1
|
Gunasena M, Alles M, Wijewantha Y, Mulhern W, Bowman E, Gabriel J, Kettelhut A, Kumar A, Weragalaarachchi K, Kasturiratna D, Horowitz JC, Scrape S, Pannu SR, Liu SL, Vilgelm A, Wijeratne S, Bednash JS, Demberg T, Funderburg NT, Liyanage NP. Synergy Between NK Cells and Monocytes in Potentiating Cardiovascular Disease Risk in Severe COVID-19. Arterioscler Thromb Vasc Biol 2024; 44:e243-e261. [PMID: 38989579 PMCID: PMC11448863 DOI: 10.1161/atvbaha.124.321085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Evidence suggests that COVID-19 predisposes to cardiovascular diseases (CVDs). While monocytes/macrophages play a central role in the immunopathogenesis of atherosclerosis, less is known about their immunopathogenic mechanisms that lead to CVDs during COVID-19. Natural killer (NK) cells, which play an intermediary role during pathologies like atherosclerosis, are dysregulated during COVID-19. Here, we sought to investigate altered immune cells and their associations with CVD risk during severe COVID-19. METHODS We measured plasma biomarkers of CVDs and determined phenotypes of circulating immune subsets using spectral flow cytometry. We compared these between patients with severe COVID-19 (severe, n=31), those who recovered from severe COVID-19 (recovered, n=29), and SARS-CoV-2-uninfected controls (controls, n=17). In vivo observations were supported using in vitro assays to highlight possible mechanistic links between dysregulated immune subsets and biomarkers during and after COVID-19. We performed multidimensional analyses of published single-cell transcriptome data of monocytes and NK cells during severe COVID-19 to substantiate in vivo findings. RESULTS During severe COVID-19, we observed alterations in cardiometabolic biomarkers including oxidized-low-density lipoprotein, which showed decreased levels in severe and recovered groups. Severe patients exhibited dysregulated monocyte subsets, including increased frequencies of proinflammatory intermediate monocytes (also observed in the recovered) and decreased nonclassical monocytes. All identified NK-cell subsets in the severe COVID-19 group displayed increased expression of activation and tissue-resident markers, such as CD69 (cluster of differentiation 69). We observed significant correlations between altered immune subsets and plasma oxidized-low-density lipoprotein levels. In vitro assays revealed increased uptake of oxidized-low-density lipoprotein into monocyte-derived macrophages in the presence of NK cells activated by plasma of patients with severe COVID-19. Transcriptome analyses confirmed enriched proinflammatory responses and lipid dysregulation associated with epigenetic modifications in monocytes and NK cells during severe COVID-19. CONCLUSIONS Our study provides new insights into the involvement of monocytes and NK cells in the increased CVD risk observed during and after COVID-19.
Collapse
Affiliation(s)
- Manuja Gunasena
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| | - Mario Alles
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
| | - Yasasvi Wijewantha
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
| | - Will Mulhern
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
| | - Emily Bowman
- School of Health and Rehabilitation Sciences, College of Medicine, the Ohio State University
| | - Janelle Gabriel
- School of Health and Rehabilitation Sciences, College of Medicine, the Ohio State University
| | - Aaren Kettelhut
- School of Health and Rehabilitation Sciences, College of Medicine, the Ohio State University
| | - Amrendra Kumar
- Department of pathology, College of Medicine, The Ohio State University
| | | | - Dhanuja Kasturiratna
- Department of Mathematics and Statistics, Northern Kentucky University, KY, Highland Heights, KY, USA
| | - Jeffrey C Horowitz
- Department of Internal Medicine, College of Medicine, The Ohio State University
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University
| | - Scott Scrape
- Department of pathology, College of Medicine, The Ohio State University
| | - Sonal R Pannu
- Department of Internal Medicine, College of Medicine, The Ohio State University
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University
| | - Shan-Lu Liu
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| | - Anna Vilgelm
- Department of pathology, College of Medicine, The Ohio State University
| | - Saranga Wijeratne
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Joseph S Bednash
- Department of Internal Medicine, College of Medicine, The Ohio State University
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University
| | - Thorsten Demberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Nicholas T Funderburg
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| | - Namal P.M. Liyanage
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University
| |
Collapse
|
2
|
Derler M, Teubenbacher T, Carapuig A, Nieswandt B, Fessler J, Kolb D, Mussbacher M. Platelets induce endoplasmic reticulum stress in macrophages in vitro. J Thromb Haemost 2024; 22:1475-1488. [PMID: 38278417 DOI: 10.1016/j.jtha.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/23/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress is a key feature of lipid-laden macrophages and contributes to the development of atherosclerotic plaques. Blood platelets are known to interact with macrophages and fine-tune effector functions such as inflammasome activation and phagocytosis. However, the effect of platelets on ER stress induction is unknown. OBJECTIVES The objective of this study is to elucidate the potential of platelets in regulating ER stress in macrophages in vitro. METHODS Bone marrow-derived macrophages and RAW 264.7 cells were incubated with isolated murine platelets, and ER stress and inflammation markers were determined by reverse transcription-quantitative polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. ER morphology was investigated by electron microscopy. Cell viability, lipid accumulation, and activation were measured by flow cytometry. To gain mechanistic insights, coincubation experiments were performed with platelet decoys/releasates as well as lipopolysaccharide, blocking antibodies, and TLR4 inhibitors. RESULTS Coincubation of platelets and macrophages led to elevated levels of ER stress markers (BIP, IRE1α, CHOP, and XBP1 splicing) in murine and human macrophages, which led to a pronounced enlargement of the ER. Macrophage ER stress was accompanied by increased release of proinflammatory cytokines and intracellular lipid accumulation, but not cell death. Platelet decoys, but not platelet releasates or lysate from other cells, phenocopied the effect of platelets. Blocking TLR4 inhibited inflammatory activation of macrophages but did not affect ER stress induction by platelet coincubation. CONCLUSION To our knowledge, this study is the first to demonstrate that platelets induce ER stress and unfolded protein response in macrophages by heat-sensitive membrane proteins, independent of inflammatory activation of macrophages.
Collapse
Affiliation(s)
- Martina Derler
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Theresa Teubenbacher
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Anna Carapuig
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, Chair of Experimental Biomedicine I, University Hospital Würzburg, Würzburg, Germany; Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Johannes Fessler
- Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Dagmar Kolb
- Center for Medical Research, Core Facility Ultrastructure Analysis, Medical University of Graz, Graz, Austria; Division of Cell Biology, Histology, and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
3
|
Li C, Xiao M, Geng S, Wang Y, Zeng L, Lai P, Gong Y, Chen X. Comprehensive analysis of human monocyte subsets using full-spectrum flow cytometry and hierarchical marker clustering. Front Immunol 2024; 15:1405249. [PMID: 38742110 PMCID: PMC11089106 DOI: 10.3389/fimmu.2024.1405249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Exploring monocytes' roles within the tumor microenvironment is crucial for crafting targeted cancer treatments. Methods This study unveils a novel methodology utilizing four 20-color flow cytometry panels for comprehensive peripheral immune system phenotyping, specifically targeting classical, intermediate, and non-classical monocyte subsets. Results By applying advanced dimensionality reduction techniques like t-distributed stochastic neighbor embedding (tSNE) and FlowSom analysis, we performed an extensive profiling of monocytes, assessing 50 unique cell surface markers related to a wide range of immunological functions, including activation, differentiation, and immune checkpoint regulation. Discussion This in-depth approach significantly refines the identification of monocyte subsets, directly supporting the development of personalized immunotherapies and enhancing diagnostic precision. Our pioneering panel for monocyte phenotyping marks a substantial leap in understanding monocyte biology, with profound implications for the accuracy of disease diagnostics and the success of checkpoint-inhibitor therapies. Key findings include revealing distinct marker expression patterns linked to tumor progression and providing new avenues for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Chao Li
- Department of Hematology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Maozhi Xiao
- Department of Hematology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Suxia Geng
- Department of Hematology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yulian Wang
- Department of Hematology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lingji Zeng
- Department of Hematology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ying Gong
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaomei Chen
- Department of Hematology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Hu Y, Chen X, Mei X, Luo Z, Wu H, Zhang H, Zeng Q, Ren H, Xu D. Identification of diagnostic immune-related gene biomarkers for predicting heart failure after acute myocardial infarction. Open Med (Wars) 2023; 18:20230878. [PMID: 38152337 PMCID: PMC10751901 DOI: 10.1515/med-2023-0878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023] Open
Abstract
Post-myocardial infarction heart failure (HF) is a major public health concern. Previous studies have reported the critical role of immune response in HF pathogenesis. However, limited studies have reported predictive immune-associated biomarkers for HF. So we attempted to identify potential immune-related indicators for HF early diagnosis and therapy guidance. This study identified two potential immune-related hub genes (IRHGs), namely CXCR5 and FOS, using bioinformatic approaches. The expression levels of CXCR5 and FOS and their ability to predict long-term HF were analyzed. Functional enrichment analysis revealed that the hub genes were enriched in immune system processes, including the interleukin-17 and nuclear factor-kappa B signaling pathways, which are involved in the pathogenesis of HF. Quantitative real-time polymerase chain reaction revealed that the Fos mRNA levels, but not the Cxcr5 mRNA levels, were downregulated in the mice of the HF group. This study successfully identified two IRHGs that were significantly and differentially expressed in the HF group and could predict long-term HF, providing novel insights for future studies on HF and developing novel therapeutic targets for HF.
Collapse
Affiliation(s)
- Yingchun Hu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaoyu Chen
- Department of Nephrology, Rheumatism and Immunology, Chongqing Jiulongpo People’s Hospital, Chongqing, 400050, China
| | - Xiyuan Mei
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhen Luo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Hongguang Wu
- Department of Arrhythmic, Cardiovascular Medical Center, Shenzhen Hospital of University of Hong Kong, Shenzhen, 518040, Guangdong, China
| | - Hao Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qingchun Zeng
- Department of Cardiology, Nanfang Hospital, Southern Medical University,
Guangzhou, 510515, Guangdong, China
| | - Hao Ren
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dingli Xu
- Department of Cardiology, Nanfang Hospital, Southern Medical University,
Guangzhou, 510515, Guangdong, China
| |
Collapse
|
5
|
Reijnders TDY, Schuurman AR, Verhoeff J, van den Braber M, Douma RA, Faber DR, Paul AGA, Wiersinga WJ, Saris A, Garcia Vallejo JJ, van der Poll T. High-dimensional phenotyping of the peripheral immune response in community-acquired pneumonia. Front Immunol 2023; 14:1260283. [PMID: 38077404 PMCID: PMC10704504 DOI: 10.3389/fimmu.2023.1260283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Background Community-acquired pneumonia (CAP) represents a major health burden worldwide. Dysregulation of the immune response plays an important role in adverse outcomes in patients with CAP. Methods We analyzed peripheral blood mononuclear cells by 36-color spectral flow cytometry in adult patients hospitalized for CAP (n=40), matched control subjects (n=31), and patients hospitalized for COVID-19 (n=35). Results We identified 86 immune cell metaclusters, 19 of which (22.1%) were differentially abundant in patients with CAP versus matched controls. The most notable differences involved classical monocyte metaclusters, which were more abundant in CAP and displayed phenotypic alterations reminiscent of immunosuppression, increased susceptibility to apoptosis, and enhanced expression of chemokine receptors. Expression profiles on classical monocytes, driven by CCR7 and CXCR5, divided patients with CAP into two clusters with a distinct inflammatory response and disease course. The peripheral immune response in patients with CAP was highly similar to that in patients with COVID-19, but increased CCR7 expression on classical monocytes was only present in CAP. Conclusion CAP is associated with profound cellular changes in blood that mainly relate to classical monocytes and largely overlap with the immune response detected in COVID-19.
Collapse
Affiliation(s)
- Tom D. Y. Reijnders
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Alex R. Schuurman
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marlous van den Braber
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Renée A. Douma
- Department of Internal Medicine, Flevo Hospital, Almere, Netherlands
| | - Daniël R. Faber
- Department of Internal Medicine, BovenIJ Hospital, Amsterdam, Netherlands
| | - Alberta G. A. Paul
- Application Department, Cytek Biosciences, Inc., Fremont, CA, United States
| | - W. Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Anno Saris
- Infectious Disease, Leiden Universitair Medisch Centrum, Leiden, Netherlands
| | - Juan J. Garcia Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Gunasena M, Alles M, Wijewantha Y, Mulhern W, Bowman E, Gabriel J, Kettelhut A, Kumar A, Weragalaarachchi K, Kasturiratna D, Horowitz JC, Scrape S, Pannu SR, Liu SL, Vilgelm A, Wijeratne S, Bednash JS, Demberg T, Funderburg NT, Liyanage NPM. Synergistic Role of NK Cells and Monocytes in Promoting Atherogenesis in Severe COVID-19 Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.10.23298322. [PMID: 37986806 PMCID: PMC10659469 DOI: 10.1101/2023.11.10.23298322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Clinical data demonstrate an increased predisposition to cardiovascular disease (CVD) following severe COVID-19 infection. This may be driven by a dysregulated immune response associated with severe disease. Monocytes and vascular tissue resident macrophages play a critical role in atherosclerosis, the main pathology leading to ischemic CVD. Natural killer (NK) cells are a heterogenous group of cells that are critical during viral pathogenesis and are known to be dysregulated during severe COVID-19 infection. Their role in atherosclerotic cardiovascular disease has recently been described. However, the contribution of their altered phenotypes to atherogenesis following severe COVID-19 infection is unknown. We demonstrate for the first time that during and after severe COVID-19, circulating proinflammatory monocytes and activated NK cells act synergistically to increase uptake of oxidized low-density lipoprotein (Ox-LDL) into vascular tissue with subsequent foam cell generation leading to atherogenesis despite recovery from acute infection. Our data provide new insights, revealing the roles of monocytes/macrophages, and NK cells in COVID-19-related atherogenesis.
Collapse
|
7
|
Lu X, Wang Z, Ye D, Feng Y, Liu M, Xu Y, Wang M, Zhang J, Liu J, Zhao M, Xu S, Ye J, Wan J. The Role of CXC Chemokines in Cardiovascular Diseases. Front Pharmacol 2022; 12:765768. [PMID: 35668739 PMCID: PMC9163960 DOI: 10.3389/fphar.2021.765768] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular disease (CVD) is a class of diseases with high disability and mortality rates. In the elderly population, the incidence of cardiovascular disease is increasing annually. Between 1990 and 2016, the age-standardised prevalence of CVD in China significantly increased by 14.7%, and the number of cardiovascular disease deaths increased from 2.51 million to 3.97 million. Much research has indicated that cardiovascular disease is closely related to inflammation, immunity, injury and repair. Chemokines, which induce directed chemotaxis of reactive cells, are divided into four subfamilies: CXC, CC, CX3C, and XC. As cytokines, CXC chemokines are similarly involved in inflammation, immunity, injury, and repair and play a role in many cardiovascular diseases, such as atherosclerosis, myocardial infarction, cardiac ischaemia-reperfusion injury, hypertension, aortic aneurysm, cardiac fibrosis, postcardiac rejection, and atrial fibrillation. Here, we explored the relationship between the chemokine CXC subset and cardiovascular disease and its mechanism of action with the goal of further understanding the onset of cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jing Ye
- *Correspondence: Jing Ye, ; Jun Wan,
| | - Jun Wan
- *Correspondence: Jing Ye, ; Jun Wan,
| |
Collapse
|
8
|
Platelets Promote Macrophage Polarization toward Pro-inflammatory Phenotype and Increase Survival of Septic Mice. Cell Rep 2020; 28:896-908.e5. [PMID: 31340152 DOI: 10.1016/j.celrep.2019.06.062] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/28/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
We investigated the contribution of human platelets to macrophage effector properties in the presence of lipopolysaccharide (LPS), as well as the beneficial effects and time frame for platelet transfusion in septic animals. Our results show that platelets sequester both pro-(TNF-α/IL-6) and anti-(IL-10) inflammatory cytokines released by monocytes. Low LPS concentrations (0.01 ng/mL) induced M2 macrophage polarization by decreasing CD64 and augmenting CD206 and CD163 expression; yet, the presence of platelets skewed monocytes toward type 1 macrophage (M1) phenotype in a cell-contact-dependent manner by the glycoprotein Ib (GPIb)-CD11b axis. Accordingly, platelet-licensed macrophages showed increased TNF-α levels, bacterial phagocytic activity, and a reduced healing capability. Platelet transfusion increased inducible nitric oxide synthase (iNOS)+ macrophages, improving bacterial clearance and survival rates in septic mice up to 6 h post-infection, an effect that was abolished by CD11b and GPIb blockade. Our results demonstrate that platelets orchestrate macrophage effector responses, improving the clinical outcome of sepsis in a narrow but relevant time frame.
Collapse
|
9
|
Schrottmaier WC, Mussbacher M, Salzmann M, Assinger A. Platelet-leukocyte interplay during vascular disease. Atherosclerosis 2020; 307:109-120. [DOI: 10.1016/j.atherosclerosis.2020.04.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
|
10
|
Eckman EA, Clausen DM, Herdt AR, Pacheco-Quinto J, Halperin JJ. Specificity and Diagnostic Utility of Cerebrospinal Fluid CXCL13 in Lyme Neuroborreliosis. Clin Infect Dis 2020; 72:1719-1726. [DOI: 10.1093/cid/ciaa335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Demonstration of intrathecal production of Borrelia-specific antibodies (ITAb) is considered the most specific diagnostic marker of Lyme neuroborreliosis (LNB). Limitations include delayed detectability in early infection and continued presence long after successful treatment. Markers of active inflammation—increased cerebrospinal fluid (CSF) leukocytes, protein, and CXCL13—provide nonspecific markers of active infection. To assess the utility of CSF CXCL13, we measured its concentration in 132 patients with a broad spectrum of neuroinflammatory disorders, including LNB.
Methods
CSF CXCL13 was measured by immunoassay. Spearman rank correlation test was performed to explore its relationship to conventional markers of neuroinflammation and Borrelia-specific ITAb production.
Results
In non-LNB neuroinflammatory disorders, CSF CXCL13 elevation correlated with CSF immunoglobulin G (IgG) synthesis and leukocyte count. In LNB, CXCL13 concentration was far greater than expected from overall CSF IgG synthesis, and correlated with Borrelia-specific ITAb synthesis. Median CSF CXCL13 concentration in ITAb-positive LNB patients was > 500 times greater than in any other group.
Conclusions
Intrathecal CXCL13 and IgG production are closely interrelated. CXCL13 is disproportionately increased in “definite LNB,” defined as having demonstrable Borrelia-specific ITAb, but not “probable LNB,” without ITAb. This disproportionate increase may help identify patients with very early infection or those with active vs treated LNB, or may help to differentiate ITAb-defined active LNB from other neuroinflammatory disorders. However, its reported specificity is closely related to the diagnostic requirement for ITAb. It may add little specificity to the demonstration of a pleocytosis or increased overall or specific IgG production in the CSF.
Collapse
Affiliation(s)
- Elizabeth A Eckman
- Atlantic Health System, Morristown, New Jersey, USA
- Biomedical Research Institute of New Jersey, Cedar Knolls, New Jersey, USA
| | - Dana M Clausen
- Biomedical Research Institute of New Jersey, Cedar Knolls, New Jersey, USA
| | - Aimee R Herdt
- Biomedical Research Institute of New Jersey, Cedar Knolls, New Jersey, USA
| | | | - John J Halperin
- Department of Neurosciences, Overlook Medical Center, Atlantic Health System, Summit, New Jersey, USA
| |
Collapse
|
11
|
Wei BM, Hanlon D, Khalil D, Han P, Tatsuno K, Sobolev O, Edelson RL. Extracorporeal Photochemotherapy: Mechanistic Insights Driving Recent Advances and Future Directions. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:145-159. [PMID: 32226344 PMCID: PMC7087063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, necessary for the initiation and maintenance of antigen-specific immunity and tolerance. Decades of research have been driven by hopes to harness the immunological capabilities of DCs and achieve physiological partnership with the immune system for therapeutic ends. Potential applications for DC-based immunotherapy include treatments for cancer, autoimmune disorders, and infectious diseases. However, DCs have poor availability in peripheral and lymphoid tissues and have poor survivability in culture, leading to the development of multiple strategies to generate and manipulate large numbers of DCs ex vivo. Among these is Extracorporeal Photopheresis (ECP), a widely used cancer immunotherapy. Recent advancements have uncovered that stimulation of monocyte-to-DC maturation via physiologic inflammatory signaling lies at the mechanistic core of ECP. Here, we describe the landscape of DC-based immunotherapy, the historical context of ECP, the current mechanistic understanding of ex vivo monocyte-to-DC maturation in ECP, and the implications of this understanding on making scientifically driven improvements to modern ECP protocols and devices.
Collapse
Affiliation(s)
- Brian M. Wei
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Douglas Hanlon
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - David Khalil
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT
| | - Kazuki Tatsuno
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Olga Sobolev
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Richard L. Edelson
- Department of Dermatology, Yale School of Medicine, New Haven, CT,To whom all correspondence should be addressed: Richard L. Edelson, MD, PO Box 208059, 333 Cedar St., New Haven, CT, 06520-8059; Tel: 203-785-4092, Fax: 203-737-5318,
| |
Collapse
|
12
|
Han P, Hanlon D, Sobolev O, Chaudhury R, Edelson RL. Ex vivo dendritic cell generation-A critical comparison of current approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:251-307. [PMID: 31759433 DOI: 10.1016/bs.ircmb.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, required for the initiation of naïve and memory T cell responses and regulation of adaptive immunity. The discovery of DCs in 1973, which culminated in the Nobel Prize in Physiology or Medicine in 2011 for Ralph Steinman and colleagues, initially focused on the identification of adherent mononuclear cell fractions with uniquely stellate dendritic morphology, followed by key discoveries of their critical immunologic role in initiating and maintaining antigen-specific immunity and tolerance. The medical promise of marshaling these key capabilities of DCs for therapeutic modulation of antigen-specific immune responses has guided decades of research in hopes to achieve genuine physiologic partnership with the immune system. The potential uses of DCs in immunotherapeutic applications include cancer, infectious diseases, and autoimmune disorders; thus, methods for rapid and reliable large-scale production of DCs have been of great academic and clinical interest. However, difficulties in obtaining DCs from lymphoid and peripheral tissues, low numbers and poor survival in culture, have led to advancements in ex vivo production of DCs, both for probing molecular details of DC function as well as for experimenting with their clinical utility. Here, we review the development of a diverse array of DC production methodologies, ranging from cytokine-based strategies to genetic engineering tools devised for enhancing DC-specific immunologic functions. Further, we explore the current state of DC therapies in clinic, as well as emerging insights into physiologic production of DCs inspired by existing therapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Rabib Chaudhury
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Richard L Edelson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
13
|
Zhu L, Zhang G, Wang P, Zhang L, Ji J, Liu X, Zhou Z, Zhao J, Wang X. The effect of C-X-C motif chemokine ligand 13 in cutaneous squamous cell carcinoma treated with aminolevulinic acid-photodynamic therapy. Photodiagnosis Photodyn Ther 2019; 26:389-394. [DOI: 10.1016/j.pdpdt.2019.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/20/2019] [Accepted: 04/19/2019] [Indexed: 11/26/2022]
|
14
|
Hussain M, Adah D, Tariq M, Lu Y, Zhang J, Liu J. CXCL13/CXCR5 signaling axis in cancer. Life Sci 2019; 227:175-186. [PMID: 31026453 DOI: 10.1016/j.lfs.2019.04.053] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment comprises stromal and tumor cells which interact with each other through complex cross-talks that are mediated by a variety of growth factors, cytokines, and chemokines. The chemokine ligand 13 (CXCL13) and its chemokine receptor 5 (CXCR5) are among the key chemotactic factors which play crucial roles in deriving cancer cell biology. CXCL13/CXCR5 signaling axis makes pivotal contributions to the development and progression of several human cancers. In this review, we discuss how CXCL13/CXCR5 signaling modulates cancer cell ability to grow, proliferate, invade, and metastasize. Furthermore, we also discuss the preliminary evidence on context-dependent functioning of this axis within the tumor-immune microenvironment, thus, highlighting its potential dichotomy with respect to anticancer immunity and cancer immune-evasion mechanisms. At the end, we briefly shed light on the therapeutic potential or implications of targeting CXCL13/CXCR5 axis within the tumor microenvironment.
Collapse
Affiliation(s)
- Muzammal Hussain
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dickson Adah
- University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China
| | - Muqddas Tariq
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongzhi Lu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China
| | - Jiancun Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China.
| | - Jinsong Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, PR China.
| |
Collapse
|
15
|
Ghaffari S, Roshanravan N. Saffron; An updated review on biological properties with special focus on cardiovascular effects. Biomed Pharmacother 2018; 109:21-27. [PMID: 30391705 DOI: 10.1016/j.biopha.2018.10.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Saffron as a natural product has long been used to impede and treat different disorders including cardiovascular disease (CVDs). Stigma is the most principal part of saffron. Various compounds such as carotenoids and flavonoids are the essential components of saffron stigma. The health benefits of saffron have been shown in previous studies; however, there is a lack of comprehensive data on the mechanistic aspects of its cardiovascular-health properties. This current comprehensive review focuses on the medicinal applications of saffron, and then the new findings regarding its cardiovascular-health effects and various cellular and molecular mechanisms of action will be debated. METHODS The literature search of MEDLINE, Embase, PubMed, Google Scholar and Cochrane Library was performed for all comparative studies since 2000-2018 with the limitations of the English language. RESULTS The results provided new evidence about antioxidant, anti-inflammatory, anti- atherogenic, anti- apoptotic, anti- hypertensive, and hypolipidemic effects of saffron. Pharmacological effects of saffron are due to a number of ingredients contained within this spice, including safranal, crocetin and crocins. CONCLUSIONS Our study concludes that saffron with wide range of usefulness in medicine may be the potent candidate in the process of new drug production for the treatment of CVDs.
Collapse
Affiliation(s)
- Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Zhao Y, Li N, Li Z, Zhang D, Chen L, Yao Z, Niu W. Conditioned medium from contracting skeletal muscle cells reverses insulin resistance and dysfunction of endothelial cells. Metabolism 2018; 82:36-46. [PMID: 29289515 DOI: 10.1016/j.metabol.2017.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/07/2017] [Accepted: 12/23/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Obese adipose tissue has been characterized with chronic inflammation associated with elevated secretion of inflammatory cytokines and declined secretion of anti-inflammatory cytokines which can impair endothelial function in an endocrine manner. Adipose tissue hypoxia plays a role in the changes of cytokines. Physical exercise/muscle contraction may help preventing cardiovascular disease through improving insulin resistance and endothelium function. However the mechanism is unclear. Skeletal muscle is an endocrine tissue. Contracting muscles secrete myokines which may play roles in the beneficial effect of exercise. In this study, the conditioned medium from electrical pulse stimulation (EPS) regulated skeletal muscle cells was used to explore the mechanism of contraction on endothelial dysfunction and insulin resistance induced by conditioned medium from hypoxic adipocytes. METHODS 3T3-L1 adipocytes were incubated under normoxia or hypoxia condition, respectively. The supernatant was collected as adipocyte conditioned medium (CM-N and CM-H). C2C12 mouse skeletal muscle cells were stimulated with EPS for 12 h. The supernatant was collected as muscle cells conditioned medium (CM-EPS). Human umbilical vein endothelial cells (HUVECs) were incubated with adipocyte CM and muscle cells CM together. Macrophages migration to HUVECs was detected with transwell system. The mRNA expressions of E-selectin, ICAM-1, MCP-1 and IL-6 were measured by real-time PCR. The phosphorylation of IKKα/β, NF-κB, Akt, AMPK, eNOS and SOCS3 protein levels were detected by Western blot. Concentration of NO was measured by ELISA kit. HUVECs apoptosis was detected by flow cytometry. RESULTS CM-EPS reduced the increase of mRNA expressions of E-selectin, ICAM-1, MCP-1 and IL-6 in HUVECs induced by CN-H. The phosphorylations of IKKα/β and NF-κB, SOCS3 protein level and endothelial cells apoptosis, which were raised by CM-H, were significantly reduced by CM-EPS. CM-EPS reversed the effects of CM-H on Akt and eNOS phosphorylations and NO production in HUVECs. CM-EPS directly stimulated the phosphorylation of AMPK, which caused the following phosphorylation of eNOS in HUVECs. CONCLUSION In summary, CM-EPS reversed endothelial cells inflammation, apoptosis, insulin resistance and dysfunction induced by CM-H.
Collapse
Affiliation(s)
- Yihe Zhao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Nana Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhu Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Da Zhang
- Department of Ultrasound, Tianjin Hospital, Tianjin 300211, China
| | - Liming Chen
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Wenyan Niu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
17
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
18
|
Wasiak S, Gilham D, Tsujikawa LM, Halliday C, Norek K, Patel RG, McLure KG, Young PR, Gordon A, Kulikowski E, Johansson J, Sweeney M, Wong NC. Data on gene and protein expression changes induced by apabetalone (RVX-208) in ex vivo treated human whole blood and primary hepatocytes. Data Brief 2016; 8:1280-8. [PMID: 27570805 PMCID: PMC4990638 DOI: 10.1016/j.dib.2016.07.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/05/2016] [Accepted: 07/22/2016] [Indexed: 01/20/2023] Open
Abstract
Apabetalone (RVX-208) inhibits the interaction between epigenetic regulators known as bromodomain and extraterminal (BET) proteins and acetyl-lysine marks on histone tails. Data presented here supports the manuscript published in Atherosclerosis “RVX-208, a BET-inhibitor for Treating Atherosclerotic Cardiovascular Disease, Raises ApoA-I/HDL and Represses Pathways that Contribute to Cardiovascular Disease” (Gilham et al., 2016) [1]. It shows that RVX-208 and a comparator BET inhibitor (BETi) JQ1 increase mRNA expression and production of apolipoprotein A-I (ApoA-I), the main protein component of high density lipoproteins, in primary human and African green monkey hepatocytes. In addition, reported here are gene expression changes from a microarray-based analysis of human whole blood and of primary human hepatocytes treated with RVX-208.
Collapse
|
19
|
Zhang L, Erfle H, Harder N, Beneke J, Beil N, Bulkescher R, Rohr K, Keese M. High-Throughput RNAi Screening Identifies a Role for the Osteopontin Pathway in Proliferation and Migration of Human Aortic Smooth Muscle Cells. Cardiovasc Drugs Ther 2016; 30:281-95. [PMID: 27095116 DOI: 10.1007/s10557-016-6663-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Understanding of the mechanisms of vascular smooth muscle cells (VSMCs) phenotypic regulation is critically important to identify novel candidates for future therapeutic intervention. While HTS approaches have recently been used to identify novel regulators in many cell lines, such as cancer cells and hematopoietic stem cells, no studies have so far systematically investigated the effect of gene inactivation on VSMCs with respect to cell survival and growth response. METHODS AND RESULTS 257 out of 2000 genes tested resulted in an inhibition of cell proliferation in HaoSMCs. After pathway analysis, 38 significant genes were selected for further study. 23 genes were confirmed to inhibit proliferation, and 13 genes found to induce apoptosis in the synthetic phenotype. 11 genes led to an aberrant nuclear phenotype indicating a central role in cell mitosis. 4 genes affected the cell migration in synthetic HaoSMCs. Using computational biological network analysis, 11 genes were identified to have an indirect or direct interaction with the Osteopontin pathway. For 10 of those genes, levels of proteins downstream of the Osteopontin pathway were found to be down-regulated, using RNAi methodology. CONCLUSIONS A phenotypic high-throughput siRNA screen could be applied to identify genes relevant for the cell biology of HaoSMCs. Novel genes were identified which play a role in proliferation, apoptosis, mitosis and migration of HaoSMCs. These may represent potential drug candidates in the future.
Collapse
Affiliation(s)
- Lei Zhang
- BioQuant, Heidelberg University, INF 267, 69120, Heidelberg, Germany.,Clinic for Vascular and Endovascular Surgery, University Hospital, Frankfurt, Germany
| | - Holger Erfle
- BioQuant, Heidelberg University, INF 267, 69120, Heidelberg, Germany
| | - Nathalie Harder
- BioQuant and IPMB, University of Heidelberg and DKFZ, Biomedical Computer Vision Group, Heidelberg, Germany
| | - Jürgen Beneke
- BioQuant, Heidelberg University, INF 267, 69120, Heidelberg, Germany
| | - Nina Beil
- BioQuant, Heidelberg University, INF 267, 69120, Heidelberg, Germany
| | - Ruben Bulkescher
- BioQuant, Heidelberg University, INF 267, 69120, Heidelberg, Germany
| | - Karl Rohr
- BioQuant and IPMB, University of Heidelberg and DKFZ, Biomedical Computer Vision Group, Heidelberg, Germany
| | - Michael Keese
- Clinic for Vascular and Endovascular Surgery, University Hospital, Frankfurt, Germany. .,Clinic for Vascular and Endovascular Surgery, Johann Wolfgang Goethe University Hospital, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
20
|
Takeda Y, Marumo M, Nara H, Feng ZG, Asao H, Wakabayashi I. Selective induction of anti-inflammatory monocyte-platelet aggregates in a model of pulsatile blood flow at low shear rates. Platelets 2016; 27:583-92. [PMID: 27078265 DOI: 10.3109/09537104.2016.1153616] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In patients with cardiovascular abnormalities or immunological disorders, an increased number of circulating leukocyte-platelet aggregates is observed. Leukocyte-platelet aggregates play an essential role in linking the hemostatic and immune systems. High shear stress and pro-coagulant and pro-inflammatory stimulants are known to activate platelets and promote the formation of aggregates. Pulsatile blood flow under low shear stress can also induce platelet activation in comparatively mild conditions. However, the effect of such events on leukocyte-platelet aggregates has not yet been investigated. To determine whether low shear stress affects the formation of aggregates, we established a simple "inverting rotation" method of inducing periodic changes in the direction of blood flow in combination with low shear stress. We demonstrated that after the inverting rotation treatment for 10-20 min more than 70% of monocytes selectively aggregated with platelets. The formation of monocyte-platelet complexes was inhibited by an anti-CD162 (PSGL-1) monoclonal antibody or a Ca(2+) chelator. The phagocytic activity of monocytes was augmented by inverting rotation, whereas phagocytosis mediated by granulocytes remained unaffected. Interestingly, the formation of monocyte-platelet complexes suppressed the production of pro-inflammatory cytokines such as interleukin (IL)-1β. At the same time, monocyte-platelet complexes augmented the expression of the anti-inflammatory cytokine IL-10. Our results suggest that platelet-bound monocytes show an anti-inflammatory phenotype under low shear stress conditions. Thus, our method provided new insights into the mechanisms of monocyte-platelet aggregate formation and regulation.
Collapse
Affiliation(s)
- Yuji Takeda
- a Department of Environmental and Preventive Medicine , Hyogo College of Medicine , Nishinomiya , Japan.,b Department of Immunology, Faculty of Medicine , Yamagata University , Yamagata , Japan
| | - Mikio Marumo
- a Department of Environmental and Preventive Medicine , Hyogo College of Medicine , Nishinomiya , Japan
| | - Hidetoshi Nara
- b Department of Immunology, Faculty of Medicine , Yamagata University , Yamagata , Japan
| | - Zhong-Gang Feng
- c Department of Bio-Systems Engineering , Graduate School of Science and Engineering, Yamagata University , Yamagata , Japan
| | - Hironobu Asao
- b Department of Immunology, Faculty of Medicine , Yamagata University , Yamagata , Japan
| | - Ichiro Wakabayashi
- a Department of Environmental and Preventive Medicine , Hyogo College of Medicine , Nishinomiya , Japan
| |
Collapse
|
21
|
Abstract
Platelets are anucleate blood cells, long known to be critically involved in hemostasis and thrombosis. In addition to their role in blood clots, increasing evidence reveals significant roles for platelets in inflammation and immunity. However, the notion that platelets represent immune cells is not broadly recognized in the field of Physiology. This article reviews the role of platelets in inflammation and immune responses, and highlights their interactions with other immune cells, including examples of major functional consequences of these interactions.
Collapse
Affiliation(s)
- Fong W Lam
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - K Vinod Vijayan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| |
Collapse
|
22
|
Nording HM, Seizer P, Langer HF. Platelets in inflammation and atherogenesis. Front Immunol 2015; 6:98. [PMID: 25798138 PMCID: PMC4351644 DOI: 10.3389/fimmu.2015.00098] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022] Open
Abstract
Platelets contribute to processes beyond thrombus formation and may play a so far underestimated role as an immune cell in various circumstances. This review outlines immune functions of platelets in host defense, but also how they may contribute to mechanisms of infectious diseases. A particular emphasis is placed on the interaction of platelets with other immune cells. Furthermore, this article outlines the features of atherosclerosis as an inflammatory vascular disease highlighting the role of platelet crosstalk with cellular and soluble factors involved in atheroprogression. Understanding, how platelets influence these processes of vascular remodeling will shed light on their role for tissue homeostasis beyond intravascular thrombosis. Finally, translational implications of platelet-mediated inflammation in atherosclerosis are discussed.
Collapse
Affiliation(s)
- Henry M. Nording
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Peter Seizer
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Harald F. Langer
- University Clinic for Cardiology and Cardiovascular Medicine, Eberhard Karls-University Tübingen, Tübingen, Germany
- Section for Cardioimmunology, Eberhard Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Herter JM, Rossaint J, Zarbock A. Platelets in inflammation and immunity. J Thromb Haemost 2014; 12:1764-75. [PMID: 25224706 DOI: 10.1111/jth.12730] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023]
Abstract
The paradigm of platelets as mere mediators of hemostasis has long since been replaced by a dual role: hemostasis and inflammation. Now recognized as key players in innate and adaptive immune responses, platelets have the capacity to interact with almost all known immune cells. These platelet-immune cell interactions represent a hallmark of immunity, as they can potently enhance immune cell functions and, in some cases, even constitute a prerequisite for host defense mechanisms such as NETosis. In addition, recent studies have revealed a new role for platelets in immunity: They are ubiquitous sentinels and rapid first-line immune responders, as platelet-pathogen interactions within the vasculature appear to precede all other host defense mechanisms. Here, we discuss recent advances in our understanding of platelets as inflammatory cells, and provide an exemplary review of their role in acute inflammation.
Collapse
Affiliation(s)
- J M Herter
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|