1
|
Orlicky DJ, Smith EE, Johnson J, Hilton AE, Guess MK, Rascoff LG, Arruda JS, Hutchinson-Colas JA, Yang I, Connell KA. Inflammatory Cells in Control and Prolapsed Uterosacral Ligament Tissue. Reprod Sci 2024; 31:3026-3038. [PMID: 38907126 PMCID: PMC11438740 DOI: 10.1007/s43032-024-01618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
Pelvic organ prolapse (POP), a downward descent of the vagina and/or uterus through the vaginal canal, is a prevalent condition affecting up to 40% of women. Several risk factors of POP have been identified, including childbirth, connective tissue defects, and chronic intra-abdominal pressure; however, the underlying etiologies of POP development are not fully understood, leading to a high burden on patients and the healthcare systems. The uterosacral ligaments are key support structures of the uterus and upper vagina. Our previous work describes observed histopathological changes in uterosacral ligament (USL) tissue and demonstrates the presence of neutrophils in a subgroup of POP individuals. This presence of neutrophils prompted an examination for the presence of a broader spectrum of inflammatory cell types in the USL. Immunohistochemical staining was performed to identify neutrophils, lymphocytes, macrophages, and mast cells outside of the vasculature. All 4 inflammatory cell types were increased in the POP-HQ system-defined POP-Inflammatory (POP-I) phenotype USL tissue relative to the USL tissues of control or other POP-HQ phenotypes. Focal T-lymphocyte and macrophage co-accumulations were observed in the arterial walls from some patients of the POP-vascular (POP-V) phenotype suggesting previous arterial injury. In addition, 1 control and 2 POP-V subjects' USLs contained arterial wall foamy macrophages, evidence of atherosclerosis. These findings further support a complex etiology for POP and indicate that personalized approaches to preventing and treating the condition may be warranted.
Collapse
Affiliation(s)
- David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - E Erin Smith
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joshua Johnson
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ashley E Hilton
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marsha K Guess
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lauren G Rascoff
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jaime S Arruda
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Juana A Hutchinson-Colas
- Department of Obstetrics, Gynecology and Reproductive Sciences, Robert Wood Johnson Medical School, Rutgers Health, New Brunswick, NJ, USA
| | - Ivana Yang
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kathleen A Connell
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
2
|
Ma S, Xie X, Yuan R, Xin Q, Miao Y, Leng SX, Chen K, Cong W. Vascular Aging and Atherosclerosis: A Perspective on Aging. Aging Dis 2024:AD.2024.0201-1. [PMID: 38502584 DOI: 10.14336/ad.2024.0201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
Vascular aging (VA) is recognized as a pivotal factor in the development and progression of atherosclerosis (AS). Although various epidemiological and clinical research has demonstrated an intimate connection between aging and AS, the candidate mechanisms still require thorough examination. This review adopts an aging-centric perspective to deepen the comprehension of the intricate relationship between biological aging, vascular cell senescence, and AS. Various aging-related physiological factors influence the physical system's reactions, including oxygen radicals, inflammation, lipids, angiotensin II, mechanical forces, glucose levels, and insulin resistance. These factors cause endothelial dysfunction, barrier damage, sclerosis, and inflammation for VA and promote AS via distinct or shared pathways. Furthermore, the increase of senescent cells inside the vascular tissues, caused by genetic damage, dysregulation, secretome changes, and epigenetic modifications, might be the primary cause of VA.
Collapse
Affiliation(s)
- Shudong Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuena Xie
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sean Xiao Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Keji Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
3
|
Terriaca S, Ferlosio A, Scioli MG, Coppa F, Bertoldo F, Pisano C, Belmonte B, Balistreri CR, Orlandi A. miRNA Regulation of Cell Phenotype and Parietal Remodeling in Atherosclerotic and Non-Atherosclerotic Aortic Aneurysms: Differences and Similarities. Int J Mol Sci 2024; 25:2641. [PMID: 38473887 DOI: 10.3390/ijms25052641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Aortic aneurysms are a serious health concern as their rupture leads to high morbidity and mortality. Abdominal aortic aneurysms (AAAs) and thoracic aortic aneurysms (TAAs) exhibit differences and similarities in their pathophysiological and pathogenetic features. AAA is a multifactorial disease, mainly associated with atherosclerosis, characterized by a relevant inflammatory response and calcification. TAA is rarely associated with atherosclerosis and in some cases is associated with genetic mutations such as Marfan syndrome (MFS) and bicuspid aortic valve (BAV). MFS-related and non-genetic or sporadic TAA share aortic degeneration with endothelial-to-mesenchymal transition (End-Mt) and fibrosis, whereas in BAV TAA, aortic degeneration with calcification prevails. microRNA (miRNAs) contribute to the regulation of aneurysmatic aortic remodeling. miRNAs are a class of non-coding RNAs, which post-transcriptionally regulate gene expression. In this review, we report the involvement of deregulated miRNAs in the different aortic remodeling characterizing AAAs and TAAs. In AAA, miRNA deregulation appears to be involved in parietal inflammatory response, smooth muscle cell (SMC) apoptosis and aortic wall calcification. In sporadic and MFS-related TAA, miRNA deregulation promotes End-Mt, SMC myofibroblastic phenotypic switching and fibrosis with glycosaminoglycan accumulation. In BAV TAA, miRNA deregulation sustains aortic calcification. Those differences may support the development of more personalized therapeutic approaches.
Collapse
Affiliation(s)
- Sonia Terriaca
- Anatomic Pathology, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Francesca Coppa
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Fabio Bertoldo
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy
| | - Calogera Pisano
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
- Azienda sanitaria Provinciale di Catania (ASP), 95124 Catania, Italy
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
4
|
White SE, Karbasion N, Snider JC, Florian-Rodriguez M, Bersi MR, Miller KS. Remodeling of murine vaginal smooth muscle function with reproductive age and elastic fiber disruption. Acta Biomater 2024; 175:186-198. [PMID: 38151068 DOI: 10.1016/j.actbio.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Advanced maternal age during pregnancy is associated with increased risk of vaginal tearing during delivery and maladaptive postpartum healing. Although the underlying mechanisms of age-related vaginal injuries are not fully elucidated, changes in vaginal microstructure may contribute. Smooth muscle cells promote the contractile nature of the vagina and contribute to pelvic floor stability. While menopause is associated with decreased vaginal smooth muscle content, whether contractile changes occur before the onset of menopause remains unknown. Therefore, the first objective of this study was to quantify the active mechanical behavior of the murine vagina with age. Further, aging is associated with decreased vaginal elastin content. As such, the second objective was to determine if elastic fiber disruption alters vaginal contractility. Vaginal samples from mice aged 2-14 months were used in maximum contractility experiments and biaxial extension-inflation protocols. To evaluate the role of elastic fibers with age, half of the vaginal samples were randomly allocated to enzymatic elastic fiber disruption. Contractile potential decreased and vaginal material stiffness increased with age. These age-related changes in smooth muscle function may be due, in part, to changes in microstructural composition or contractile gene expression. Furthermore, elastic fiber disruption had a diminished effect on smooth muscle contractility in older mice. This suggests a decreased functional role of elastic fibers with age. Quantifying the age-dependent mechanical contribution of smooth muscle cells and elastic fibers to vaginal properties provides a first step towards better understanding how age-related changes in vaginal structure may contribute to tissue integrity and healing. STATEMENT OF SIGNIFICANCE: Advanced maternal age at the time of pregnancy is linked to increased risks of vaginal tearing during delivery, postpartum hemorrhaging, and the development of pelvic floor disorders. While the underlying causes of increased vaginal injuries with age and associated pathologies remain unclear, changes in vaginal microstructure, such as elastic fibers and smooth muscle cells, may contribute. Menopause is associated with fragmented elastic fibers and decreased smooth muscle content; however, how reproductive aging affects changes in the vaginal composition and the mechanical properties remains unknown. Quantifying the mechanical contribution of smooth muscle cells and elastic fibers to vaginal properties with age will advance understanding of the potential structural causes of age-related changes to tissue integrity and healing.
Collapse
Affiliation(s)
- Shelby E White
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Niyousha Karbasion
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - J Caleb Snider
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Maria Florian-Rodriguez
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew R Bersi
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Kristin S Miller
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, USA; Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
5
|
Sukhacheva TV, Penyaeva EV, Soborov MA, Garmanov SV, Rychin SV, Mironenko VA, Serov RA. Morphological Features of the Ascending Aorta Remodeling and Activation of Regeneratory Potential in Intima when Forming Aneurysm. Bull Exp Biol Med 2023:10.1007/s10517-023-05829-8. [PMID: 37336814 DOI: 10.1007/s10517-023-05829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 06/21/2023]
Abstract
In patients with an ascending aorta aneurysm, restructuring of all its layers and, first of all, the intima and media was revealed. The thickness of the intima was 79.3±63.1 μm in patients with aortic diameter <55 mm (group Ao<55) and 162.7±177.4 μm (p<0.05) in patients with aortic diameter ⩾55 mm (Ao⩾55 group), the thickness of the aortic media was 1184.0±198.2 and 1144.3±288.4 μm, respectively. In patients of the Ao<55 group, aortic dilatation was accompanied by compensatory thickening of the inner and middle layers of the aorta. In the Ao⩾55 group, thinning of the aortic media, fragmentation of elastic fibers, and its cystic degeneration were revealed. c-kit+ Stem cells were detected in the subendothelium of the thickened intima of the dilated ascending aorta. The appearance of c-kit+ cells correlated with intimal remodeling and its colonization with CD34+ and CD44+ myofibroblast-like cells.
Collapse
Affiliation(s)
- T V Sukhacheva
- A. N. Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - E V Penyaeva
- A. N. Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M A Soborov
- A. N. Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - S V Garmanov
- A. N. Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S V Rychin
- A. N. Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V A Mironenko
- A. N. Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - R A Serov
- A. N. Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
6
|
Pan X, Yu Y, Chen Y, Wang Y, Fu G. Cathepsin L was involved in vascular aging by mediating phenotypic transformation of vascular cells. Arch Gerontol Geriatr 2023; 104:104828. [PMID: 36206719 DOI: 10.1016/j.archger.2022.104828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Vascular media and adventitia-induced remodeling plays an important role in vascular aging. However, the mechanism remains unclear. This study aims to investigate the mechanisms underlying vascular aging. Transcriptome analysis revealed that the expression of cathepsin L (CTSL) significantly decreased in arteries of old mice (24 months old) compared with that in arteries of young mice (4 months old), which was confirmed by immunohistochemistry and Western blot. The expression of CTSL in adventitia fibroblasts (AFs) and vascular smooth muscle cells (VSMCs) of aged mice was lower than that of young mice. Compared with wild-type control mice, CTSL knockout (CTSL - /-) mice had increased collagen deposition (fibrosis) and decreased telomerase activity and LC3Ⅱ/ LC3Ⅰratio. The expression of mammalian target of rapamycin (mTOR) and osteopontin (OPN) increased in aortas of CTSL-/-mice compared with that in aortas of wild-type control mice. In vitro, lentivirus-mediated CTSL knockdown induced VSMCs senescence and AFs transformed into myofibroblasts (MFs). Rapamycin, a mTOR inhibitor, inhibited CTSL deficiency induced VSMCs senescence, osteopontin (OPN) secretion and AFs migration. In conclusion, the decreased level of CTSL with age may participate in vascular aging by promoting the phenotypic transformation of vascular cells.
Collapse
Affiliation(s)
- Xin Pan
- Department of Gerontology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yan Chang Road, 200072, Shanghai, China
| | - Yanping Yu
- Department of Gerontology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yan Chang Road, 200072, Shanghai, China
| | - Yuxing Chen
- Department of Gerontology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yan Chang Road, 200072, Shanghai, China
| | - Yanru Wang
- Department of Gerontology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yan Chang Road, 200072, Shanghai, China
| | - Guoxiang Fu
- Department of Gerontology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No.301, Middle Yan Chang Road, 200072, Shanghai, China
| |
Collapse
|
7
|
Zhang J, Xie M, Huang X, Chen G, Yin Y, Lu X, Feng G, Yu R, Chen L. The Effects of Porphyromonas gingivalis on Atherosclerosis-Related Cells. Front Immunol 2022; 12:766560. [PMID: 35003080 PMCID: PMC8734595 DOI: 10.3389/fimmu.2021.766560] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis (AS), one of the most common types of cardiovascular disease, has initially been attributed to the accumulation of fats and fibrous materials. However, more and more researchers regarded it as a chronic inflammatory disease nowadays. Infective disease, such as periodontitis, is related to the risk of atherosclerosis. Porphyromonas gingivalis (P. gingivalis), one of the most common bacteria in stomatology, is usually discovered in atherosclerotic plaque in patients. Furthermore, it was reported that P. gingivalis can promote the progression of atherosclerosis. Elucidating the underlying mechanisms of P. gingivalis in atherosclerosis attracted attention, which is thought to be crucial to the therapy of atherosclerosis. Nevertheless, the pathogenesis of atherosclerosis is much complicated, and many kinds of cells participate in it. By summarizing existing studies, we find that P. gingivalis can influence the function of many cells in atherosclerosis. It can induce the dysfunction of endothelium, promote the formation of foam cells as well as the proliferation and calcification of vascular smooth muscle cells, and lead to the imbalance of regulatory T cells (Tregs) and T helper (Th) cells, ultimately promoting the occurrence and development of atherosclerosis. This article summarizes the specific mechanism of atherosclerosis caused by P. gingivalis. It sorts out the interaction between P. gingivalis and AS-related cells, which provides a new perspective for us to prevent or slow down the occurrence and development of AS by inhibiting periodontal pathogens.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
8
|
Wang J, Zhang H, Ji J, Wang L, Lv W, He Y, Li X, Feng G, Chen K. A histological study of atherosclerotic characteristics in age-related macular degeneration. Heliyon 2022; 8:e08973. [PMID: 35252605 PMCID: PMC8891972 DOI: 10.1016/j.heliyon.2022.e08973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/19/2021] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
This study investigated the pathogenesis of age-related macular degeneration (AMD) using histological methods that are commonly used for atherosclerotic vascular disease (ASVD). 1 normal, 3 early dry AMD, and 1 late dry AMD eyes were obtained from the Lions Eye Bank of Oregon and systematically dissected. They were stained with hematoxylin and eosin, Oil red O, Masson, Elastica van Gieson, Alizarin red, and Prussian blue. Additionally, the normal and late dry AMD eyes were immunostained for a-smooth muscle actin, CD45, and CD68 with Nile red and DAPI. Correlations were found between severity of AMD and lipid accumulation in the deep sclera (+), numbers of drusen between the Bruch's membrane and retinal pigment epithelium (RPE) (+), amount of collagen in the deep sclera (+), and amount of elastin in the deep sclera (-) (P < 0.1). Geographic atrophy, RPE detachment, and abnormal capillary shape and distribution in the choriocapillaris were observed in the fovea of late AMD. There were no stenosis, plaque, hemorrhage, and calcification. Additionally, late AMD tended to have higher smooth muscle thicknesses of the choroidal vascular walls, lower numbers of T lymphocytes in the choroid, and higher numbers of macrophages near the RPE and in the choroid relative to normal (P < 0.1). Macrophages-derived foam cells were detected near the Bruch's membrane in late AMD. Therefore, the present study showed many histological characteristics of ASVD in AMD, which suggests an association between them; however, there were also some histological characteristics of ASVD that were not found in AMD, which indicates that there exist pathogenic differences between them. The results generally support the vascular model of AMD, but some details still need clarification.
Collapse
|
9
|
Seki A, Fishbein MC. Age-related cardiovascular changes and diseases. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
10
|
Role of FoxO transcription factors in aging-associated cardiovascular diseases. VITAMINS AND HORMONES 2021; 115:449-475. [PMID: 33706958 DOI: 10.1016/bs.vh.2020.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aging constitutes a major risk factor toward the development of cardiovascular diseases (CVDs). The aging heart undergoes several changes at the molecular, cellular and physiological levels, which diminishes its contractile function and weakens stress tolerance. Further, old age increases the exposure to risk factors such as hypertension, diabetes and hypercholesterolemia. Notably, research in the past decades have identified FoxO subfamily of the forkhead transcription factors as key players in regulating diverse cellular processes linked to cardiac aging and diseases. In the present chapter, we discuss the important role of FoxO in the development of various aging-associated cardiovascular complications such as cardiac hypertrophy, cardiac fibrosis, heart failure, vascular dysfunction, atherosclerosis, hypertension and myocardial ischemia. Besides, we will also discuss the role of FoxO in cardiometabolic alterations, autophagy and proteasomal degradation, which are implicated in aging-associated cardiac dysfunction.
Collapse
|
11
|
Orlicky DJ, Guess MK, Bales ES, Rascoff LG, Arruda JS, Hutchinson-Colas JA, Johnson J, Connell KA. Using the novel pelvic organ prolapse histologic quantification system to identify phenotypes in uterosacral ligaments in women with pelvic organ prolapse. Am J Obstet Gynecol 2021; 224:67.e1-67.e18. [PMID: 33130030 DOI: 10.1016/j.ajog.2020.10.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/11/2020] [Accepted: 10/23/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Pelvic organ prolapse is common, but the underlying etiologies are poorly understood, which limits our current prevention and treatment options. OBJECTIVE Our primary objective was to compare the uterosacral ligament histologic features in women with and without prolapse using the novel pelvic organ prolapse histologic quantification system. Our secondary aim was to determine whether composite histologic findings in uterosacral ligaments are associated with prolapse risk factors. STUDY DESIGN This was a prospective cohort study in which paracervical uterosacral ligament biopsies were performed at the time of hysterectomy for primary prolapse or other benign gynecologic indications and processed for histologic evaluation. The pelvic organ prolapse quantification system was used to determine the prolapse stage. In this study, 9 prominent histologic features were semiquantitatively scored using the pelvic organ prolapse histologic quantification system in a blinded fashion and compared between prolapse and control groups. Unbiased principal component analysis of these scores was independently performed to identify potential relationships between histologic measures and prolapse risk factors. RESULTS The histologic scores of 81 prolapse and 33 control ligaments were analyzed. Compared with the control group, women in the prolapse group were significantly older and more likely to be in the menopausal phase. There was no difference in the number of vaginal deliveries, body mass index, hormone use, or smoking status between the groups. To control for baseline differences, patients were also stratified by age over 40 years and menopausal status. Compared with the control group, the prolapse ligaments in the premenopausal group had significantly more loss of smooth muscle fibers within the fascicles (P<.001), increased inflammatory infiltrates of neutrophils within the tissue and perineural inflammatory cells (P<.01 and P=.04, respectively), and reduced neointimal hyperplasia (P=.02). Prolapse ligaments in the postmenopausal group exhibited elevated adipose content compared with that of the control group (P=.05). Amount of fibrillar collagen, total nonvascular smooth muscle, and muscle fiber vesicles of prolapse ligaments did not differ in either the premenopausal or postmenopausal group compared with that of the control group. Unbiased principal component analysis of the histologic scores separated the prolapse ligaments into 3 phenotypes: (1) increased adipose accumulation, (2) increased inflammation, and (3) abnormal vasculature, with variable overlap with controls. Posthoc analysis of these subgroups demonstrated a positive correlation between increasing number of vaginal deliveries and body mass index with increasing adipose content in the adipocyte accumulation and inflammatory phenotype and increasing neointimal hyperplasia in the vascular phenotype. However, only the relationship between vaginal delivery and adipocytes was significant in the adipose phenotype (R2=0.13; P=.04). CONCLUSION Histologic phenotypes exist in pelvic support ligaments that can be distinguished using the pelvic organ prolapse histologic quantification system and principle component analysis. Vaginal delivery is associated with aberrant adipose accumulation in uterosacral ligaments. Our findings support a multifactorial etiology for pelvic organ prolapse contributing to altered smooth muscle, vasculature, and connective tissue content in crucial pelvic support structures. To confirm these associations and evaluate the biomechanical properties of histologic phenotypes of prolapse, larger studies are warranted. Closing this gap in knowledge will help optimize personalized medicine and help identify targets for prevention and treatment of this complex condition.
Collapse
|
12
|
Abstract
Degenerative changes in the aorta are commonly observed in both dogs and humans, and those changes that occur with age morphologically overlap with those observed in genetic or degenerative diseases. Therefore, recognition of age-related aortic changes is important for diagnosticians, as such histologic findings should be distinguished from lesions of specific diseases. The aortas from 37 dogs without clinical cardiovascular disease ranging in age from 2 months to 15 years were divided into 3 cohorts to assess age-relatedness, and evaluated histologically using standardized nomenclature and diagnostic criteria adapted and modified from the human literature. We found that the histopathologic severity scores for intimal thickening, translamellar medial fibrosis, loss of smooth muscle cell nuclei, and medial microcalcification were higher in older dogs, whereas the scores for both intralamellar and translamellar mucoid extracellular matrix accumulation ("cystic medial necrosis") were not different among age groups. Dogs with translamellar medial fibrosis and aortic medial microcalcification were significantly older compared with dogs without these findings, while the presence of aortic medial chondro-osseous metaplasia was not related to age. Taken together, we demonstrate a range of age-related aortic histologic changes in dogs without clinical cardiovascular disease and suggest that integration of signalment and clinical data can aid in the differentiation of such findings from non-age-related disease processes.
Collapse
Affiliation(s)
- Ching Yang
- 70728The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
13
|
Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J Clin Med 2020; 9:jcm9061995. [PMID: 32630452 PMCID: PMC7355625 DOI: 10.3390/jcm9061995] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD), including heart and pathological circulatory conditions, are the world's leading cause of mortality and morbidity. Endothelial dysfunction involved in CVD pathogenesis is a trigger, or consequence, of oxidative stress and inflammation. Endothelial dysfunction is defined as a diminished production/availability of nitric oxide, with or without an imbalance between endothelium-derived contracting, and relaxing factors associated with a pro-inflammatory and prothrombotic status. Endothelial dysfunction-induced phenotypic changes include up-regulated expression of adhesion molecules and increased chemokine secretion, leukocyte adherence, cell permeability, low-density lipoprotein oxidation, platelet activation, and vascular smooth muscle cell proliferation and migration. Inflammation-induced oxidative stress results in an increased accumulation of reactive oxygen species (ROS), mainly derived from mitochondria. Excessive ROS production causes oxidation of macromolecules inducing cell apoptosis mediated by cytochrome-c release. Oxidation of mitochondrial cardiolipin loosens cytochrome-c binding, thus, favoring its cytosolic release and activation of the apoptotic cascade. Oxidative stress increases vascular permeability, promotes leukocyte adhesion, and induces alterations in endothelial signal transduction and redox-regulated transcription factors. Identification of new endothelial dysfunction-related oxidative stress markers represents a research goal for better prevention and therapy of CVD. New-generation therapeutic approaches based on carriers, gene therapy, cardiolipin stabilizer, and enzyme inhibitors have proved useful in clinical practice to counteract endothelial dysfunction. Experimental studies are in continuous development to discover new personalized treatments. Gene regulatory mechanisms, implicated in endothelial dysfunction, represent potential new targets for developing drugs able to prevent and counteract CVD-related endothelial dysfunction. Nevertheless, many challenges remain to overcome before these technologies and personalized therapeutic strategies can be used in CVD management.
Collapse
|
14
|
Bahrami A, Bo S, Jamialahmadi T, Sahebkar A. Effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on ageing: Molecular mechanisms. Ageing Res Rev 2020; 58:101024. [PMID: 32006687 DOI: 10.1016/j.arr.2020.101024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/11/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Human ageing is determined by degenerative alterations and processes with different manifestations such as gradual organ dysfunction, tissue function loss, increased population of aged (senescent) cells, incapability of maintaining homeostasis and reduced repair capacity, which collectively lead to an increased risk of diseases and death. The inhibitors of HMG-CoA reductase (statins) are the most widely used lipid-lowering agents, which can reduce cardiovascular morbidity and mortality. Accumulating evidence has documented several pleiotropic effects of statins in addition to their lipid-lowering properties. Recently, several studies have highlighted that statins may have the potential to delay the ageing process and inhibit the onset of senescence. In this review, we focused on the anti-ageing mechanisms of statin drugs and their effects on cardiovascular and non-cardiovascular diseases.
Collapse
|
15
|
Affiliation(s)
- Haihua Qiu
- Department of Cardiovascular Medicine The Affiliated Zhuzhou Hospital Xiangya Medical College Central South University Zhuzhou Hunan China
| | - Yi He
- Department of Cardiovascular Medicine The Affiliated Zhuzhou Hospital Xiangya Medical College Central South University Zhuzhou Hunan China
| | - Fan Ouyang
- Department of Cardiovascular Medicine The Affiliated Zhuzhou Hospital Xiangya Medical College Central South University Zhuzhou Hunan China
| | - Ping Jiang
- Department of Cardiovascular Medicine The Affiliated Zhuzhou Hospital Xiangya Medical College Central South University Zhuzhou Hunan China
| | - Shuhong Guo
- Department of Cardiovascular Medicine The Affiliated Zhuzhou Hospital Xiangya Medical College Central South University Zhuzhou Hunan China
| | - Yuan Guo
- Department of Cardiovascular Medicine The Affiliated Zhuzhou Hospital Xiangya Medical College Central South University Zhuzhou Hunan China
| |
Collapse
|
16
|
Piccirillo F, Carpenito M, Verolino G, Chello C, Nusca A, Lusini M, Spadaccio C, Nappi F, Di Sciascio G, Nenna A. Changes of the coronary arteries and cardiac microvasculature with aging: Implications for translational research and clinical practice. Mech Ageing Dev 2019; 184:111161. [PMID: 31647940 DOI: 10.1016/j.mad.2019.111161] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
Abstract
Aging results in functional and structural changes in the cardiovascular system, translating into a progressive increase of mechanical vessel stiffness, due to a combination of changes in micro-RNA expression patterns, autophagy, arterial calcification, smooth muscle cell migration and proliferation. The two pivotal mechanisms of aging-related endothelial dysfunction are oxidative stress and inflammation, even in the absence of clinical disease. A comprehensive understanding of the aging process is emerging as a primary concern in literature, as vascular aging has recently become a target for prevention and treatment of cardiovascular disease. Change of life-style, diet, antioxidant regimens, anti-inflammatory treatments, senolytic drugs counteract the pro-aging pathways or target senescent cells modulating their detrimental effects. Such therapies aim to reduce the ineluctable burden of age and contrast aging-associated cardiovascular dysfunction. This narrative review intends to summarize the macrovascular and microvascular changes related with aging, as a better understanding of the pathways leading to arterial aging may contribute to design new mechanism-based therapeutic approaches to attenuate the features of vascular senescence and its clinical impact on the cardiovascular system.
Collapse
Affiliation(s)
| | | | | | - Camilla Chello
- Dermatology, Università "La Sapienza" di Roma, Rome, Italy
| | | | - Mario Lusini
- Cardiovascular surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Francesco Nappi
- Cardiac surgery, Centre Cardiologique du Nord de Saint Denis, Paris, France
| | | | - Antonio Nenna
- Cardiovascular surgery, Università Campus Bio-Medico di Roma, Rome, Italy.
| |
Collapse
|
17
|
Interaction of Nerve Growth Factor β with Adiponectin and SPARC Oppositely Modulates its Biological Activity. Int J Mol Sci 2019; 20:ijms20071541. [PMID: 30934765 PMCID: PMC6479836 DOI: 10.3390/ijms20071541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022] Open
Abstract
Both adiponectin and secreted protein, acidic and rich in cysteine (SPARC) inhibit platelet-derived growth factor-BB (PDGF-BB)-induced and basic fibroblast growth factor (FGF2)-induced angiogenic activities through direct and indirect interactions. Although SPARC enhances nerve growth factor (NGF)-dependent neurogenesis, the physical interaction of NGFβ with adiponectin and SPARC remains obscure. Therefore, we first examined their intermolecular interaction by surface plasmon resonance method. NGFβ bound to immobilized SPARC with the binding constant of 59.4 nM, comparable with that of PDGF-BB (24.5 nM) but far less than that of FGF2 (14.4 µM). NGFβ bound to immobilized full length adiponectin with the binding constant of 103 nM, slightly higher than those of PDGF-BB (24.3 nM) and FGF2 (80.2 nM), respectively. Treatment of PC12 cells with SPARC did not cause mitogen-activated protein kinase (MAPK) activation and neurite outgrowth. However, simultaneous addition of SPARC with NGFβ enhanced NGFβ-induced MAPK phosphorylation and neurite outgrowth. Treatment of the cells with adiponectin increased AMP-activated protein kinase (AMPK) phosphorylation but failed to induce neurite outgrowth. Simultaneous treatment with NGFβ and adiponectin significantly reduced cell size and the number of cells with neurite, even after silencing the adiponectin receptors by their siRNA. These results indicate that NGFβ directly interacts with adiponectin and SPARC, whereas these interactions oppositely regulate NGFβ functions.
Collapse
|
18
|
Brown BA, Connolly GM, Mill CEJ, Williams H, Angelini GD, Johnson JL, George SJ. Aging differentially modulates the Wnt pro-survival signalling pathways in vascular smooth muscle cells. Aging Cell 2019; 18:e12844. [PMID: 30548452 PMCID: PMC6351844 DOI: 10.1111/acel.12844] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/05/2018] [Accepted: 08/26/2018] [Indexed: 01/08/2023] Open
Abstract
We previously reported pro-survival effects of Wnt3a and Wnt5a proteins in vascular smooth muscle cells (VSMCs). Wnt5a achieved this through induction of Wnt1-inducible signalling pathway protein-1 (WISP-1) consequent to β-catenin/CREB-dependent, TCF-independent, signalling. However, we found that as atherosclerosis advances, although Wnt5a protein was increased, WISP-1 was reduced. We hypothesized this disconnect could be due to aging. In this study, we elucidate the mechanism underlying Wnt3a pro-survival signalling and demonstrate the differential effect of age on Wnt3a- and Wnt5a-mediated survival. We show Wnt3a protein was expressed in human atherosclerotic coronary arteries and co-located with macrophages and VSMCs. Meanwhile, Wnt3a stimulation of primary mouse VSMCs increased β-catenin nuclear translocation and TCF, but not CREB, activation. Wnt3a increased mRNA expression of the pro-survival factor WISP-2 in a TCF-dependent manner. Functionally, β-catenin/TCF inhibition or WISP-2 neutralization significantly impaired Wnt3a-mediated VSMC survival. WISP-2 was upregulated in human atherosclerosis and partly co-localized with Wnt3a. The pro-survival action of Wnt3a was effective in VSMCs from young (2 month) and old (18-20 month) mice, whereas Wnt5a-mediated rescue was impaired with age. Further investigation revealed that although Wnt5a induced β-catenin nuclear translocation in VSMCs from both ages, CREB phosphorylation and WISP-1 upregulation did not occur in old VSMCs. Unlike Wnt5a, pro-survival Wnt3a signalling involves β-catenin/TCF and WISP-2. While Wnt3a-mediated survival was unchanged with age, Wnt5a-mediated survival was lost due to impaired CREB activation and WISP-1 regulation. Greater understanding of the effect of age on Wnt signalling may identify targets to promote VSMC survival in elderly patients with atherosclerosis.
Collapse
Affiliation(s)
- Bethan A. Brown
- Bristol Medical School University of Bristol, Bristol Royal Infirmary Bristol UK
| | - Georgia M. Connolly
- Bristol Medical School University of Bristol, Bristol Royal Infirmary Bristol UK
| | - Carina E. J. Mill
- Bristol Medical School University of Bristol, Bristol Royal Infirmary Bristol UK
| | - Helen Williams
- Bristol Medical School University of Bristol, Bristol Royal Infirmary Bristol UK
| | - Gianni D. Angelini
- Bristol Medical School University of Bristol, Bristol Royal Infirmary Bristol UK
| | - Jason L. Johnson
- Bristol Medical School University of Bristol, Bristol Royal Infirmary Bristol UK
| | - Sarah J. George
- Bristol Medical School University of Bristol, Bristol Royal Infirmary Bristol UK
| |
Collapse
|
19
|
Reagan AM, Gu X, Paudel S, Ashpole NM, Zalles M, Sonntag WE, Ungvari Z, Csiszar A, Otalora L, Freeman WM, Stout MB, Elliott MH. Age-related focal loss of contractile vascular smooth muscle cells in retinal arterioles is accelerated by caveolin-1 deficiency. Neurobiol Aging 2018; 71:1-12. [PMID: 30059797 DOI: 10.1016/j.neurobiolaging.2018.06.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Cerebral microcirculation is critical for the preservation of brain health, and vascular impairment is associated with age-related neurodegenerative diseases. Because the retina is a component of the central nervous system, cellular changes that occur in the aging retina are likely relevant to the aging brain, and the retina provides the advantage that the entire vascular bed is visible, en face. In this study, we tested the hypothesis that normal, healthy aging alters the contractile vascular smooth muscle cell (VSMC) coverage of retinal arterioles. We found that aging results in a significant reduction of contractile VSMCs in focal patches along arterioles. Focal loss of contractile VSMCs occurs at a younger age in mice deficient in the senescence-associated protein, caveolin-1. Age-related contractile VSMC loss is not exacerbated by genetic depletion of insulin-like growth factor-1. The patchy loss of contractile VSMCs provides a cellular explanation for previous clinical studies showing focal microirregularities in retinal arteriolar responsiveness in healthy aged human subjects and is likely to contribute to age-related retinal vascular complications.
Collapse
Affiliation(s)
- Alaina M Reagan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xiaowu Gu
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sijalu Paudel
- Department of Cell Biology, Cameron University, Lawton, OK, USA
| | - Nicole M Ashpole
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, USA
| | - Michelle Zalles
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Laura Otalora
- Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Reynolds Oklahoma Center on Aging & Nathan Shock Center of Excellence in the Biology of Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma city, OK, USA
| | - Michael H Elliott
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
20
|
Raddino R, Caretta G, Teli M, Bonadei I, Robba D, Zanini G, Madureri A, Nodari S, Dei Cas L. Nitric Oxide and Cardiovascular Risk Factors. Heart Int 2018. [DOI: 10.1177/1826186807003001-203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Riccardo Raddino
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Giorgio Caretta
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Melissa Teli
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Ivano Bonadei
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Debora Robba
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Gregoriana Zanini
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Alberto Madureri
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Savina Nodari
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| | - Livio Dei Cas
- Section of Cardiovascular Disease Department of Applied Experimental Medicine, University of Brescia, Brescia - Italy
| |
Collapse
|
21
|
Shih BB, Nirmal AJ, Headon DJ, Akbar AN, Mabbott NA, Freeman TC. Derivation of marker gene signatures from human skin and their use in the interpretation of the transcriptional changes associated with dermatological disorders. J Pathol 2017; 241:600-613. [PMID: 28008606 PMCID: PMC5363360 DOI: 10.1002/path.4864] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 12/26/2022]
Abstract
Numerous studies have explored the altered transcriptional landscape associated with skin diseases to understand the nature of these disorders. However, data interpretation represents a significant challenge due to a lack of good maker sets for many of the specialized cell types that make up this tissue, whose composition may fundamentally alter during disease. Here we have sought to derive expression signatures that define the various cell types and structures that make up human skin, and demonstrate how they can be used to aid the interpretation of transcriptomic data derived from this organ. Two large normal skin transcriptomic datasets were identified, one RNA-seq (n = 578), the other microarray (n = 165), quality controlled and subjected separately to network-based analyses to identify clusters of robustly co-expressed genes. The biological significance of these clusters was then assigned using a combination of bioinformatics analyses, literature, and expert review. After cross comparison between analyses, 20 gene signatures were defined. These included expression signatures for hair follicles, glands (sebaceous, sweat, apocrine), keratinocytes, melanocytes, endothelia, muscle, adipocytes, immune cells, and a number of pathway systems. Collectively, we have named this resource SkinSig. SkinSig was then used in the analysis of transcriptomic datasets for 18 skin conditions, providing in-context interpretation of these data. For instance, conventional analysis has shown there to be a decrease in keratinization and fatty metabolism with age; we more accurately define these changes to be due to loss of hair follicles and sebaceous glands. SkinSig also highlighted the over-/under-representation of various cell types in skin diseases, reflecting an influx in immune cells in inflammatory disorders and a relative reduction in other cell types. Overall, our analyses demonstrate the value of this new resource in defining the functional profile of skin cell types and appendages, and in improving the interpretation of disease data. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Barbara B Shih
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Ajit J Nirmal
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Denis J Headon
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Arne N Akbar
- Division of Infection and ImmunityUniversity College London90 Gower StreetLondonWC1E 6BTUK
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Easter BushMidlothianEdinburghEH25 9RGUK
| |
Collapse
|
22
|
Moroni L, Selmi C, Angelini C, Meroni PL. Evaluation of Endothelial Function by Flow-Mediated Dilation: a Comprehensive Review in Rheumatic Disease. Arch Immunol Ther Exp (Warsz) 2017; 65:463-475. [DOI: 10.1007/s00005-017-0465-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
|
23
|
Hao M, Li M, Li W. Galectin-3 inhibition ameliorates hypoxia-induced pulmonary artery hypertension. Mol Med Rep 2016; 15:160-168. [PMID: 27959409 PMCID: PMC5355711 DOI: 10.3892/mmr.2016.6020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 09/19/2016] [Indexed: 01/27/2023] Open
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding lectin, which is important in inflammation, fibrosis and heart failure. The present study aimed to investigate the role and mechanism of Gal-3 in hypoxia-induced pulmonary arterial hypertension (PAH). Male C57BL/6J and Gal-3−/− mice were exposed to hypoxia, then the right ventricular systolic pressure (RVSP) and Fulton's index were measured, and Gal-3 mRNA and protein expression in the pulmonary arteries was analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting. Compared with the control, hypoxia increased the mRNA and protein expression levels of Gal-3 in wild type murine pulmonary arteries. Gal-3 deletion reduced the hypoxia-induced upregulation of RVSP and Fulton's index. Furthermore, human pulmonary arterial endothelial cells (HPAECs) and human pulmonary arterial smooth muscle cells (HPASMCs) were stimulated by hypoxia in vitro, and Gal-3 expression was inhibited by small interfering RNA. The inflammatory response of HPAECs, and the proliferation and cell cycle distribution of HPASMCs was also analyzed. Gal-3 inhibition alleviated the hypoxia-induced inflammatory response in HPAECs, including tumor necrosis factor-α and interleukin-1 secretion, expression of intercellular adhesion molecule-1 and adhesion of THP-1 monocytes. Gal-3 inhibition also reduced hypoxia-induced proliferation of HPASMCs, partially by reducing cyclin D1 expression and increasing p27 expression. Furthermore, Gal-3 inhibition suppressed HPASMC switching from a ‘contractile’ to a ‘synthetic’ phenotype. In conclusion, Gal-3 serves a fundamental role in hypoxia-induced PAH, and inhibition of Gal-3 may represent a novel therapeutic target for the treatment of hypoxia-induced PAH.
Collapse
Affiliation(s)
- Mingwen Hao
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Miaomiao Li
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wenjun Li
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
24
|
Greiner AM, Sales A, Chen H, Biela SA, Kaufmann D, Kemkemer R. Nano- and microstructured materials for in vitro studies of the physiology of vascular cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1620-1641. [PMID: 28144512 PMCID: PMC5238670 DOI: 10.3762/bjnano.7.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 10/04/2016] [Indexed: 05/21/2023]
Abstract
The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials-cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies.
Collapse
Affiliation(s)
- Alexandra M Greiner
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
- now at: Pforzheim University, School of Engineering, Tiefenbronner Strasse 65, 75175 Pforzheim, Germany
| | - Adria Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Hao Chen
- Karlsruhe Institute of Technology (KIT), Institute of Zoology, Department of Cell and Neurobiology, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
| | - Sarah A Biela
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Dieter Kaufmann
- Universitätsklinikum Ulm, Institut für Humangenetik, Albert Einstein Allee 11, 89070 Ulm, Germany
| | - Ralf Kemkemer
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Reutlingen University, Faculty of Applied Chemistry, Alteburgstrasse 150, 72762 Reutlingen, Germany
| |
Collapse
|
25
|
Antiperoxynitrite Treatment Ameliorates Vasorelaxation of Resistance Arteries in Aging Rats: Involvement With Protection of Circulating Endothelial Progenitor Cells. J Cardiovasc Pharmacol 2016; 68:334-341. [DOI: 10.1097/fjc.0000000000000420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Nazari-Shafti TZ, Cooke JP. Telomerase Therapy to Reverse Cardiovascular Senescence. Methodist Debakey Cardiovasc J 2016; 11:172-5. [PMID: 26634025 DOI: 10.14797/mdcj-11-3-172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cellular senescence of endothelial cells plays an important role in the development of vascular lesions that ultimately lead to an atherosclerotic plaque. This review focuses on the age-related changes of endothelial and vascular smooth muscle cells that contribute to vascular disease and discusses potential new targets that could rejuvenate the vascular system and thereby prevent or delay atherosclerosis.
Collapse
Affiliation(s)
- Timo Z Nazari-Shafti
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas
| | - John P Cooke
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
27
|
Huang F, Yin J, Li K, Li Y, Qi H, Fang L, Yuan C, Liu W, Wang M, Li X. GPR30 decreases with vascular aging and promotes vascular smooth muscle cells maintaining differentiated phenotype and suppressing migration via activation of ERK1/2. Onco Targets Ther 2016; 9:3415-22. [PMID: 27354813 PMCID: PMC4907733 DOI: 10.2147/ott.s104972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Estrogen receptors, including classic nuclear receptors ERα, ERβ, and membrane receptor GPR30, are expressed in vascular tissues and exert protective actions in vascular diseases. But the expression pattern and functional roles of GPR30 in vascular smooth muscle cells (VSMCs) remain unclear. In this study, we found that ERα, ERβ, and GPR30 were decreased with VSMCs passaging in vitro or growing in vivo and activation of GPR30 promoted ERα expression. Then, we validated that activation of GPR30 significantly decreased migratory capability of VSMCs and suppressed ERα, whereas PDGF-BB (20 ng/mL) treatment caused increase of migration. And activation of GPR30 led to reduction of osteopontin and cellular retinol binding protein 1, enhancement of calponin and 3F8, and upregulation of total and phosphorylated ERK1/2 expression in VSMCs knocked down by GPR30, ERα, and ERβ or treated with PDGF-BB. These data suggest that GPR30 promotes VSMCs reducing migration and maintaining differentiated phenotype via activation of ERK1/2 pathway. Our findings provide novel mechanisms of GPR30 protection of VSMCs as well as a new target for prevention of vascular aging.
Collapse
Affiliation(s)
- Fang Huang
- Department of Cardiology, The First Hospital of Changsha, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China; Department of Cardiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Jianguo Yin
- Department of Cardiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Keyu Li
- Department of Cardiology, The First Hospital of Changsha, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Ying Li
- Department of Cardiology, The First Hospital of Changsha, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Heng Qi
- Department of Cardiology, The First Hospital of Changsha, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Li Fang
- Department of Cardiology, The First Hospital of Changsha, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Cong Yuan
- Department of Cardiology, The First Hospital of Changsha, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Weiwei Liu
- Department of Cardiology, The First Hospital of Changsha, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Min Wang
- Department of Cardiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Xiangping Li
- Department of Cardiology, The Second XiangYa Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
28
|
Kao YT, Wang ST, Shih CM, Lin FY, Tsao NW, Chiang KH, Chan CS, Lin YC, Hung MY, Hsieh MH, Shyu KG, Chen JW, Chang NC, Yeh JS, Huang CY. Arterial Stiffness Index and Coronary Artery Plaques in Patients with Subclinical Coronary Atherosclerosis. ACTA CARDIOLOGICA SINICA 2016; 31:59-65. [PMID: 27122847 DOI: 10.6515/acs20140630b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Arterial stiffness is a physiologic quantitative value used to measure arterial compliance. It is predictive of coronary atherosclerosis in patients with intermediate to high cardiovascular risk. However, a correlation between arterial stiffness and subclinical coronary atherosclerosis has yet to be established. Therefore, the purpose of this study was to evaluate arterial stiffness using an arterial stiffness index (ASI) and investigate its association with coronary artery plaque in patients with subclinical coronary atherosclerosis. METHODS Our study enrolled 156 consecutive subjects who underwent health screening using a 64-slice cardiac computed tomography angiography (CCTA). Their arterial stiffness index was assessed noninvasively by CardioVision(®) MS-2000. The atheroma on the coronary vessel walls was analyzed. RESULTS Of the 156 patients, 53 displayed at least one > 50% stenotic lesion over the coronary arteries in CCTA images. The patients with at least one > 50% coronary stenotic plaque were older and had higher systolic blood pressure and ASI values than patients without > 50% coronary stenotic plaque. After dividing the study population into 2 groups by those patients over and under 50 years of age, the ASI positively correlated with the presentation of at least one > 50% coronary stenotic plaque in patients aged ≥ 50 years (odds ratio = 1.02, 95% confidence interval: 1.00-1.04, p = 0.03). CONCLUSIONS The ASI could play a role in risk stratification systems for coronary artery disease in patients with subclinical coronary atherosclerosis, and is a useful clinical marker for the correlation of early coronary plaque. KEY WORDS Arterial stiffness; Arterial stiffness index; Atherosclerosis; Coronary artery plaque.
Collapse
Affiliation(s)
- Yung-Ta Kao
- Division of Cardiology, Department of Internal Medicine
| | - Sen-Te Wang
- Health Management Center, Taipei Medical University Hospital
| | - Chun-Ming Shih
- Division of Cardiology, Department of Internal Medicine; ; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University
| | - Feng-Yen Lin
- Division of Cardiology, Department of Internal Medicine; ; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University
| | - Nai-Wen Tsao
- Division of Cardiovascular Surgery, Department of Surgery
| | | | | | - Yen-Chung Lin
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital
| | - Ming-Yow Hung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University
| | - Ming-Hsiung Hsieh
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University; ; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University
| | - Kuo-Gi Shyu
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital; ; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nen-Chung Chang
- Division of Cardiology, Department of Internal Medicine; ; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University
| | - Jong-Shiuan Yeh
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University; ; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University; ; Skirball Center for Cardiovascular Research, Cardiovascular Research Foundation, Orangeburg, NY, USA
| | - Chun-Yao Huang
- Division of Cardiology, Department of Internal Medicine; ; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University
| |
Collapse
|
29
|
Alim Z, Beydemir Ş. Some Anticancer Agents Act on Human Serum Paraoxonase-1 to Reduce Its Activity. Chem Biol Drug Des 2016; 88:188-96. [DOI: 10.1111/cbdd.12746] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Zuhal Alim
- Biochemistry Division; Department of Chemistry; Faculty of Science and Arts; Ahi Evran University; Kırşehir 40000 Turkey
| | - Şükrü Beydemir
- Biochemistry Division; Department of Chemistry; Faculty of Sciences; Atatürk University; Erzurum 25240 Turkey
- Department of Food Sciences; Faculty of Engineering; Iğdır University; Iğdır Turkey
| |
Collapse
|
30
|
Seki A, Fishbein M. Age-related Cardiovascular Changes and Diseases. Cardiovasc Pathol 2016. [DOI: 10.1016/b978-0-12-420219-1.00002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Chu Y, XiangLi X, Niu H, Wang H, Jia P, Gong W, Wu D, Qin W, Xing C. Arginase inhibitor attenuates pulmonary artery hypertension induced by hypoxia. Mol Cell Biochem 2016; 412:91-9. [PMID: 26608181 DOI: 10.1007/s11010-015-2611-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/14/2015] [Indexed: 02/06/2023]
Abstract
Hypoxia-induced pulmonary arterial hypertension (HPAH) is a refractory disease characterized by increased proliferation of pulmonary vascular smooth cells and progressive pulmonary vascular remodeling. The level of nitric oxide (NO), a potential therapeutic vasodilator, is low in PAH patients. L-arginine can be converted to either beneficial NO by nitric oxide synthases or to harmful urea by arginase. In the present study, we aimed to investigate whether an arginase inhibitor, S-(2-boronoethyl)-L-cysteine ameliorates HPAH in vivo and vitro. In a HPAH mouse model, we assessed right ventricle systolic pressure (RVSP) by an invasive method, and found that RSVP was elevated under hypoxia, but was attenuated upon arginase inhibition. Human pulmonary artery smooth muscle cells (HPASMCs) were cultured under hypoxic conditions, and their proliferative capacity was determined by cell counting and flow cytometry. The levels of cyclin D1, p27, p-Akt, and p-ERK were detected by RT-PCR or Western blot analysis. Compared to hypoxia group, arginase inhibitor inhibited HPASMCs proliferation and reduced the levels of cyclin D1, p-Akt, p-ERK, while increasing p27 level. Moreover, in mouse models, compared to control group, hypoxia increased cyclin D1 expression but reduced p27 expression, while arginase inhibitor reversed the effects of hypoxia. Taken together, these results suggest that arginase plays an important role in increased proliferation of HPASMCs induced by hypoxia and it is a potential therapeutic target for the treatment of pulmonary hypertensive disorders.
Collapse
Affiliation(s)
- YanBiao Chu
- Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, 105 JieFang Rd, Ji'nan, 250013, Shandong, China
| | - XiaoYing XiangLi
- Department of Surgery, Qilu Hospital, Shandong University, Ji'nan, 250012, Shandong, China
| | - Hu Niu
- Department of General Surgery, The Fourth People's Hospital of Ji'nan, The Second Affiliated Hospital of Tai Shan Medical College, Ji'nan, 250031, China
| | - HongChao Wang
- Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, 105 JieFang Rd, Ji'nan, 250013, Shandong, China
| | - PingDong Jia
- Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, 105 JieFang Rd, Ji'nan, 250013, Shandong, China
| | - WenBin Gong
- Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, 105 JieFang Rd, Ji'nan, 250013, Shandong, China
| | - DaWei Wu
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Ji'nan, 250012, Shandong, China
| | - WeiDong Qin
- Department of Critical Care Medicine, Qilu Hospital, Shandong University, Ji'nan, 250012, Shandong, China
| | - ChunYan Xing
- Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, 105 JieFang Rd, Ji'nan, 250013, Shandong, China.
| |
Collapse
|
32
|
Bielli A, Scioli MG, Mazzaglia D, Doldo E, Orlandi A. Antioxidants and vascular health. Life Sci 2015; 143:209-16. [DOI: 10.1016/j.lfs.2015.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/06/2015] [Accepted: 11/12/2015] [Indexed: 01/04/2023]
|
33
|
Molecular Pathways Regulating Macrovascular Pathology and Vascular Smooth Muscle Cells Phenotype in Type 2 Diabetes. Int J Mol Sci 2015; 16:24353-68. [PMID: 26473856 PMCID: PMC4632754 DOI: 10.3390/ijms161024353] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/21/2015] [Accepted: 10/08/2015] [Indexed: 12/30/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a disease reaching a pandemic proportion in developed countries and a major risk factor for almost all cardiovascular diseases and their adverse clinical manifestations. T2DM leads to several macrovascular and microvascular alterations that influence the progression of cardiovascular diseases. Vascular smooth muscle cells (VSMCs) are fundamental players in macrovascular alterations of T2DM patients. VSMCs display phenotypic and functional alterations that reflect an altered intracellular biomolecular scenario of great vessels of T2DM patients. Hyperglycemia itself and through intraparietal accumulation of advanced glycation-end products (AGEs) activate different pathways, in particular nuclear factor-κB and MAPKs, while insulin and insulin growth-factor receptors (IGFR) are implicated in the activation of Akt and extracellular-signal-regulated kinases (ERK) 1/2. Nuclear factor-κB is also responsible of increased susceptibility of VSMCs to pro-apoptotic stimuli. Down-regulation of insulin growth-factor 1 receptors (IGFR-1R) activity in diabetic vessels also influences negatively miR-133a levels, so increasing apoptotic susceptibility of VSMCs. Alterations of those bimolecular pathways and related genes associate to the prevalence of a synthetic phenotype of VSMCs induces extracellular matrix alterations of great vessels. A better knowledge of those biomolecular pathways and related genes in VSMCs will help to understand the mechanisms leading to macrovascular alterations in T2DM patients and to suggest new targeted therapies.
Collapse
|
34
|
Forouzandeh F, Salazar G, Patrushev N, Xiong S, Hilenski L, Fei B, Alexander RW. Metformin beyond diabetes: pleiotropic benefits of metformin in attenuation of atherosclerosis. J Am Heart Assoc 2015; 3:e001202. [PMID: 25527624 PMCID: PMC4338706 DOI: 10.1161/jaha.114.001202] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Clinical studies show that metformin attenuates all‐cause mortality and myocardial infarction compared with other medications for type 2 diabetes, even at similar glycemic levels. However, there is paucity of data in the euglycemic state on the vasculoprotective effects of metformin. The objectives of this study are to evaluate the effects of metformin on ameliorating atherosclerosis. Methods and Results Using ApoE−/− C57BL/6J mice, we found that metformin attenuates atherosclerosis and vascular senescence in mice fed a high‐fat diet and prevents the upregulation of angiotensin II type 1 receptor by a high‐fat diet in the aortas of mice. Thus, considering the known deleterious effects of angiotensin II mediated by angiotensin II type 1 receptor, the vascular benefits of metformin may be mediated, at least in part, by angiotensin II type 1 receptor downregulation. Moreover, we found that metformin can cause weight loss without hypoglycemia. We also found that metformin increases the antioxidant superoxide dismutase‐1. Conclusion Pleiotropic effects of metformin ameliorate atherosclerosis and vascular senescence.
Collapse
|
35
|
Jiang W, Sun B, Song X, Zheng Y, Wang L, Wang T, Liu S. Arginase inhibition protects against hypoxia‑induced pulmonary arterial hypertension. Mol Med Rep 2015; 12:4743-4749. [PMID: 26126810 DOI: 10.3892/mmr.2015.3994] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 05/19/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to determine the role of arginase (Arg) in pulmonary arterial hypertension (PAH). In vitro, human pulmonary artery smooth muscle cells (HPASMCs) were cultured under hypoxic conditions with, or without, the Arg inhibitor, S‑(2‑boronoethyl)‑l‑cysteine (BEC), for 48 h, following which the proliferation of the HPASMCs was determined using MTT and cell counting assays. For the in vivo investigation, 30 male rats were randomly divided into the following three groups (n=10 per group): i) control group, ii) PAH group and iii) BEC group, in which the right ventricle systolic pressure (RVSP) of the rats was assessed. The levels of cyclin D1, cyclin‑dependent kinase (CDK)4 and p27 were measured in vitro and in vivo. The phosphorylation levels of Akt and extracellular‑related kinase (ERK) were also measured in HPASMCs. In vitro, compared with the hypoxia group, Arg inhibition reduced HPASMC proliferation and reduced the expression levels of cyclin D1, CDK4, phosphorylated (p‑)Akt and p‑ERK. By contrast, Arg inhibition increased the expression of p27. In vivo, compared with the control group, the expression levels of cyclin D1 and CDK4 were reduced in the PAH group, however, the expression of p27 and the RVSP increased. In the BEC group, the opposite effects were observed. Therefore, it was suggested that Arg inhibition may reduce the RVSP of PAH rats and reduce HPASMC proliferation by decreasing the expression levels of cyclin D1 and CDK4, increasing the expression of p27, and partly reducing the phosphorylation of Akt and ERK.
Collapse
Affiliation(s)
- Wenjin Jiang
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Bolin Sun
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xuepeng Song
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Yanbo Zheng
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Ligang Wang
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Tao Wang
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Sheng Liu
- Department of Interventional Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
36
|
Wei K, Díaz-Trelles R, Liu Q, Diez-Cuñado M, Scimia MC, Cai W, Sawada J, Komatsu M, Boyle JJ, Zhou B, Ruiz-Lozano P, Mercola M. Developmental origin of age-related coronary artery disease. Cardiovasc Res 2015; 107:287-94. [PMID: 26054850 DOI: 10.1093/cvr/cvv167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/21/2015] [Indexed: 11/14/2022] Open
Abstract
AIM Age and injury cause structural and functional changes in coronary artery smooth muscle cells (caSMCs) that influence the pathogenesis of coronary artery disease. Although paracrine signalling is widely believed to drive phenotypic changes in caSMCs, here we show that developmental origin within the fetal epicardium can have a profound effect as well. METHODS AND RESULTS Fluorescent dye and transgene pulse-labelling techniques in mice revealed that the majority of caSMCs are derived from Wt1(+), Gata5-Cre(+) cells that migrate before E12.5, whereas a minority of cells are derived from a later-emigrating, Wt1(+), Gata5-Cre(-) population. We functionally evaluated the influence of early emigrating cells on coronary artery development and disease by Gata5-Cre excision of Rbpj, which prevents their contribution to coronary artery smooth muscle cells. Ablation of the Gata5-Cre(+) population resulted in coronary arteries consisting solely of Gata5-Cre(-) caSMCs. These coronary arteries appeared normal into early adulthood; however, by 5-8 months of age, they became progressively fibrotic, lost the adventitial outer elastin layer, were dysfunctional and leaky, and animals showed early mortality. CONCLUSION Taken together, these data reveal heterogeneity in the fetal epicardium that is linked to coronary artery integrity, and that distortion of the coronaries epicardial origin predisposes to adult onset disease.
Collapse
Affiliation(s)
- Ke Wei
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ramon Díaz-Trelles
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92037, USA
| | - Qiaozhen Liu
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Marta Diez-Cuñado
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92037, USA Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA 94305, USA
| | - Maria-Cecilia Scimia
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Wenqing Cai
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92037, USA
| | - Junko Sawada
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Masanobu Komatsu
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Joseph J Boyle
- Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Bin Zhou
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pilar Ruiz-Lozano
- Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA 94305, USA
| | - Mark Mercola
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, FL 32827, USA Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
37
|
Orlandi A. The contribution of resident vascular stem cells to arterial pathology. Int J Stem Cells 2015; 8:9-17. [PMID: 26019750 PMCID: PMC4445704 DOI: 10.15283/ijsc.2015.8.1.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 04/08/2015] [Indexed: 01/22/2023] Open
Abstract
Intimal accumulation of smooth muscle cells contributes to the development and progression of atherosclerotic lesions and restenosis following endovascular procedures. Arterial smooth muscle cells display heterogeneous phenotypes in both physiological and pathological conditions. In response to injury, dedifferentiated or synthetic smooth muscle cells proliferate and migrate from the tunica media into the intima. As a consequence, smooth muscle cells in vascular lesions show a prevalent dedifferentiated phenotype compared to the contractile appearance of normal media smooth muscle cells. The discovery of abundant stem antigen-expressing cells in vascular lesions also rarely detected in the tunica media of normal adult vessels stimulated a great scientific debate concerning the possibility that proliferating vascular wall-resident stem cells accumulate into the neointima and contribute to the progression of lesions. Although several experimental studies support this hypothesis, others researchers suggest a positive effect of stem cells on plaque stabilization. So, the real contribute of vascular wall-resident stem cells to pathological vascular remodelling needs further investigation. This review will examine the evidence and the contribution of vascular wall-resident stem cells to arterial pathobiology, in order to address future investigations as potential therapeutic target to prevent the progression of vascular diseases.
Collapse
Affiliation(s)
- Augusto Orlandi
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
38
|
CHU YANBIAO, XIANGLI XIAOYING, XIAO WEI. Regulatory T cells protect against hypoxia-induced pulmonary arterial hypertension in mice. Mol Med Rep 2014; 11:3181-7. [DOI: 10.3892/mmr.2014.3106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 11/25/2014] [Indexed: 11/06/2022] Open
|
39
|
A morphometric study of the hepatic arterioles in end-stage primary sclerosing cholangitis. Virchows Arch 2014; 466:143-9. [DOI: 10.1007/s00428-014-1680-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/18/2014] [Accepted: 10/27/2014] [Indexed: 01/02/2023]
|
40
|
Niu L, Zhang Y, Meng L, Xiao Y, Wong KKL, Abbott D, Zheng H, Zheng R, Qian M. Detection of subclinical atherosclerosis in asymptomatic subjects using ultrasound radiofrequency-tracking technology. PLoS One 2014; 9:e111926. [PMID: 25369320 PMCID: PMC4219816 DOI: 10.1371/journal.pone.0111926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022] Open
Abstract
Objective Atherosclerosis is a chronic and systemic disease and its developmental process involves the synergism of multiple risk factors such as hypertension, dyslipidemia, diabetes, obesity and smoking. The diagnosis of subclinical atherosclerosis is essential for strategic guidance towards suitable treatments and efficient prevention against acute cardiovascular events. This study employed ultrasound radiofrequency (RF) tracking technology to characterize human carotid arteries in vivo in terms of intima-media thickness (IMT) and artery stiffness, and evaluated the statistical correlation between carotid IMT and stiffness, and the number of risk factors for atherosclerosis. Methods A total of 160 asymptomatic subjects were enrolled. Ultrasound RF-tracking technology was employed to acquire carotid IMT and stiffness parameters: maximum IMT (MAXIMT), RF Quality IMT (RFQIMT), distensibility coefficient (), compliance coefficient (), index, index and local pulse wave velocity (). The subjects were categorized in four groups in terms of the number of risk factors: ‘zero’, ‘single’, ‘double’, and ‘multiple’, and statistical analyses of carotid IMT and stiffness parameters were performed between these different groups. Results The subjects (n = 145) with MAXIMT smaller than 1.0 mm matched the IMT criteria for non-atherosclerosis and were named as NA-subjects. Spearman’s rho correlation analysis of the whole group and the NA-subjects both showed that MAXIMT correlated positively with RFQIMT, , , and , and negatively with and (p<0.01). The analysis of covariance of NA-subjects showed significant differences between subjects with and without risk factors, and also showed significant differences between the ‘zero’, ‘single’, ‘double’, and ‘multiple’ groups. Conclusions The carotid IMT and stiffness parameters obtained by the ultrasound RF-tracking technology were demonstrated to possess significant statistical correlation with the number of risk factors from 160 subjects, and these anatomical and mechanical parameters may potentially be used together with the IMT criteria to support subclinical atherosclerosis diagnosis.
Collapse
Affiliation(s)
- Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanling Zhang
- Department of Ultrasound, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang Xiao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kelvin K. L. Wong
- Centre for Biomedical Engineering, and School of Electrical & Electronic Engineering, University of Adelaide, Adelaide, Australia
| | - Derek Abbott
- Centre for Biomedical Engineering, and School of Electrical & Electronic Engineering, University of Adelaide, Adelaide, Australia
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- * E-mail: (HZ); (RZ); (MQ)
| | - Rongqin Zheng
- Department of Ultrasound, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- * E-mail: (HZ); (RZ); (MQ)
| | - Ming Qian
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- * E-mail: (HZ); (RZ); (MQ)
| |
Collapse
|
41
|
Scioli MG, Bielli A, Arcuri G, Ferlosio A, Orlandi A. Ageing and microvasculature. Vasc Cell 2014; 6:19. [PMID: 25243060 PMCID: PMC4169693 DOI: 10.1186/2045-824x-6-19] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/15/2014] [Indexed: 12/14/2022] Open
Abstract
A decline in the function of the microvasculature occurs with ageing. An impairment of endothelial properties represents a main aspect of age-related microvascular alterations. Endothelial dysfunction manifests itself through a reduced angiogenic capacity, an aberrant expression of adhesion molecules and an impaired vasodilatory function. Increased expression of adhesion molecules amplifies the interaction with circulating factors and inflammatory cells. The latter occurs in both conduit arteries and resistance arterioles. Age-related impaired function also associates with phenotypic alterations of microvascular cells, such as endothelial cells, smooth muscle cells and pericytes. Age-related morphological changes are in most of cases organ-specific and include microvascular wall thickening and collagen deposition that affect the basement membrane, with the consequent perivascular fibrosis. Data from experimental models indicate that decreased nitric oxide (NO) bioavailability, caused by impaired eNOS activity and NO inactivation, is one of the causes responsible for age-related microvascular endothelial dysfunction. Consequently, vasodilatory responses decline with age in coronary, skeletal, cerebral and vascular beds. Several therapeutic attempts have been suggested to improve microvascular function in age-related end-organ failure, and include the classic anti-atherosclerotic and anti-ischemic treatments, and also new innovative strategies. Change of life style, antioxidant regimens and anti-inflammatory treatments gave the most promising results. Research efforts should persist to fully elucidate the biomolecular basis of age-related microvascular dysfunction in order to better support new therapeutic strategies aimed to improve quality of life and to reduce morbidity and mortality among the elderly patients.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Alessandra Bielli
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Gaetano Arcuri
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Amedeo Ferlosio
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Institute of Anatomic Pathology, Tor Vergata University, Via Montpellier, Rome 00133, Italy
| |
Collapse
|
42
|
Lucke-Wold BP, Logsdon AF, Turner RC, Rosen CL, Huber JD. Aging, the metabolic syndrome, and ischemic stroke: redefining the approach for studying the blood-brain barrier in a complex neurological disease. ADVANCES IN PHARMACOLOGY 2014; 71:411-49. [PMID: 25307225 DOI: 10.1016/bs.apha.2014.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) has many important functions in maintaining the brain's immune-privileged status. Endothelial cells, astrocytes, and pericytes have important roles in preserving vasculature integrity. As we age, cell senescence can contribute to BBB compromise. The compromised BBB allows an influx of inflammatory cytokines to enter the brain. These cytokines lead to neuronal and glial damage. Ultimately, the functional changes within the brain can cause age-related disease. One of the most prominent age-related diseases is ischemic stroke. Stroke is the largest cause of disability and is third largest cause of mortality in the United States. The biggest risk factors for stroke, besides age, are results of the metabolic syndrome. The metabolic syndrome, if unchecked, quickly advances to outcomes that include diabetes, hypertension, cardiovascular disease, and obesity. The contribution from these comorbidities to BBB compromise is great. Some of the common molecular pathways activated include: endoplasmic reticulum stress, reactive oxygen species formation, and glutamate excitotoxicity. In this chapter, we examine how age-related changes to cells within the central nervous system interact with comorbidities. We then look at how comorbidities lead to increased risk for stroke through BBB disruption. Finally, we discuss key molecular pathways of interest with a focus on therapeutic targets that warrant further investigation.
Collapse
Affiliation(s)
- Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University, School of Medicine, Morgantown, West Virginia, USA; The Center for Neuroscience, West Virginia University, School of Medicine, Morgantown, West Virginia, USA
| | - Aric F Logsdon
- The Center for Neuroscience, West Virginia University, School of Medicine, Morgantown, West Virginia, USA; Department of Basic Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, West Virginia, USA
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University, School of Medicine, Morgantown, West Virginia, USA; The Center for Neuroscience, West Virginia University, School of Medicine, Morgantown, West Virginia, USA
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University, School of Medicine, Morgantown, West Virginia, USA; The Center for Neuroscience, West Virginia University, School of Medicine, Morgantown, West Virginia, USA
| | - Jason D Huber
- The Center for Neuroscience, West Virginia University, School of Medicine, Morgantown, West Virginia, USA; Department of Basic Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, West Virginia, USA.
| |
Collapse
|
43
|
Romaniello F, Mazzaglia D, Pellegrino A, Grego S, Fiorito R, Ferlosio A, Chiariello L, Orlandi A. Aortopathy in Marfan syndrome: an update. Cardiovasc Pathol 2014; 23:261-6. [PMID: 24925629 DOI: 10.1016/j.carpath.2014.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022] Open
Abstract
Marfan syndrome (MFS) is an inherited autosomal dominant multisystem disease caused by mutations in the FBN1 gene encoding fibrillin-1, an extracellular matrix glycoprotein widely distributed in mesenchymal-derived tissues that provide a scaffold for elastin deposition. MFS is characterized by variable clinical manifestations, including skeletal, ocular, and cardiovascular abnormalities; ascending aortic aneurysm with ensuing dissection and rupture is the main life-threatening cardiovascular manifestation of MFS. Histological aspects of MFS aortopathy include a medial degeneration from disarray and fragmentation of elastic fibers and accumulation of basophilic ground substance areas depleted of smooth muscle cells (SMCs). Transmission electron microscopy well evidences the high number of interruptions and the thick appearance of the elastic lamellae and the accumulation of abundant extracellular glycosaminoglycan-rich material, sometimes SMCs showing a prevalent synthetic phenotype. The aberrant signaling of transforming growth factor-β (TGF-β) as the consequence of the altered structure of fibrillin-1 induces activation and the overexpression of Smad-dependent profibrotic signaling pathway and ERK1/2-mediated increased synthesis of matrix metalloproteinases. In addition, MFS is accompanied by an impaired aortic contractile function and aortic endothelial-dependent relaxation, which is caused by an enhancement of the oxidative stress and increased reactive oxygen species during the progression of the disease. Many studies are currently evaluating the contribution of TGF-β-mediated biomolecular pathways to the progression of MFS aortopathy and aneurysm development, in order to discover new targets for pharmacological strategies aimed to counteract aortic dilation.
Collapse
Affiliation(s)
- Federico Romaniello
- Institute of Anatomic Pathology, Dept. of Biomedicine and Prevention, Tor Vergata University of Rome, Via Montpellier, 00133 Rome, Italy
| | - Donatella Mazzaglia
- Institute of Anatomic Pathology, Dept. of Biomedicine and Prevention, Tor Vergata University of Rome, Via Montpellier, 00133 Rome, Italy
| | - Antonio Pellegrino
- Cardiac Surgery, Dept. of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier, 00133 Rome, Italy
| | - Susanna Grego
- Cardiac Surgery, Dept. of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier, 00133 Rome, Italy
| | - Roberto Fiorito
- General Surgery, Dept. of Biomedicine and Prevention, Tor Vergata University of Rome, Via Montpellier, 00133 Rome, Italy
| | - Amedeo Ferlosio
- Institute of Anatomic Pathology, Dept. of Biomedicine and Prevention, Tor Vergata University of Rome, Via Montpellier, 00133 Rome, Italy
| | - Luigi Chiariello
- Cardiac Surgery, Dept. of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier, 00133 Rome, Italy
| | - Augusto Orlandi
- Institute of Anatomic Pathology, Dept. of Biomedicine and Prevention, Tor Vergata University of Rome, Via Montpellier, 00133 Rome, Italy.
| |
Collapse
|
44
|
Long-term atorvastatin improves age-related endothelial dysfunction by ameliorating oxidative stress and normalizing eNOS/iNOS imbalance in rat aorta. Exp Gerontol 2014; 52:9-17. [DOI: 10.1016/j.exger.2014.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/17/2022]
|
45
|
Liu J, Wang Y, Qiu L, Yu Y, Wang C. Saponins ofPanax notoginseng: chemistry, cellular targets and therapeutic opportunities in cardiovascular diseases. Expert Opin Investig Drugs 2014; 23:523-39. [DOI: 10.1517/13543784.2014.892582] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Rodriguez-Menocal L, Faridi MH, Martinez L, Shehadeh LA, Duque JC, Wei Y, Mesa A, Pena A, Gupta V, Pham SM, Vazquez-Padron RI. Macrophage-derived IL-18 and increased fibrinogen deposition are age-related inflammatory signatures of vascular remodeling. Am J Physiol Heart Circ Physiol 2014; 306:H641-53. [PMID: 24414074 DOI: 10.1152/ajpheart.00641.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging has been associated with pathological vascular remodeling and increased neointimal hyperplasia. The understanding of how aging exacerbates this process is fundamental to prevent cardiovascular complications in the elderly. This study proposes a mechanism by which aging sustains leukocyte adhesion, vascular inflammation, and increased neointimal thickness after injury. The effect of aging on vascular remodeling was assessed in the rat balloon injury model using microarray analysis, immunohistochemistry, and LINCOplex assays. The injured arteries in aging rats developed thicker neointimas than those in younger animals, and this significantly correlated with a higher number of tissue macrophages and increased vascular IL-18. Indeed, IL-18 was 23-fold more abundant in the injured vasculature of aged animals compared with young rats, while circulating levels were similar in both groups of animals. The depletion of macrophages in aged rats with clodronate liposomes ameliorated vascular accumulation of IL-18 and significantly decreased neointimal formation. IL-18 was found to inhibit apoptosis of vascular smooth muscle cells (VSMC) and macrophages, thus favoring both the formation and inflammation of the neointima. In addition, injured arteries of aged rats accumulated 18-fold more fibrinogen-γ than those of young animals. Incubation of rat peritoneal macrophages with immobilized IL-18 increased leukocyte adhesion to fibrinogen and suggested a proinflammatory positive feedback loop among macrophages, VSMC, and the deposition of fibrinogen during neointimal hyperplasia. In conclusion, our data reveal that concentration changes in vascular cytokine and fibrinogen following injury in aging rats contribute to local inflammation and postinjury neointima formation.
Collapse
Affiliation(s)
- Luis Rodriguez-Menocal
- Department of Surgery and Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Albini PT, Segura AM, Liu G, Minard CG, Coselli JS, Milewicz DM, Shen YH, LeMaire SA. Advanced atherosclerosis is associated with increased medial degeneration in sporadic ascending aortic aneurysms. Atherosclerosis 2013; 232:361-8. [PMID: 24468149 DOI: 10.1016/j.atherosclerosis.2013.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The pathogenesis of non-familial, sporadic ascending aortic aneurysms (SAAA) is poorly understood, and the relationship between ascending aortic atherosclerosis and medial degeneration is unclear. We evaluated the prevalence and severity of aortic atherosclerosis and its association with medial degeneration in SAAA. METHODS AND RESULTS Atherosclerosis was characterized in ascending aortic tissues collected from 68 SAAA patients (mean age, 62.9 ± 12.0 years) and 15 controls (mean age, 56.6 ± 11.4 years [P = 0.07]) by using a modified American Heart Association classification system. Upon histologic examination, 97% of SAAA patients and 73% of controls showed atherosclerotic changes. Most SAAA samples had intermediate (types 2 and 3, 35%) or advanced atherosclerosis (types ≥ 4; 40%), whereas most control samples showed minimal atherosclerosis (none or type 1, 80%; P < 0.001 after adjusting for age). In a separate analysis, we examined the total incidence and grade distribution of medial degenerative changes among SAAA samples according to atherosclerosis grade. Advanced atherosclerosis was associated with higher grades of smooth muscle cell depletion (P < 0.001), elastic fiber depletion (P = 0.02), elastic fiber fragmentation (P < 0.001), and mucopolysaccharide accumulation (P = 0.04). Aortic diameter was larger in SAAA patients with advanced atherosclerosis than in patients with minimal (P = 0.04) or intermediate atherosclerosis (P = 0.04). Immunostaining showed marked CD3+ T-cell and CD68+ macrophage infiltration, MMP-2 and MMP-9 production, and cryopyrin expression in the medial layer adjacent to atherosclerotic plaque. CONCLUSIONS SAAA tissues exhibited advanced atherosclerosis that was associated with severe medial degeneration and increased aortic diameter. Our findings suggest a role for atherosclerosis in the progression of sporadic ascending aortic aneurysms.
Collapse
Affiliation(s)
- Paul T Albini
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Adult Cardiothoracic Surgery, Texas Heart Institute, PO Box 20345, Houston, TX 77225, USA
| | - Ana Maria Segura
- Department of Cardiovascular Pathology, Texas Heart Institute, PO Box 20345, Houston, TX 77225, USA
| | - Guanghui Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Adult Cardiothoracic Surgery, Texas Heart Institute, PO Box 20345, Houston, TX 77225, USA
| | - Charles G Minard
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Joseph S Coselli
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Adult Cardiothoracic Surgery, Texas Heart Institute, PO Box 20345, Houston, TX 77225, USA
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite 1200, Houston, TX 77030, USA
| | - Ying H Shen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Adult Cardiothoracic Surgery, Texas Heart Institute, PO Box 20345, Houston, TX 77225, USA.
| | - Scott A LeMaire
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Adult Cardiothoracic Surgery, Texas Heart Institute, PO Box 20345, Houston, TX 77225, USA.
| |
Collapse
|
48
|
Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai TC. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 2013; 5:3779-827. [PMID: 24077237 PMCID: PMC3820045 DOI: 10.3390/nu5103779] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/25/2013] [Accepted: 08/04/2013] [Indexed: 12/26/2022] Open
Abstract
Numerous studies have demonstrated the importance of naturally occurring dietary polyphenols in promoting cardiovascular health and emphasized the significant role these compounds play in limiting the effects of cellular aging. Polyphenols such as resveratrol, epigallocatechin gallate (EGCG), and curcumin have been acknowledged for having beneficial effects on cardiovascular health, while some have also been shown to be protective in aging. This review highlights the literature surrounding this topic on the prominently studied and documented polyphenols as pertaining to cardiovascular health and aging.
Collapse
Affiliation(s)
- Sandhya Khurana
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +705-662-7239; Fax: +705-675-4858
| | - Krishnan Venkataraman
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +705-662-7239; Fax: +705-675-4858
| | - Amanda Hollingsworth
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +705-662-7239; Fax: +705-675-4858
| | - Matthew Piche
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +705-662-7239; Fax: +705-675-4858
| | - T. C. Tai
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +705-662-7239; Fax: +705-675-4858
| |
Collapse
|
49
|
Riches K, Angelini TG, Mudhar GS, Kaye J, Clark E, Bailey MA, Sohrabi S, Korossis S, Walker PG, Scott DJA, Porter KE. Exploring smooth muscle phenotype and function in a bioreactor model of abdominal aortic aneurysm. J Transl Med 2013; 11:208. [PMID: 24028184 PMCID: PMC3847145 DOI: 10.1186/1479-5876-11-208] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 09/04/2013] [Indexed: 01/13/2023] Open
Abstract
Background Vascular smooth muscle cells (SMC) are central to arterial structure and function yet their involvement in the progression of abdominal aortic aneurysm (AAA) disease is not well studied. The progressive and silent nature of AAA in man essentially restricts research to the use of “end-stage” tissue recovered during surgical repair. This study aimed to generate an ex vivo model of AAA using protease-treated porcine carotid arteries maintained in a novel bioreactor, and to compare the structural and functional changes in SMC cultured from the recovered vessels with those from human tissue acquired at elective surgical repair. Methods Freshly isolated porcine arteries were pretreated with collagenase and/or elastase before culturing under flow in a bioreactor for 12 days. Human end-stage aneurysmal tissue and saphenous veins from age-matched controls were collected from patients undergoing surgery. SMC were cultured and characterised (immunocytochemistry, measurement of spread cell area) and assessed functionally at the level of proliferation (cell-counting) and matrix-metalloproteinase (MMP) secretion (gelatin zymography). Cellular senescence was investigated using β-galactosidase staining and apoptosis was quantified using a fluorescence-based caspase 3 assay. Results Co-expression of alpha-smooth muscle actin and smooth muscle myosin heavy chain confirmed all cell populations as SMC. Porcine SMC harvested and cultivated after collagenase/elastase pretreatment displayed a prominent “rhomboid” morphology, increased spread area (32%, P < 0.01), impaired proliferation (47% reduction, P < 0.05), increased senescence (52%, P < 0.001), susceptibility to apoptosis and reduced MMP-2 secretion (60% decrease, P < 0.01) compared with SMC from vehicle, collagenase or elastase pre-treated vessels. Notably, these changes were comparable to those observed in human AAA SMC which were 2.4-fold larger than non-aneurysmal SMC (P < 0.001) and exhibited reduced proliferation (39% reduction, P < 0.001), greater apoptosis (4-fold increase, P < 0.001), and increased senescence (61%, P < 0.05). Conclusions Combined collagenase/elastase exposure of porcine artery maintained in a bioreactor under flow conditions induced a SMC phenotype characteristic of those cultured from end-stage AAA specimens. This model has potential and versatility to examine temporal changes in SMC biology and to identify the molecular mechanisms leading to early aberrancies in SMC function. In the longer term this may inform new targets to maintain aortic SMC content and drive cells to a “reparative” phenotype at early stages of the disease.
Collapse
Affiliation(s)
- Kirsten Riches
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics (LIGHT), University of Leeds, Leeds, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Venkataraman K, Khurana S, Tai TC. Oxidative stress in aging--matters of the heart and mind. Int J Mol Sci 2013; 14:17897-925. [PMID: 24002027 PMCID: PMC3794759 DOI: 10.3390/ijms140917897] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/10/2013] [Accepted: 08/15/2013] [Indexed: 01/15/2023] Open
Abstract
Oxidative damage is considered to be the primary cause of several aging associated disease pathologies. Cumulative oxidative damage tends to be pervasive among cellular macromolecules, impacting proteins, lipids, RNA and DNA of cells. At a systemic level, events subsequent to oxidative damage induce an inflammatory response to sites of oxidative damage, often contributing to additional oxidative stress. At a cellular level, oxidative damage to mitochondria results in acidification of the cytoplasm and release of cytochrome c, causing apoptosis. This review summarizes findings in the literature on oxidative stress and consequent damage on cells and tissues of the cardiovascular system and the central nervous system, with a focus on aging-related diseases that have well-documented evidence of oxidative damage in initiation and/or progression of the disease. The current understanding of the cellular mechanisms with a focus on macromolecular damage, impacted cellular pathways and gross morphological changes associated with oxidative damage is also reviewed. Additionally, the impact of calorific restriction with its profound impact on cardiovascular and neuronal aging is addressed.
Collapse
Affiliation(s)
- Krishnan Venkataraman
- Department of Gerontology, Huntington University, Sudbury, ON P3E 2C6, Canada; E-Mail:
| | - Sandhya Khurana
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; E-Mail:
| | - T. C. Tai
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; E-Mail:
- Department of Biology, Department of Chemistry and Biochemistry, Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-705-662-7239; Fax: +1-705-675-4858
| |
Collapse
|