1
|
Zhao J, Miao G, Wang T, Li J, Xie L. Urantide attenuates myocardial damage in atherosclerotic rats by regulating the MAPK signalling pathway. Life Sci 2020; 262:118551. [PMID: 33038370 DOI: 10.1016/j.lfs.2020.118551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To explore the effect of urantide on atherosclerotic myocardial injury by antagonizing the urotensin II/urotensin II receptor (UII/UT) system and regulating the mitogen-activated protein kinase (MAPK) signalling pathway. METHODS Atherosclerosis (AS) was established in rats by administering a high-fat diet and an intraperitoneal injection of vitamin D3. The effect of treatment with urantide (30 μg/kg), a UII receptor antagonist, for 3, 7, or 14 days on AS-induced myocardial damage was evaluated. RESULTS The heart of rats with AS exhibited pathological changes suggestive of myocardial injury, and the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) were significantly increased. Additionally, significant increases in the levels of UII, its receptor (G protein-coupled receptor 14, GPR14), p-P38, p-extracellular signal-regulated kinase (ERK) and p-c-Jun N-terminal kinase (JNK) were observed in the heart. Urantide improved pathological changes in the heart of rats with AS and reduced the serum CK and LDH levels. Additionally, the UII antagonist decreased the increased levels of UII, GPR14, p-P38, p-ERK and p-JNK in the heart. CONCLUSIONS Urantide alleviates atherosclerotic myocardial injury by inhibiting the UII-GPR14 interaction and regulating the MAPK signalling pathway. We hypothesized that myocardial injury may be associated with the regulation of the MAPK signalling pathway.
Collapse
Affiliation(s)
- Juan Zhao
- Chengde Medical University, Chengde, Hebei 067000, China
| | - Guangxin Miao
- Chengde Medical University, Chengde, Hebei 067000, China
| | - Tu Wang
- Chengde Medical University, Chengde, Hebei 067000, China
| | - Jian Li
- Chengde Central Hospital, Chengde, Hebei 067000, China.
| | - Lide Xie
- Chengde Medical University, Chengde, Hebei 067000, China.
| |
Collapse
|
2
|
Zhao J, Xie LDE, Song CJ, Mao XX, Yu HR, Yu QX, Ren LQ, Shi Y, Xie YQ, Li Y, Liu SS, Yang XH. Urantide improves atherosclerosis by controlling C-reactive protein, monocyte chemotactic protein-1 and transforming growth factor-β expression in rats. Exp Ther Med 2014; 7:1647-1652. [PMID: 24926360 PMCID: PMC4043621 DOI: 10.3892/etm.2014.1654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/18/2014] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to investigate the effects of urantide on the expression status of C-reactive protein (CRP) and the inflammatory cytokines monocyte chemotactic protein (MCP)-1 and transforming growth factor (TGF)-β in the aortas of rats with atherosclerosis (AS), and to identify its underlying mechanisms. The effects of urantide in a rat model of AS and in cultured rat vascular smooth muscle cells (VSMCs) were analyzed via hematoxylin and eosin staining, immunohistochemical staining and ELISA. The results in vivo demonstrated that urantide downregulated the expression of inflammatory mediators CRP and MCP-1 and upregulated the expression of TGF-β. The results in vitro indicated that urantide inhibited the proliferation of VSMCs. In addition, urantide reduced the expression of CRP and downregulated the secretion of TGF-β in the culture supernatant. In conclusion, urantide ameliorated the arterial inflammatory damage that was observed in the AS rat model at the cell and tissue levels by controlling the expression of CRP and the inflammatory cytokines MCP-1 and TGF-β. Therefore, urantide may be a potential agent for the complementary treatment of AS.
Collapse
Affiliation(s)
- Juan Zhao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China ; Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Li-DE Xie
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Cheng-Jun Song
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiao-Xia Mao
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Hai-Rong Yu
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Quan-Xin Yu
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Li-Qun Ren
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Shi
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ya-Qin Xie
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Ying Li
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Sha-Sha Liu
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiao-Hong Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
3
|
You Z, Al Kindi H, Abdul-Karim A, Barrette PO, Schwertani A. Blocking the urotensin II receptor pathway ameliorates the metabolic syndrome and improves cardiac function in obese mice. FASEB J 2013; 28:1210-20. [PMID: 24297699 DOI: 10.1096/fj.13-236471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The metabolic syndrome is defined by the presence of hyperlipidemia, obesity, hypertension, and diabetes. The syndrome is associated with significant cardiovascular morbidity and mortality. The aim of the present study was to determine the role of the vasoactive peptide urotensin II (UII) in the pathogenesis of the metabolic syndrome. We used obese mice (ob/ob) to determine the effect of UII receptor (UT) blockage on the different facets of the metabolic syndrome with special emphasis on cardiac function. Our data demonstrate a significant increase in UII and UT expression in the myocardium of obese mice accompanied by a significant decrease in sarco/endoplasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) expression, as well as intracellular Na(+) and Ca(2+) compared with wild-type mice (P<0.05). Treatment of ob/ob mice with the UII receptor antagonist SB657510 significantly improved glucose levels, blood pressure, hyperlipidemia, expression of myocardial SERCA2a, intracellular Na(+) and Ca(2+) and cardiac function in association with a decrease in weight gain, and mammalian target of rapamycin (mTOR) and sodium/hydrogen exchanger 1 (NHE-1) protein expression compared with vehicle (P<0.05). These findings demonstrate an important role for UII in the pathogenesis of the metabolic syndrome and suggest that the use of UT receptor antagonists may provide a new therapeutic tool for the treatment of this syndrome.
Collapse
Affiliation(s)
- Zhipeng You
- 1McGill University Health Center, Ste. C9-166, Montreal General Hospital, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | | | | | | | | |
Collapse
|
4
|
Park SL, Lee BK, Kim YA, Lee BH, Jung YS. Inhibitory Effect of an Urotensin II Receptor Antagonist on Proinflammatory Activation Induced by Urotensin II in Human Vascular Endothelial Cells. Biomol Ther (Seoul) 2013; 21:277-83. [PMID: 24244812 PMCID: PMC3819900 DOI: 10.4062/biomolther.2013.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 06/25/2013] [Accepted: 07/04/2013] [Indexed: 12/12/2022] Open
Abstract
In this study, we investigated the effects of a selective urotensin II (UII) receptor antagonist, SB-657510, on the inflammatory response induced by UII in human umbilical vein endothelial cells (EA.hy926) and human monocytes (U937). UII induced inflammatory activation of endothelial cells through expression of proinflammatory cytokines (IL-1β and IL-6), adhesion molecules (VCAM-1), and tissue factor (TF), which facilitates the adhesion of monocytes to EA.hy926 cells. Treatment with SB-657510 significantly inhibited UII-induced expression of IL-1β, IL-6, and VCAM-1 in EA.hy926 cells. Further, SB-657510 dramatically blocked the UII-induced increase in adhesion between U937 and EA.hy926 cells. In addition, SB-657510 remarkably reduced UII-induced expression of TF in EA.hy926 cells. Taken together, our results demonstrate that the UII antagonist SB-657510 decreases the progression of inflammation induced by UII in endothelial cells.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Urotensin II (UTS2), the most potent vasoconstrictor identified thus far, is an undecapeptide hormone with a structure that is highly conserved through mammalian phylogeny. In spite of its broad expression across the invertebrate and vertebrate world, the precise role of UTS2 in physiology and disease is still unknown. The first description of human UTS2 and its receptor brought initial promise of a potential therapeutic target for progressive renal disease, with vasoconstrictive and profibrotic actions within an autocrine and paracrine system and local renal generation that was upregulated with renal pathology. RECENT FINDINGS However, the last decade has not brought the successful development of new treatments first hoped for, with one small human clinical trial bearing negative results. What has become apparent is that the spectrum of actions of UTS2 is broad and often paradoxical. This ancient hormone has both vasoconstrictor and vasodilatory actions, has both profibrotic and antiapoptotic activity, as well as actions which are highly contextual on the particular vascular bed studied and on the presence or absence of superimposed disease state. SUMMARY With current development of newer UTS2 antagonists attempting to more closely replicate the ligand-receptor kinetics of UTS2 and its receptor, the focus on potential clinical applications of UTS2 inhibition has moved away from the kidney to the treatment of chronic lung and cardiovascular diseases.
Collapse
|
6
|
Watson AMD, Olukman M, Koulis C, Tu Y, Samijono D, Yuen D, Lee C, Behm DJ, Cooper ME, Jandeleit-Dahm KAM, Calkin AC, Allen TJ. Urotensin II receptor antagonism confers vasoprotective effects in diabetes associated atherosclerosis: studies in humans and in a mouse model of diabetes. Diabetologia 2013; 56:1155-65. [PMID: 23344731 DOI: 10.1007/s00125-013-2837-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/07/2013] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS The small, highly conserved vasoactive peptide urotensin II (UII) is upregulated in atherosclerosis. However, its effects in diabetes-associated atherosclerosis have not been assessed. METHODS Endothelial cells were grown in normal- and high-glucose (5 and 25 mmol/l) media with and without UII (10⁻⁸ mol/l) and/or the UII receptor antagonist, SB-657510 (10⁻⁸ mol/l). Apoe knockout (KO) mice with or without streptozotocin-induced diabetes were treated with or without SB-657510 (30 mg kg⁻¹ day⁻¹; n = 20 per group) and followed for 20 weeks. Carotid endarterectomy specimens from diabetic and non-diabetic humans were also evaluated. RESULTS In high (but not normal) glucose medium, UII significantly increased CCL2 (encodes macrophage chemoattractant protein 1 [MCP-1]) gene expression (human aortic endothelial cells) and increased monocyte adhesion (HUVECs). UII receptor antagonism in diabetic Apoe KO mice significantly attenuated diabetes-associated atherosclerosis and aortic staining for MCP-1, F4/80 (macrophage marker), cyclooxygenase-2, nitrotyrosine and UII. UII staining was significantly increased in carotid endarterectomies from diabetic compared with non-diabetic individuals, as was staining for MCP-1. CONCLUSIONS/INTERPRETATION This is the first report to demonstrate that UII is increased in diabetes-associated atherosclerosis in humans and rodents. Diabetes-associated plaque development was attenuated by UII receptor antagonism in the experimental setting. Thus UII may represent a novel therapeutic target in the treatment of diabetes-associated atherosclerosis.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/immunology
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/complications
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cell Adhesion/drug effects
- Cells, Cultured
- Crosses, Genetic
- Diabetes Mellitus, Type 1/complications
- Diabetic Angiopathies/immunology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/prevention & control
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/immunology
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/drug effects
- Monocytes/immunology
- Pilot Projects
- Protective Agents/pharmacology
- Protective Agents/therapeutic use
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Urotensins/antagonists & inhibitors
- Urotensins/biosynthesis
- Urotensins/metabolism
Collapse
Affiliation(s)
- A M D Watson
- Baker IDI Heart and Diabetes Research Institute, PO Box 6492 St Kilda Road Central, Melbourne, VIC 8008, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Koulis C, de Haan JB, Allen TJ. Novel pathways and therapies in experimental diabetic atherosclerosis. Expert Rev Cardiovasc Ther 2012; 10:323-35. [PMID: 22390805 DOI: 10.1586/erc.12.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetic subjects are at a greater risk of developing major vascular complications due to abnormalities pertinent to the diabetic milieu. Current treatment options achieve significant improvements in glucose levels and blood pressure control, but do not necessarily prevent or retard diabetes-mediated macrovascular disease. In this review, we highlight several pathways that are increasingly being appreciated as playing a significant role in diabetic vascular injury. We focus particularly on the advanced glycation end product/receptor for advanced glycation end product (AGE/RAGE) axis and its interplay with the nuclear protein HMGB1. We discuss evidence implicating a significant role for the renin-angiotensin system, urotensin II and PPAR, as well as the importance of proinflammatory mediators and oxidative stress in cardiovascular complications. The specific targeting of these pathways may lead to novel therapies to reduce the burden of diabetic vascular complications.
Collapse
Affiliation(s)
- Christine Koulis
- Diabetic Complications Group, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | | |
Collapse
|
8
|
You Z, Genest J, Barrette PO, Hafiane A, Behm DJ, D'Orleans-Juste P, Schwertani AG. Genetic and pharmacological manipulation of urotensin II ameliorate the metabolic and atherosclerosis sequalae in mice. Arterioscler Thromb Vasc Biol 2012; 32:1809-16. [PMID: 22723440 DOI: 10.1161/atvbaha.112.252973] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Urotensin II (UII) is a potent vasoactive peptide that binds to the urotensin receptor-coupled receptor-14 (known as UT) and exerts a wide range of actions in humans and experimental animals. We tested the hypothesis that UII gene deletion or UT blockade ameliorate experimental atherosclerosis. METHODS AND RESULTS We observed a significant reduction in weight gain, visceral fat, blood pressure, circulating plasma lipids, and proatherogenic cytokines and improvement of glucose tolerance in UII knockout mice compared with wild type (P<0.05). Deletion of UII after an apolipoprotein E knockout resulted in a significant reduction in serum cytokines, adipokines, and aortic atherosclerosis compared with apolipoprotein E knockout mice. Similarly, treatment of apolipoprotein E knockout mice fed on high-fat diet with the UT antagonist SB657510A reduced weight gain, visceral fat, and hyperlipidemia and improved glucose tolerance (P<0.05) and attenuated the initiation and progression of atherosclerosis. The UT antagonist also decreased aortic extracellular signal-regulated kinase 1/2 phosphorylation and oxidant formation and serum level of cytokines (P<0.05). CONCLUSIONS These findings demonstrate for the first time the role of UII gene deletion in atherosclerosis and suggest that the use of pharmaceutical agents aimed at blocking the UII pathway may provide a novel approach in the treatment of atherosclerosis and its associated precursors such as obesity, hyperlipidemia, diabetes mellitus, and hypertension.
Collapse
Affiliation(s)
- Zhipeng You
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Yi K, Yu M, Wu L, Tan X. Effects of urotensin II on functional activity of late endothelial progenitor cells. Peptides 2012; 33:87-91. [PMID: 22123628 DOI: 10.1016/j.peptides.2011.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 11/15/2011] [Accepted: 11/15/2011] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) is a potent vasoactive cyclic peptide which has multiple effects on the cardiovascular system. However, the effects of UII on late endothelial progenitor cells (EPCs) are still unclear. The aim of the present study is to investigate whether UII influences the functional activity of late EPCs. Late EPCs were isolated from human umbilical cord blood by Ficoll density gradient centrifugation and treated with UII (10(-10), 10(-9), 10(-8), 10(-7) and 10(-6)M), or vehicle control. Expression of urotensin II receptor (UT) in late EPCs was confirmed by indirect immunofluorescence staining. Late EPCs proliferation, migration and in vitro vasculogenesis activity were assayed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, transwell chamber assay, and matrigel tube formation assay. Late EPCs adhesive assay was performed by replating cells on fibronectin-coated dishes, and then adherent cells were counted. Incubation with UII increased the migratory, adhesive and in vitro vasculogenesis capacity and inhibited the proliferative activity of late EPCs. Furthermore, these UII-mediated effects on late EPCs were attenuated by pretreatment with the UT antagonist urantide. These findings indicate that UII may exert multiple effects on functional activity of late EPCs through UT.
Collapse
Affiliation(s)
- Kaihong Yi
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | | | | | | |
Collapse
|
10
|
Barrette PO, Schwertani AG. A closer look at the role of urotensin II in the metabolic syndrome. Front Endocrinol (Lausanne) 2012; 3:165. [PMID: 23293629 PMCID: PMC3531708 DOI: 10.3389/fendo.2012.00165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/29/2012] [Indexed: 12/12/2022] Open
Abstract
Urotensin II (UII) is a vasoactive peptide that was first discovered in the teleost fish, and later in mammals and humans. UII binds to the G protein coupled receptor GPR14 (now known as UT). UII mediates important physiological and pathological actions by interacting with its receptor. The metabolic syndrome (MetS) is described as cluster of factors such as obesity, dyslipidemia, hypertension, and insulin resistance (IR), further leading to development of type 2 diabetes mellitus and cardiovascular diseases. UII levels are upregulated in patients with the MetS. Evidence directly implicating UII in every risk factor of the MetS has been accumulated. The mechanism that links the different aspects of the MetS relies primarily on IR and inflammation. By directly modulating both of these factors, UII is thought to play a central role in the pathogenesis of the MetS. Moreover, UII also plays an important role in hypertension and hyperlipidemia thereby contributing to cardiovascular complications associated with the MetS.
Collapse
Affiliation(s)
| | - Adel Giaid Schwertani
- *Correspondence: Adel Giaid Schwertani, Division of Cardiology, Department of Medicine, McGill University Health Center, 1650 Cedar Avenue, Room C9-166, Montreal, QC, Canada H3G 1A4. e-mail:
| |
Collapse
|
11
|
Zhang YG, Kuang ZJ, Mao YY, Wei RH, Bao SL, Wu LB, Li YG, Tang CS. Osteopontin is involved in urotensin II-induced migration of rat aortic adventitial fibroblasts. Peptides 2011; 32:2452-8. [PMID: 22036853 DOI: 10.1016/j.peptides.2011.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 10/15/2011] [Accepted: 10/16/2011] [Indexed: 02/05/2023]
Abstract
Recent studies suggest that both osteopontin and urotensin II (UII) play critical roles in vascular remodeling. We previously showed that UII could stimulate the migration of aortic adventitial fibroblasts. In this study, we examined whether osteopontin is involved in UII-induced migration of rat aortic adventitial fibroblasts and examined the effects and mechanisms of UII on osteopontin expression in adventitial fibroblasts. Migration of adventitial fibroblasts induced by UII could be inhibited significantly by osteopontin antisense oligonucleotide (P<0.01) but not sense or mismatch oligonucleotides (P>0.05). Moreover, UII dose- and time-dependently promoted osteopontin mRNA expression and protein secretion in the cells, with maximal effect at 10(-8)mol/l at 3h for mRNA expression or at 12h for protein secretion (both P<0.01). Furthermore, the UII effects were significantly inhibited by its receptor antagonist SB710411 (10(-6)mol/l), and Ca(2+) channel blocker nicardipine (10(-5)mol/l), protein kinase C (PKC) inhibitor H7 (10(-5)mol/l), calcineurin inhibitor cyclosporine A (10(-5)mol/l), mitogen-activated protein kinase (MAPK) inhibitor PD98059 (10(-5)mol/l) and Rho kinase inhibitor Y-27632 (10(-5)mol/l). Thus, osteopontin is involved in the UII-induced migration of adventitial fibroblasts, and UII could upregulate osteopontin gene expression and protein synthesis in rat aortic adventitial fibroblasts by activating its receptor and the Ca(2+) channel, PKC, calcineurin, MAPK and Rho kinase signal transduction pathways.
Collapse
Affiliation(s)
- Yong-Gang Zhang
- Department of Cardiovascular Diseases, First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kiss RS, You Z, Genest J, Behm DJ, Giaid A. Urotensin II differentially regulates macrophage and hepatic cholesterol homeostasis. Peptides 2011; 32:956-63. [PMID: 21376094 DOI: 10.1016/j.peptides.2011.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 12/12/2022]
Abstract
Urotensin II (UII) is a vasoactive peptide with pleiotropic activity. Interestingly, UII levels are elevated in hyperlipidemic patients, and UII induces lipase activity in some species. However, the exact role UII plays in cholesterol homeostasis remains to be elucidated. UII knockout (UII KO) mice were generated and a plasma lipoprotein profile, and hepatocytes and macrophages cholesterol uptake, storage and synthesis was determined. UII KO had a decreased LDL cholesterol profile and liver steatosis compared to wildtype mice (WT). UII KO macrophages demonstrated enhanced ACAT activity and LDL uptake in the short term (up to 4h), of which more LDL-delivered exogenously derived cholesterol was incorporated into cholesteryl ester (CE) than the WT macrophages. UII KO macrophages generated more than two times the amount of de novo endogenously synthesized cholesterol, and of this cholesterol more than two times the relative amount was esterified to CE. In comparison, results in hepatocytes demonstrated that far more exogenously derived cholesterol was incorporated into CE in the WT cells, generating almost ten times the amount of CE than UII KO. WT cells synthesize de novo almost ten times the amount of cholesterol than UIIKO, and of that cholesterol, almost two times the amount of CE in WT than UII KO hepatocytes. In addition, more ApoB lipoproteins were secreted from WT than UII KO hepatocytes. These results demonstrate a fundamental difference between macrophages and hepatocytes in terms of cholesterol homeostasis, and suggest an important role for UII in modulating cholesterol regulation.
Collapse
Affiliation(s)
- Robert S Kiss
- Division of Cardiology, McGill University Health Center, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
13
|
Kompa AR, Wang BH, Phrommintikul A, Ho PY, Kelly DJ, Behm DJ, Douglas SA, Krum H. Chronic urotensin II receptor antagonist treatment does not alter hypertrophy or fibrosis in a rat model of pressure-overload hypertrophy. Peptides 2010; 31:1523-30. [PMID: 20452383 DOI: 10.1016/j.peptides.2010.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/29/2010] [Accepted: 04/29/2010] [Indexed: 01/24/2023]
Abstract
Urotensin II (UII) is a potential mediator in the pathogenesis of cardiovascular disease, and inhibition of its actions at the urotensin receptor (UT) has been shown to improve cardiac function and structural changes of the myocardium in a model of myocardial infarction. In this study we utilized a model of pressure-overload hypertrophy induced by abdominal aortic constriction (AAC) which resulted in hypertrophy, increased fibrosis and impaired diastolic and systolic function. These changes were associated with a 4-fold increase in UII protein expression in the myocardium. Treatment of animals with a selective UT (SB-657510) antagonist for 20 weeks at a dose of 1500 ppm did not improve cardiac function as assessed by echocardiography and pressure-volume loop analysis, nor did it inhibit left ventricular hypertrophy or fibrosis. We hypothesize that other neurohumoral pathways may have a greater involvement in the pathogenesis of this model. Targeting the UII system appears to be insufficient to observe a beneficial outcome.
Collapse
Affiliation(s)
- Andrew R Kompa
- Department of Medicine, Monash University, Alfred Hospital, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Guidolin D, Albertin G, Ribatti D. Urotensin-II as an angiogenic factor. Peptides 2010; 31:1219-24. [PMID: 20346384 DOI: 10.1016/j.peptides.2010.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 02/07/2023]
Abstract
Angiogenesis, the process through which new blood vessels arise from pre-existing ones, is regulated by numerous "classic" factors and other "nonclassic" regulators of angiogenesis. Among these latter urotensin-II is a cyclic 11-amino acid (human) or 15-amino acid (rodent) peptide, originally isolated from the fish urophysis, which exerts a potent systemic vasoconstrictor and hypertensive effect. This review article summarizes the literature data concerning the involvement of urotensin-II in angiogenesis.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Human, Anatomy and Physiology (Section of Anatomy), University of Padova Medical School, Via Gabelli, 65, I-35121 Padova, Italy.
| | | | | |
Collapse
|
15
|
Ross B, McKendy K, Giaid A. Role of urotensin II in health and disease. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1156-72. [DOI: 10.1152/ajpregu.00706.2009] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) is an 11 amino acid cyclic peptide originally isolated from the goby fish. The amino acid sequence of UII is exceptionally conserved across most vertebrate taxa, sharing structural similarity to somatostatin. UII binds to a class of G protein-coupled receptor known as GPR14 or the urotensin receptor (UT). UII and its receptor, UT, are widely expressed throughout the cardiovascular, pulmonary, central nervous, renal, and metabolic systems. UII is generally agreed to be the most potent endogenous vasoconstrictor discovered to date. Its physiological mechanisms are similar in some ways to other potent mediators, such as endothelin-1. For example, both compounds elicit a strong vascular smooth muscle-dependent vasoconstriction via Ca2+ release. UII also exerts a wide range of actions in other systems, such as proliferation of vascular smooth muscle cells, fibroblasts, and cancer cells. It also 1) enhances foam cell formation, chemotaxis of inflammatory cells, and inotropic and hypertrophic effects on heart muscle; 2) inhibits insulin release, modulates glomerular filtration, and release of catecholamines; and 3) may help regulate food intake and the sleep cycle. Elevated plasma levels of UII and increased levels of UII and UT expression have been demonstrated in numerous diseased conditions, including hypertension, atherosclerosis, heart failure, pulmonary hypertension, diabetes, renal failure, and the metabolic syndrome. Indeed, some of these reports suggest that UII is a marker of disease activity. As such, the UT receptor is emerging as a promising target for therapeutic intervention. Here, a concise review is given on the vast physiologic and pathologic roles of UII.
Collapse
Affiliation(s)
- Bryan Ross
- McGill University Health Center, Montreal, Quebec, Canada
| | | | - Adel Giaid
- McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Takahashi K, Hirose T, Mori N, Morimoto R, Kohzuki M, Imai Y, Totsune K. The renin-angiotensin system, adrenomedullins and urotensin II in the kidney: possible renoprotection via the kidney peptide systems. Peptides 2009; 30:1575-85. [PMID: 19477209 DOI: 10.1016/j.peptides.2009.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/18/2009] [Accepted: 05/18/2009] [Indexed: 01/29/2023]
Abstract
The incidence of chronic kidney disease, such as diabetic nephropathy, is increasing throughout the world. Many biologically active peptides play important roles in the kidney. The classical example is the renin-angiotensin system (RAS). Angiotensin II plays critical roles in the progression of chronic kidney disease through its vasoconstrictor action, stimulatory action on cell proliferation, and reactive oxygen-generating activity. A renin inhibitor, aliskiren, has recently been shown to be a clinically effective drug to reduce proteinuria in patients with diabetic nephropathy. (Pro)renin receptor, a specific receptor for renin and prorenin, was newly identified as a member of the RAS. When bound to prorenin, (pro)renin receptor activates the angiotensin I-generating activity of prorenin in the absence of cleavage of the prosegment, and directly stimulates the pathway of mitogen-activated protein kinase independently from the RAS. The kidney peptides that antagonize the intrarenal RAS may have renoprotective actions. Adrenomedullins, potent vasodilator peptides, have been shown to have renoprotective actions. On the other hand, urotensin II, a potent vasoconstrictor peptide, may promote the renal dysfunction in chronic kidney disease together with the renal RAS. Thus, in addition to the renin inhibitor and (pro)renin receptor, adrenomedullins and urotensin II may be novel targets to develop therapeutic strategies against chronic kidney disease.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | | | | | | | |
Collapse
|