. Pharmacological antagonism of RAGE or its genetic deletion imparts marked protection from podocyte effacement, albuminuria and glomerular sclerosis in disease models. In human subjects, associations between specific genetic polymorphisms of RAGE and levels of soluble forms of RAGE are linked to disease states in the kidney. In this review, we summarize the evidence from mouse to man, linking RAGE to the pathogenesis of nephropathy.
Collapse
Affiliation(s)
- Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
39
|
Kamgar M, Zaldivar F, Vaziri ND, Pahl MV. Antioxidant therapy does not ameliorate oxidative stress and inflammation in patients with end-stage renal disease. J Natl Med Assoc 2009; 101:336-44. [PMID: 19397224 DOI: 10.1016/s0027-9684(15)30881-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxidative stress and inflammation are common manifestations and major mediators of cardiovascular and many other complications of end-stage renal disease (ESRD). Oxidative stress and inflammation are intimately interrelated as each can cause the other. The present study tested the hypothesis that antioxidant therapy may alleviate oxidative stress and improve inflammation in ESRD patients. We studied 37 hemodialysis patients, of whom 20 were treated daily with a combination of vitamin E, 800 lU; vitamin C, 250 mg; vitamin B6, 100 mg; vitamin B12, 250 microg; and folic acid, 10 mg; whereas 17 patients were given placebo for 8 weeks. Predialysis levels of f-2 isoprostane and protein carbonyl (markers of oxidative stress), C-reactive protein (CRP) and IL6 (markers/ mediators of inflammation) were measured prior to and at 4 and 8 weeks after the onset of therapy. Kt/V, predialysis and postdialysis blood pressure, blood hemoglobin, erythropoietin requirement, plasma ferritin and transferrin saturation, and nutritional indexes were similar among the 2 groups at baseline and remained virtually unchanged throughout the study period. Likewise, plasma f-2 isoprostane, protein carbonyl, CRP, and IL-6 levels remained unchanged and were unaffected by antioxidant administration. In conclusion, the addition of a potent antioxidant cocktail to conventional vitamin supplements had no effect on severity of ESRD-induced oxidative stress, inflammation, hypertension, anemia, or nutritional disorders in hemodialysis patients. Thus, high doses of vitamins beyond the routinely prescribed vitamin supplements do not appear to be indicated in this population.
Collapse
Affiliation(s)
- Mohammad Kamgar
- Division of Nephrology and Hypertension, University of California, Irvine, California, USA
| | | | | | | |
Collapse
|
40
|
Spormann TM, Albert FW, Rath T, Dietrich H, Will F, Stockis JP, Eisenbrand G, Janzowski C. Anthocyanin/Polyphenolic-Rich Fruit Juice Reduces Oxidative Cell Damage in an Intervention Study with Patients on Hemodialysis. Cancer Epidemiol Biomarkers Prev 2008; 17:3372-80. [DOI: 10.1158/1055-9965.epi-08-0364] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Gareus R, Kotsaki E, Xanthoulea S, van der Made I, Gijbels MJJ, Kardakaris R, Polykratis A, Kollias G, de Winther MPJ, Pasparakis M. Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis. Cell Metab 2008; 8:372-83. [PMID: 19046569 DOI: 10.1016/j.cmet.2008.08.016] [Citation(s) in RCA: 301] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 07/09/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
Abstract
Atherosclerosis is a progressive disorder of the arterial wall and the underlying cause of cardiovascular diseases such as heart attack and stroke. Today, atherosclerosis is recognized as a complex disease with a strong inflammatory component. The nuclear factor-kappaB (NF-kappaB) signaling pathway regulates inflammatory responses and has been implicated in atherosclerosis. Here, we addressed the function of NF-kappaB signaling in vascular endothelial cells in the pathogenesis of atherosclerosis in vivo. Endothelium-restricted inhibition of NF-kappaB activation, achieved by ablation of NEMO/IKKgamma or expression of dominant-negative IkappaBalpha specifically in endothelial cells, resulted in strongly reduced atherosclerotic plaque formation in ApoE(-/-) mice fed with a cholesterol-rich diet. Inhibition of NF-kappaB abrogated adhesion molecule induction in endothelial cells, impaired macrophage recruitment to atherosclerotic plaques, and reduced expression of cytokines and chemokines in the aorta. Thus, endothelial NF-kappaB signaling orchestrates proinflammatory gene expression at the arterial wall and promotes the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Ralph Gareus
- Institute of Genetics, Centre for Molecular Medicine (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Crabtree M, Pileggi R, Bhattacharyya I, Caudle R, Perez F, Riley J, Vertucci F, Katz J. RAGE mRNA expression and its correlation with nuclear factor kappa beta mRNA expression in inflamed human periradicular tissues. J Endod 2008; 34:689-92. [PMID: 18498890 DOI: 10.1016/j.joen.2008.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 01/31/2008] [Accepted: 02/01/2008] [Indexed: 12/31/2022]
Abstract
Advanced glycation end products (AGEs) have been found to play a role in inflammation and vascular complications. The receptor for AGE (RAGE) is expressed on many cells and is up-regulated during inflammation. To date, RAGE expression or its correlation with nuclear factor kappa beta (NF-kappabeta) expression has not been demonstrated in inflammatory periapical lesions. In this study, periapical tissue was obtained from 38 patients and processed for RAGE and NF-kappabeta expression by using reverse transcriptase polymerase chain reaction. Various patient variables were examined as predictors for these novel protein expressions. The results demonstrated a statistically significant positive correlation between the expression of RAGE and NF-kappabeta (P = .001). When comparing whites and African Americans, a statistically significant difference was noted, with the African American group exhibiting a higher expression of RAGE (analysis of variance, F= 12.746, P = .002). A positive linear correlation of their presence was demonstrated in inflamed periradicular tissues. This study outlines the possible use of these proteins as potential markers for periapical inflammation.
Collapse
Affiliation(s)
- Michael Crabtree
- Department of Endodontics, College of Dentistry, University of Florida, Gainesville, Florida 32610-3003, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Anderstam B, Ann-Christin BH, Valli A, Stenvinkel P, Lindholm B, Suliman ME. Modification of the oxidative stress biomarker AOPP assay: application in uremic samples. Clin Chim Acta 2008; 393:114-8. [PMID: 18423381 DOI: 10.1016/j.cca.2008.03.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/19/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
BACKGROUND The levels of advanced oxidation protein products (AOPP), a plasma protein biomarker used to assess oxidative stress, are elevated in patients with chronic kidney disease (CKD). However, this apparent elevation is to a large extent due to assay interference (mostly by triglycerides which are usually markedly elevated in CKD). We therefore developed and tested a modified version of the AOPP assay to minimize the impact of this interference. METHODS Plasma levels of AOPP, lipids, proteins and various biomarkers of inflammation and oxidative stress were analyzed in 218 prevalent hemodialysis patients and 13 healthy controls using the established original (oAOPP) assay and following precipitation of plasma lipids using dextran sulphate (modified assay, mAOPP). The modified results were validated against a lipid extraction procedure using ether/butanol. RESULTS The modified assay decreased the levels of triglycerides and AOPP by 87% and 38%, respectively. Whereas oAOPP values correlated strongly with triglycerides, no such correlation was seen with mAOPP. The mAOPP levels correlated significantly with the oxidative stress markers 8-oxo-dG and pentosidine, whereas no such correlations were found for oAOPP. CONCLUSIONS The oAOPP concentration is largely overestimated in plasma samples due to lipid interferences. Precipitation of triglycerides before analysis yields markedly lower mAOPP values which more accurately reflect oxidative stress. Based on these results we propose that AOPP should be analyzed using the modified assay, which is a cheap, simple and fast method.
Collapse
Affiliation(s)
- Björn Anderstam
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
44
|
Linden E, Cai W, He JC, Xue C, Li Z, Winston J, Vlassara H, Uribarri J. Endothelial dysfunction in patients with chronic kidney disease results from advanced glycation end products (AGE)-mediated inhibition of endothelial nitric oxide synthase through RAGE activation. Clin J Am Soc Nephrol 2008; 3:691-8. [PMID: 18256374 DOI: 10.2215/cjn.04291007] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Advanced glycation end products, known pro-inflammatory and pro-oxidative compounds that accumulate in patients with chronic kidney disease, may play a major role in their high prevalence of endothelial dysfunction and subsequent cardiovascular disease. This study examined the association of advanced glycation end product accumulation with cellular receptor for advanced glycation end product expression and endothelial dysfunction as well as the mechanisms of this association in chronic kidney disease. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A cross-sectional study was conducted of ambulatory patients without diabetes and with different stages of chronic kidney disease (n = 51), compared with gender- and age-matched healthy subjects. Fasting blood was obtained for measurement of advanced glycation end products and mRNA receptor for advanced glycation end product expression in peripheral blood mononuclear cells. Endothelial reactivity was assessed by the microcirculatory response to local ischemia (postocclusive reactive hyperemia) and local hyperthermia (thermal hyperemia). Sera were pooled and passed through affinity columns to separate advanced glycation end product-rich fractions, which were incubated with human aortic endothelial cells, with or without blockade of receptor for advanced glycation end product, to measure their effect on endothelial nitric oxide synthase. RESULTS Glomerular filtration rate correlated with serum advanced glycation end product, mRNA receptor for advanced glycation end product levels, postocclusive reactive hyperemia, and thermal hyperemia. Serum advanced glycation end product correlated with receptor for advanced glycation end product and inversely with postocclusive reactive hyperemia. Advanced glycation end product-rich fractions from chronic kidney disease sera suppressed endothelial nitric oxide synthase expression of human aortic endothelial cells compared with sera from healthy subjects, an effect abrogated by receptor for advanced glycation end product blockade. CONCLUSIONS This study demonstrates for the first time an association of excess advanced glycation end product burden with increased peripheral blood mononuclear cell mRNA receptor for advanced glycation end product and in vivo endothelial dysfunction in patients with chronic kidney disease. Endothelial dysfunction in chronic kidney disease may be partly mediated by advanced glycation end product-induced inhibition of endothelial nitric oxide synthase through receptor for advanced glycation end product activation.
Collapse
Affiliation(s)
- Ellena Linden
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Nishizawa Y, Koyama H. Endogenous Secretory Receptor for Advanced Glycation End-Products and Cardiovascular Disease in End-Stage Renal Disease. J Ren Nutr 2008; 18:76-82. [DOI: 10.1053/j.jrn.2007.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
46
|
Marsche G, Semlitsch M, Hammer A, Frank S, Weigle B, Demling N, Schmidt K, Windischhofer W, Waeg G, Sattler W, Malle E. Hypochlorite-modified albumin colocalizes with RAGE in the artery wall and promotes MCP-1 expression via the RAGE-Erk1/2 MAP-kinase pathway. FASEB J 2007; 21:1145-52. [PMID: 17218539 PMCID: PMC4864469 DOI: 10.1096/fj.06-7439com] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Signal transduction via the endothelial receptor for advanced glycation end products (RAGE) plays a key role in vascular inflammation. Recent observations have shown that the myeloperoxidase-H2O2-chloride system of activated phagocytes is highly up-regulated under inflammatory conditions where hypochlorous acid (HOCl) is formed as the major oxidant. Albumin, an in vivo carrier for myeloperoxidase is highly vulnerable to oxidation and a major representative of circulating advanced oxidized proteins during inflammatory diseases. Immunohistochemical studies performed in the present study revealed marked colocalization of HOCl-modified epitopes with RAGE and albumin in sections of human atheroma, mainly at the endothelial lining. We show that albumin modified with physiologically relevant concentrations of HOCl, added as reagent or generated by the myeloperoxidase-H2O2-chloride system, is a high affinity ligand for RAGE. Albumin, modified by HOCl in the absence of free amino acids/carbohydrates/lipids to exclude formation of AGE-like structures, induced a rapid, RAGE-dependent activation of extracellular signal-regulated kinase 1/2 and up-regulation of the proinflammatory mediator monocyte chemoattractant protein-1. Cellular activation could be blocked either by a specific polyclonal anti-RAGE IgG and/or a specific mitogen-activated protein-kinase kinase inhibitor. The present study demonstrates that HOCl-modified albumin acts as a ligand for RAGE and promotes RAGE-mediated inflammatory complications.
Collapse
Affiliation(s)
- Gunther Marsche
- Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Graz, Austria
| | - Michaela Semlitsch
- Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Graz, Austria
| | - Astrid Hammer
- Medical University of Graz, Center of Molecular Medicine, Institute of Cell Biology, Histology, and Embryology, Graz, Austria
| | - Sasa Frank
- Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Graz, Austria
| | - Bernd Weigle
- Technical University of Dresden, Institute of Immunology, Dresden, Germany, and Karl-Franzens University
| | - Nina Demling
- University Children’s Hospital, Research Unit of Osteological Research and Analytical Mass Spectrometry, Graz, Austria
| | - Kurt Schmidt
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, Graz, Austria
| | - Werner Windischhofer
- University Children’s Hospital, Research Unit of Osteological Research and Analytical Mass Spectrometry, Graz, Austria
| | - Georg Waeg
- Institute of Molecular Biosciences, Graz, Austria
| | - Wolfgang Sattler
- Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Graz, Austria
| | - Ernst Malle
- Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Graz, Austria
- Correspondence: Medical University of Graz, Center of Molecular Medicine, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, A-8010 Graz, Austria.
| |
Collapse
|
47
|
Koyama H, Shoji T, Fukumoto S, Shinohara K, Shoji T, Emoto M, Mori K, Tahara H, Ishimura E, Kakiya R, Tabata T, Yamamoto H, Nishizawa Y. Low Circulating Endogenous Secretory Receptor for AGEs Predicts Cardiovascular Mortality in Patients With End-Stage Renal Disease. Arterioscler Thromb Vasc Biol 2007; 27:147-53. [PMID: 17082489 DOI: 10.1161/01.atv.0000251502.88818.4b] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Receptor for advanced glycation end-products (RAGE) is involved in diabetic vascular complications. We have recently shown that plasma endogenously secretory RAGE (esRAGE), an alternatively spliced form of RAGE, is closely associated with metabolic syndrome and atherosclerosis. Here, we evaluated if plasma esRAGE is a predictor of cardiovascular mortality in a cohort of 206 (171 nondiabetic) patients with end-stage renal diseases (ESRD). METHODS AND RESULTS The cohort was followed for a median of 111 months, and 74 deaths including 34 cardiovascular deaths were recorded. Plasma esRAGE was measured at baseline. Cumulative incidence of cardiovascular death by Kaplan-Meier estimation was significantly higher in subjects in the lowest tertile of plasma esRAGE than those in the middle or the highest tertile both in all and nondiabetic subjects alone. In all subjects, as compared with the lowest tertile of plasma esRAGE, the hazards ratios for the highest and middle tertile were 0.40 (95% CI, 0.18 to 0.89) and 0.26 (0.10 to 0.66), respectively. The higher risk for lower esRAGE was still significant even after adjusted either with body mass index, hypertension, dyslipidemia and vascular complications, but was confounded by age and diabetes. CONCLUSIONS Low circulating esRAGE is a predictor for cardiovascular mortality in ESRD patients.
Collapse
Affiliation(s)
- Hidenori Koyama
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, 1-4-3, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yoon JW, Pahl MV, Vaziri ND. Spontaneous leukocyte activation and oxygen-free radical generation in end-stage renal disease. Kidney Int 2006; 71:167-72. [PMID: 17136029 DOI: 10.1038/sj.ki.5002019] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oxidative stress and inflammation are common features and major mediators of atherosclerosis in end-stage renal disease (ESRD). Available evidence for oxidative stress in ESRD is indirect and based on accumulation of byproducts of interactions of reactive oxygen species (ROS) with various molecules. Inflammation is a major cause of oxidative stress. To explore the direct link between oxidative stress and inflammation in ESRD, we studied leukocyte integrin expression and ROS production in 18 ESRD patients and 18 controls. ESRD patients showed elevated plasma malondialdehyde (MDA) and increased superoxide and hydrogen peroxide (H(2)O(2)) production by granulocytes and monocytes before dialysis. Hemodialysis resulted in a further rise in plasma MDA and H(2)O(2) production by granulocytes and monocytes. Surface expression of Mac-1 (CD11b and CD18) on granulocytes and monocytes was significantly increased (denoting cell activation) in ESRD patients. Granularity of granulocytes was significantly reduced before dialysis and declined further after dialysis. The magnitude of ROS production by granulocytes and monocytes was directly related with CD11b expression as well as plasma ferritin and parathyroid hormone levels and was inversely related to protein catabolic rate. Thus, this study provides direct evidence of spontaneous leukocyte activation and increased ROS generation (hence the link between oxidative stress and inflammation) in ESRD patients.
Collapse
Affiliation(s)
- J W Yoon
- Division of Nephrology and Hypertension, Hallym University, Chuncheon, Korea
| | | | | |
Collapse
|
49
|
Amann K, Wanner C, Ritz E. Cross-talk between the kidney and the cardiovascular system. J Am Soc Nephrol 2006; 17:2112-9. [PMID: 16825329 DOI: 10.1681/asn.2006030204] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, increasing evidence has been provided that even minor renal dysfunction is a powerful cardiovascular risk factor that induces typical cardiovascular alterations and thus predisposes to coronary heart disease as well as to noncoronary cardiovascular problems. This first had been noted in patients with diabetes but now has been confirmed amply in patients without diabetes as well. Numerous heterogeneous abnormalities have been described in patients with early renal dysfunction (e.g., microalbuminuria, reduced estimated GFR). One final common pathway seems to be endothelial cell dysfunction. The link between albuminuria and generalized endothelial cell dysfunction (as indicated by diminished flow-mediated vasodilation, markers of endothelial cell dysfunction, sloughed off endothelial cells, and high transcapillary albumin escape rate) is unclear. In patients with early renal dysfunction, a long list of classical and nonclassical cardiovascular risk factors have been identified: Elevated asymmetric dimethyl-l-arginine concentrations, markers of microinflammation, oxidative stress, features of metabolic syndrome, abnormal adipokine concentrations, dyslipidemia, inappropriate activation of the renin-angiotensin system, and sympathetic overactivity. The mechanisms that link dysfunction of the kidney and the cardiovascular system are being sought. The most interesting unifying concept, however, is deranged fetal programming linking nephron underdosing to the increased cardiovascular risk.
Collapse
Affiliation(s)
- Kerstin Amann
- Department Pathology, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
50
|
Nordfors L, Lindholm B, Stenvinkel P. End-stage renal disease--not an equal opportunity disease: the role of genetic polymorphisms. J Intern Med 2005; 258:1-12. [PMID: 15953127 DOI: 10.1111/j.1365-2796.2005.01516.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite several decades of development in renal replacement therapy, end-stage renal disease (ESRD) patients continue to have markedly increased morbidity and mortality especially caused by cardiovascular disease (CVD). This shows that current strategies, e.g. the focus on dialysis adequacy, to improve the clinical outcome in ESRD patients have to be complemented by novel approaches. Although traditional risk factors are common in dialysis patients they cannot alone explain the unacceptably high prevalence of CVD in this patient group. Much recent interest has therefore focused on the role of various nontraditional cardiovascular risk factors, such as inflammation, vascular calcification and oxidative stress. Recent studies show that genetic factors, such as DNA single nucleotide polymorphisms, may significantly influence the immune response, the levels of inflammatory markers, as well as the prevalence of atherosclerosis in this patient group. To elucidate the respective roles of DNA polymorphisms in genes that encode inflammatory markers (such as IL-10, IL-6 and TNF-alpha) and other factors that may affect the development of atherosclerosis (such as apolipoprotein E, transforming growth factor and fetuin-A), sufficiently powered studies are needed in which genotype, the protein product and the specific phenotype all are analysed in relation to outcome. The recent developments in the field of genetics have opened up entirely new possibilities to understand the impact of genotype on disease development and progress and thus offer new options and strategies for treatment. It seems conceivable that in the near future, prognostic or predictive multigene DNA assays will provide the nephrological community with a more precise approach for the identification of "high-risk" ESRD patients and the development of accurate individual treatment strategies. For this purpose, integrative studies on genotype-phenotype associations and impact on clinical outcome are needed.
Collapse
Affiliation(s)
- L Nordfors
- Neurogenetics Unit, Department of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|