1
|
Song D, Zhang J, Hu X, Liu X. Progress in the treatment of Alzheimer's disease based on nanosized traditional Chinese medicines. J Mater Chem B 2024. [PMID: 39711283 DOI: 10.1039/d4tb02062f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Traditional Chinese medicine (TCM) has been employed for centuries in treating and managing Alzheimer's disease (AD). However, their effective delivery to target sites can be a major challenge. This is due to their poor water solubility, low bioavailability, and potential toxicity. Furthermore, the blood-brain barrier (BBB) is a major obstacle to effective TCM delivery, significantly reducing efficacy. Advancements in nanotechnology and its applications in TCM (nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain area. This review summarizes the recent advances in nanocarrier-based delivery systems for different types of active constituents of TCM for AD, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones. Besides, the main challenges and opportunities for the future development of these advanced TCM nanocarriers are emphasized. In conclusion, this review provides valuable insights and guidance for utilizing nanocarriers to shape future TCM drug delivery.
Collapse
Affiliation(s)
- Dan Song
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Xiaoyan Liu
- West China Hospital of Sichuan University, 610041, China
| |
Collapse
|
2
|
Koh WH, Lin LW, Lin TI, Liu CW, Chang LC, Lin IC, Wu MS, Tsai CC. Exploring the relaxation effects of Coptis chinensis and berberine on the lower esophageal sphincter: potential strategies for LES motility disorders. BMC Complement Med Ther 2024; 24:417. [PMID: 39696287 DOI: 10.1186/s12906-024-04720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Esophageal achalasia, a primary disorder impacting the lower esophageal sphincter (LES), presents symptoms such as dysphagia, regurgitation, chest pain, and weight loss. Traditional treatments, including calcium channel blockers and nitrates, offer limited relief, prompting exploration into alternative therapies. This study examines the efficacy of Traditional Chinese Medicine (TCM), focusing on Coptis chinensis (C. chinensis) and its principal component, berberine, for modulating LES relaxation, offering a new perspective on treatment possibilities. METHODS This research evaluated the impact of C. chinensis extract and berberine on the relaxation of LES contraction pre-induced by carbachol, observing the effects across different concentrations. We employed a series of inhibitors, including tetrodotoxin, ω-conotoxin GVIA, rolipram, vardenafil, KT5823, KT5720, NG-nitro-L-arginine, tetraethylammonium (TEA), apamine, iberiotoxin, and glibenclamide, to investigate the underlying mechanisms of berberine-induced LES relaxation. RESULTS Both C. chinensis extract and berberine induced significant, concentration-dependent relaxation of the LES. The relaxation effect of berberine was significantly reduced by TEA, indicating the involvement of potassium channels in this process. CONCLUSIONS This study demonstrates that C. chinensis and berberine significantly promote LES relaxation, primarily through potassium channel activation. These findings provide a foundation for further investigation of these compounds' potential therapeutic applications in esophageal motility disorders, such as achalasia.
Collapse
Affiliation(s)
- Wen-Harn Koh
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Li-Wei Lin
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Ting-I Lin
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Ching-Wen Liu
- Department of Senior Citizen Health Service and Management, Yuh-Ing Junior College of Health Care and Management, No. 15, Lane 420, Dachang 2nd Road, Kaohsiung City, 80776, Taiwan, R.O.C
| | - Li-Ching Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niaosong District, Kaohsiung City, 83301, Taiwan, R.O.C
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, No. 7, Zhongshan S. Road, Zhongzheng District, Taipei City, 100225, Taiwan, R.O.C
| | - Ching-Chung Tsai
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C..
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C..
| |
Collapse
|
3
|
Cui Y, Zhou Q, Jin M, Jiang S, Shang P, Dong X, Li L. Research progress on pharmacological effects and bioavailability of berberine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8485-8514. [PMID: 38888754 DOI: 10.1007/s00210-024-03199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Berberine (BBR), a benzylisoquinoline alkaloid obtained from natural medicines such as coptidis rhizoma, has a wide range of pharmacological activities such as protecting the nervous system, protecting the cardiovascular system, anti-inflammatory, antidiabetic, antihyperlipidemic, antitumor, antibacterial, and antidiarrheal. However, factors such as poor solubility, low permeability, P-glycoprotein (P-gp) efflux, and hepatic-intestinal metabolism result in BBR having a low bioavailability (< 1%), which restricts its application in clinical settings. Therefore, improving its bioavailability is a prerequisite for its clinical applications. This review summarizes the various pharmacological effects of BBR and analyzes the main reasons for its poor bioavailability. It introduces methods to improve the bioavailability of BBR through the use of absorption enhancers and P-gp inhibitors, structural modification of BBR, and preparation of BBR salts and cocrystals as well as the development of new formulations and focuses on the bioavailability study of the new formulations of BBR. The research of BBR was also prospected in order to provide reference for the further research of BBR.
Collapse
Affiliation(s)
- Yulong Cui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quanying Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Jin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siqi Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizhao Shang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingjun Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Sharma VM, Valsaraj TV, Venkataramana Sudeep H, Raj A, Kodimule S, Jacob J. Preparation, characterization, in vitro and in vivo studies of liposomal berberine using novel natural Fiber Interlaced Liposomal technology. Eur J Pharm Biopharm 2024; 203:114431. [PMID: 39094668 DOI: 10.1016/j.ejpb.2024.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Berberine hydrochloride (BBR), used in various traditional medicinal practices, has a variety of pharmacological effects. It is a plant-derived quaternary isoquinoline alkaloid with a low water solubility and can be used in the treatment of various conditions. However, the therapeutic use of BBR has been compromised because of its hydrophobic characteristics, in addition to its low stability and poor bioavailability. To overcome these drawbacks of BBR's oral bioavailability, technologies like liposomal delivery systems have been developed to ensure enhanced absorption. But conventional liposomes have low physical and chemical stability due to delicate liposomal membranes, peroxidation and rapid clearance from the bloodstream. Surface modification of liposomes could be a solution and creating a liposome with plant-based fibers as surface material will provide enhanced stability, aqueous solubility and protection against degradation. Consequently, the aim of this study is to create and describe a Fiber Interlaced Liposome™ (FIL) as a vehicle for an enhanced bioavailability platform for BBR and other biomolecules. This optimised FIL-BBR formulation was analysed for its structural and surface morphological characteristics by using FTIR, SEM, TEM, XRD, zeta potential and DSC. Encapsulation efficiency, stability, and sustained release studies using an in vitro digestion model with simulated gastric and intestinal fluids were also examined. FIL formulation showed a sustained release of BBR at 59.03 % as compared to the unformulated control (46.73 %) after 8 h of dialysis. Furthermore, the FIL-BBR demonstrated enhanced stability in the simulated gastric fluid (SGF) in addition to a more sustained release in the simulated intestinal fluid (SIF). The efficacy of FIL-BBR were further anlaysed by an in vivo bioavailability study using male Wistar rats and it demonstrated a 3.37-fold higher relative oral bioavailability compared to the unformulated BBR. The AUC 0-t for BBR in FIL-BBR was 1.38 ng.h/mL, significantly greater than the unformulated BBR (0.41 ng.h/mL). Similarly, the Cmax for BBR in FIL-BBR (50.98 ng/mL) was discovered to be far greater than unformulated BBR (15.54 ng/mL) after the oral administration. These findings imply that fruit fiber based liposomal encapsulation improves the stability and slows down BBR release, which could be advantageous for applications requiring a higher bioavailability and a more sustained release.
Collapse
Affiliation(s)
- Vedashree M Sharma
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore 560105, India
| | - T V Valsaraj
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore 560105, India
| | | | - Amritha Raj
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore 560105, India
| | | | - Joby Jacob
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore 560105, India.
| |
Collapse
|
5
|
Wu J, Li K, Zhou M, Gao H, Wang W, Xiao W. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. J Pharm Anal 2024; 14:100946. [PMID: 39258172 PMCID: PMC11386058 DOI: 10.1016/j.jpha.2024.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetic nephropathy (DN), a severe complication of diabetes, is widely recognized as a primary contributor to end-stage renal disease. Recent studies indicate that the inflammation triggered by Toll-like receptor 4 (TLR4) is of paramount importance in the onset and progression of DN. TLR4 can bind to various ligands, including exogenous ligands such as proteins and polysaccharides from bacteria or viruses, as well as endogenous ligands such as biglycan, fibrinogen, and hyaluronan. In DN, the expression or release of TLR4-related ligands is significantly elevated, resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways. This process is closely associated with the progression of DN. Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases. Various types of natural compounds, including alkaloids, flavonoids, polyphenols, terpenoids, glycosides, and polysaccharides, have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway. In this review, we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway. We specifically highlight the potential of compounds such as curcumin, paclitaxel, berberine, and ursolic acid to inhibit the TLR4 signaling pathway, which provides an important direction of research for the treatment of DN.
Collapse
Affiliation(s)
- Jiabin Wu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Ke Li
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Muge Zhou
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Haoyang Gao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
6
|
Fu S, Yi X, Li Y, Li Y, Qu X, Miao P, Xu Y. Berberine and chlorogenic acid-assembled nanoparticles for highly efficient inhibition of multidrug-resistant Staphylococcus aureus. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134680. [PMID: 38795486 DOI: 10.1016/j.jhazmat.2024.134680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Due to the bacteria resistant to various first-line antibiotics, it is urgent to develop efficient antibiotic alternatives and formulate multidimensional strategies. Herein, supramolecular Chinese medicine nanoparticles are synthesized by self-assembly of berberine (BBR) and chlorogenic acid (CGA), which exhibit higher inhibitory effect against Staphylococcus aureus and multidrug-resistant Staphylococcus aureus (MRSA) than ampicillin, oxacillin, BBR, CGA, as well as mixture of BBR and CGA (minimum inhibitory concentration, MIC = 1.5 µM). The inhibition by BBR/CGA nanoparticles (2.5 µM) reaches 99.06 % for MRSA, which is significantly higher than ampicillin (29.03 %). The nanoparticles with 1/2 MIC can also synergistically restore the antimicrobial activity of ampicillin against MRSA. Moreover, in vivo therapeutic outcome in the murine skin wound infection model suggests that the nanoparticles are able to promote wound healing. This study provides new insights in the application of Chinese medicines self-assembly for MRSA inhibition, as well as solutions for potential persistent clinical infections and drug deficiencies.
Collapse
Affiliation(s)
- Siyuan Fu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Yi
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Li
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanhui Li
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolin Qu
- Shandong Laboratory of Advanced Biomaterials and Medical Devices in Weihai, Weihai 264200, China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Yuanyuan Xu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Shrivastav D, Kumbhakar SK, Srivastava S, Singh DD. Natural product-based treatment potential for type 2 diabetes mellitus and cardiovascular disease. World J Diabetes 2024; 15:1603-1614. [PMID: 39099809 PMCID: PMC11292323 DOI: 10.4239/wjd.v15.i7.1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a metabolic disease of impaired glucose utilization and a major cause of cardiovascular disease (CVD). The pathogenesis of both diseases shares common risk factors and mechanisms, and both are significant contributors to global morbidity and mortality. Supplements of natural products for T2D mellitus (T2DM) and CVD can be seen as a potential preventive and effective therapeutic strategy. AIM To critically evaluate the therapeutic potential of natural products in T2D and coronary artery disease (CAD). METHODS By using specific keywords, we strategically searched the PubMed database. Randomized controlled trials (RCTs) were searched as the primary focus that examined the effect of natural products on glycemic control, oxidative stress, and antioxidant levels. We focused on outcomes such as low blood glucose levels, adjustment on markers of oxidative stress and antioxidants. After screening full-length papers, we included 9 RCTs in our review that met our inclusion criteria. RESULTS In the literature search on the database, we found that various natural products like plant secondary metabolites play a diverse role in the management of CAD. American ginseng, sesame oil and cocoa flavanols proved effective in lowering blood glucose levels and controlling blood pressure, which are key factors in managing T2DM and CVD. In diabetic patients Melissa officinalis effectively reduce inflammation and shows diabetes prevention. Both fish oil and flaxseed oil reduced insulin levels and inflammatory markers, suggesting benefits for both conditions. The lipid profile and endothelial function were enhanced by Nigella sativa oil and Terminalia chebula, which is significant for the management of cardiovascular risk factors in T2DM. Additionally Bilberry extract also showed promise for improving glycemic control in patients with T2DM. CONCLUSION The high level of antioxidant, anti-inflammatory, and anti-angiogenic properties found in natural products makes them promising therapeutic options for the management of CAD, with the potential benefit of lowering the risk of CAD.
Collapse
Affiliation(s)
- Dharmsheel Shrivastav
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| | - Satyam Kumar Kumbhakar
- Department of Biotechnology, Govt Veer Surendra Say P.G. College, Gariaband 493889, Chhattisgarh, India
| | - Shivangi Srivastava
- Department of Life Science, Chhatrapati Shahu ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India
| |
Collapse
|
8
|
Alkanad M, Hani U, V AH, Ghazwani M, Haider N, Osmani RAM, M D P, Hamsalakshmi, Bhat R. Bitter yet beneficial: The dual role of dietary alkaloids in managing diabetes and enhancing cognitive function. Biofactors 2024; 50:634-673. [PMID: 38169069 DOI: 10.1002/biof.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
With the rising prevalence of diabetes and its association with cognitive impairment, interest in the use of dietary alkaloids and other natural products has grown significantly. Understanding how these compounds manage diabetic cognitive dysfunction (DCD) is crucial. This comprehensive review explores the etiology of DCD and the effects of alkaloids in foods and dietary supplements that have been investigated as DCD therapies. Data on how dietary alkaloids like berberine, trigonelline, caffeine, capsaicin, 1-deoxynojirimycin, nuciferine, neferine, aegeline, tetramethylpyrazine, piperine, and others regulate cognition in diabetic disorders were collected from PubMed, Research Gate, Web of Science, Science Direct, and other relevant databases. Dietary alkaloids could improve memory in behavioral models and modulate the mechanisms underlying the cognitive benefits of these compounds, including their effects on glucose metabolism, gut microbiota, vasculopathy, neuroinflammation, and oxidative stress. Evidence suggests that dietary alkaloids hold promise for improving cognition in diabetic patients and could open exciting avenues for future research in diabetes management.
Collapse
Affiliation(s)
- Maged Alkanad
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Annegowda H V
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Pandareesh M D
- Center for Research and Innovations, Adichunchanagiri University, BGSIT, Mandya, India
| | - Hamsalakshmi
- Department of Pharmacognosy, Cauvery College of Pharmacy, Cauvery Group of Institutions, Mysuru, India
| | - Rajeev Bhat
- ERA-Chair in Food By-Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
9
|
Shama SM, Elissawy AM, Salem MA, Youssef FS, Elnaggar MS, El-Seedi HR, Khalifa SAM, Briki K, Hamdan DI, Singab ANB. Comparative metabolomics study on the secondary metabolites of the red alga, Corallina officinalis and its associated endosymbiotic fungi. RSC Adv 2024; 14:18553-18566. [PMID: 38903055 PMCID: PMC11187739 DOI: 10.1039/d4ra01055h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Marine endosymbionts have gained remarkable interest in the last three decades in terms of natural products (NPs) isolated thereof, emphasizing the chemical correlations with those isolated from the host marine organism. The current study aimed to conduct comparative metabolic profiling of the marine red algae Corallina officinalis, and three fungal endosymbionts isolated from its inner tissues namely, Aspergillus nidulans, A. flavipes and A. flavus. The ethyl acetate (EtOAc) extracts of the host organism as well as the isolated endosymbionts were analyzed using ultra-high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-MS/MS)in both positive and negative ion modes, applying both full scan (FS) and all ion fragmentation (AIF) modes. Extensive interpretation of the LC-MS/MS spectra had led to the identification of 76 metabolites belonging to different phytochemical classes including alkaloids, polyketides, sesquiterpenes, butyrolactones, peptides, fatty acids, isocoumarins, quinones, among others. Metabolites were tentatively identified by comparing the accurate mass and fragmentation pattern with metabolites previously reported in the literature, as well as bioinformatics analysis using GNPS. A relationship between the host C. officinalis and its endophytes (A. flavus, A. nidulans, and A. flavipes) was discovered. C. officinalis shares common metabolites with at least one of the three endosymbiotic fungi. Some metabolites have been identified in endophytes and do not exist in their host. Multivariate analysis (MVA) revealed discrimination of A. flavipes from Corallina officinalis and other associated endophytic Aspergillus fungi (A. flavus and A. nidulans).
Collapse
Affiliation(s)
- Sherif M Shama
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University Shibin Elkom 32511 Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University Cairo 11566 Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University Shibin Elkom 32511 Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| | - Mohamed S Elnaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| | - Hesham R El-Seedi
- Chemistry Department, Faculty of Science, Islamic University of Madinah P. O. Box: 170 Madinah 42351 Saudi Arabia
| | - Shaden A M Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University Zhenjiang 212013 China
- Psychiatry and Neurology Department, Capio Saint Göran's Hospital Sankt Göransplan 1 112 19 Stockholm Sweden
| | - Khaled Briki
- Laboratory of Organic Chemistry and Natural Substance, University Ziane Achour Djelfa Algeria
| | - Dalia Ibrahim Hamdan
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University Shibin Elkom 32511 Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University Cairo 11566 Egypt
| |
Collapse
|
10
|
Ng CYJ, Pan K, Wang E, Yuan J, Zhong LLD. Medical food therapy for the long-term management of non-alcoholic fatty liver disease. Gastroenterol Rep (Oxf) 2024; 12:goae020. [PMID: 38560598 PMCID: PMC10980581 DOI: 10.1093/gastro/goae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Keyi Pan
- Clinical Research Unit, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Enkang Wang
- Beicai Community Health Service Center of Pudong New Area, Shanghai, P. R. China
| | - Jianye Yuan
- Clinical Research Unit, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Linda L D Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
11
|
Del Gaudio MP, Kraus SI, Melzer TM, Bustos PS, Ortega MG. Oral treatment with Berberine reduces peripheral nociception: Possible interaction with different nociceptive pathways activated by different allogeneic substances. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117504. [PMID: 38061440 DOI: 10.1016/j.jep.2023.117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberine was identified in extracts of Berberis ruscifolia Lam., a plant used in traditional medicine as an analgesic. Its presence may be involved in the reported pharmacological activity of this species. However, there is still a lack of scientific research concerning its analgesic activity in the peripheral nervous system. AIM OF THE STUDY To investigate Berb-induced antinociception in the formalin test and to evaluate several pathways related to its pharmacological antinociceptive effects in chemical models of nociception in mice. MATERIALS AND METHODS The antinociceptive activity of Berb was assessed by inducing the paw licking in mice with different allodynic agents. In the formalin test, the antiedematous and antithermal effect of Berb was evaluated simultaneously in the same experiment. Other nociceptive behavior produced by endogenous [prostaglandin E2 (PGE2), histamine (His), glutamate (Glu) or bradykinin (BK)] or exogenous [capsaicin (Caps) and cinnamaldehyde (Cin)] chemical stimuli, and activators as protein kinase A (PKA) and C (PKC), were also evaluated.The in vivo doses for p.o. were 3 and 30 mg/kg. RESULTS Berb, at 30 mg/kg p.o., showed a significant inhibition of the nociceptive action in formalin in both phases being stronger at the inflammatory phase (59 ± 9%) and more active than Asp (positive control) considering the doses evaluated. Moreover, Berb inhibited the edema (34 ± 10%), but not the temperature in the formalin test. Regarding the different nociceptive signaling pathways evaluated, the most relevant data were that the administration of p.o. of Berb, at 30 mg/kg, caused significant inhibition of nociception induced by endogenous [His (72 ± 11%), PGE2 (78 ± 4%), and BK (51 ± 7%)], exogenous [Cap (68 ± 4%) and Cinn (57 ± 5%)] compounds, and activators of the PKA [(FSK (86 ± 3%)] and PKC [(PMA(86 ± 6%)] signaling pathway. Berb did not inhibit the nociceptive effect produced by Glu. CONCLUSION The present study demonstrated, for the first time, the potential of Berb in several nociceptive tests, with the compound present in B. ruscifolia contributing to the analgesic effect reported for this species.
Collapse
Affiliation(s)
- Micaela Paula Del Gaudio
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, 5000, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5000, Argentina
| | - Scheila Iria Kraus
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Thayza Martins Melzer
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Pamela Soledad Bustos
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, 5000, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5000, Argentina
| | - María Gabriela Ortega
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, 5000, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5000, Argentina.
| |
Collapse
|
12
|
Li L, Xiao Y, Zhou J, Mo H, Li X, Li Y, Wang Y, Zhong M. Effects of Berberine on glucolipid metabolism among dehydroepiandrosterone-induced rats of polycystic ovary syndrome with insulin-resistance. Heliyon 2024; 10:e24338. [PMID: 38293350 PMCID: PMC10826177 DOI: 10.1016/j.heliyon.2024.e24338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a set of endocrine disorder syndrome characterized by ovulation disorder. Increased insulin resistance (IR) and compensatory hyperinsulinemia play a vital role in the pathogenesis of PCOS. Therefore, insulin sensitizing agents have been studied in the treatment of PCOS. Berberine (BBR) has been proved to alleviate IR in patients with PCOS, but the mechanism remained unclear. This study was aimed to verify the regulatory mechanism of BBR on PCOS-IR rats. Firstly, we established a female rat PCOS-IR model induced by dehydroepiandrosterone (DHEA) and found that estrus cycle was disrupted in the PCOS-IR group, serum fasting insulin (FINS) level and the homeostasis model assessment of insulin resistance (HOMA-IR) index were significantly higher than normal control group. BBR treatment could recover estrous cycle, reduce abnormal serum hormone levels like luteotropic hormone (LH) and testosterone (T). Most importantly, BBR could concentration-dependently reduce serum FINS level in PCOS-IR rat model. Meanwhile, BBR may improve the abnormal lipid metabolism levels in PCOS-IR group by decreasing low density lipoprotein (LDL), total cholesterol (TC) and triglyceride (TG). Histological results showed that BBR can also protect normal histological structures of ovaries in PCOS-IR rats. Our results indicated that BBR plays a protective role in PCOS-IR, increasing insulin sensitivity, improving hyperandrogens and recovering abnormal blood lipids. Therefore, Our research provides novel insights for therapeutic treatment of BBR in patients with glucolipid metabolic disturbances.
Collapse
Affiliation(s)
- Li Li
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China
- Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Yao Xiao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510000, China
| | - Jiahe Zhou
- Naval Special Medical Center, Naval Medical University, Shanghai, 200082, China
| | - Hui Mo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, 000853, China
| | - Xiaofang Li
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China
| | - Yuancheng Li
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China
- Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Youfeng Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, 000853, China
| | - Minglin Zhong
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China
| |
Collapse
|
13
|
Dan L, Hao Y, Li J, Wang T, Zhao W, Wang H, Qiao L, Xie P. Neuroprotective effects and possible mechanisms of berberine in animal models of Alzheimer's disease: a systematic review and meta-analysis. Front Pharmacol 2024; 14:1287750. [PMID: 38259291 PMCID: PMC10800531 DOI: 10.3389/fphar.2023.1287750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/26/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Recently, multiple preclinical studies have reported the beneficial effect of berberine in the treatment of Alzheimer's disease (AD). Nevertheless, the neuroprotective effects and possible mechanisms of berberine against AD are not universally recognized. This study aimed to conduct a systematic review and meta-analysis by integrating relevant animal studies to assess the neuroprotective effects and potential mechanisms of berberine on AD. Methods: We systematically searched PubMed, Embase, Scopus and Web of Science databases that reported the effects of berberine on AD models up to 1 February 2023. The escape latency, times of crossing platform, time spent in the target quadrant and pro-oligomerized amyloid beta 42 (Aβ1-42) were included as primary outcomes. The secondary outcomes were the Tau-ps 204, Tau-ps 404, β-site of APP cleaving enzyme (BACE1), amyloid precursor protein (APP), acetylcholine esterase (AChE), tumor necrosis factor ⍺ (TNF-α), interleukin 1β (IL-1β), IL-6, nitric oxide (NO), glial fibrillary acidic protein (GFAP), malonaldehyde (MDA), glutathione S-transferase (GST), glutathione (GSH), glutathione peroxidase (GPx), Beclin-1 and neuronal apoptosis cells. This meta-analysis was conducted using RevMan 5.4 and STATA 15.1. The SYRCLE's risk of bias tool was used to assess the methodological quality. Results: Twenty-two studies and 453 animals were included in the analysis. The overall results showed that berberine significantly shortened the escape latency (p < 0.00001), increased times of crossing platform (p < 0.00001) and time spent in the target quadrant (p < 0.00001), decreased Aβ1-42 deposition (p < 0.00001), Tau-ps 202 (p < 0.00001) and Tau-ps 404 (p = 0.002), and improved BACE1, APP, AChE, Beclin-1, neuronal apoptosis cells, oxidative stress and inflammation levels. Conclusion: Berberine may be a promising drug for the treatment of AD based on preclinical evidence (especially when the dose was 5-260 mg/kg). The potential mechanisms for these protective effects may be closely related to anti-neuroinflammation, anti-oxidative stress, modulation of autophagy, inhibition of neuronal apoptosis and protection of cholinergic system. However, these results may be limited by the quality of existing research. Larger and methodologically more rigorous preclinical research are needed to provide more convincing evidence.
Collapse
Affiliation(s)
- Lijuan Dan
- School of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanwei Hao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyuan Wang
- Traditional Chinese medicine department, 363 Hospital of Chengdu, Chengdu, China
| | - Weiwei Zhao
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Hui Wang
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Liyan Qiao
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Peijun Xie
- Department of Geriatrics, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| |
Collapse
|
14
|
Gasmi A, Asghar F, Zafar S, Oliinyk P, Khavrona O, Lysiuk R, Peana M, Piscopo S, Antonyak H, Pen JJ, Lozynska I, Noor S, Lenchyk L, Muhammad A, Vladimirova I, Dub N, Antoniv O, Tsal O, Upyr T, Bjørklund G. Berberine: Pharmacological Features in Health, Disease and Aging. Curr Med Chem 2024; 31:1214-1234. [PMID: 36748808 DOI: 10.2174/0929867330666230207112539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Berberine is the main active compound of different herbs and is defined as an isoquinoline quaternary botanical alkaloid found in barks and roots of numerous plants. It exhibits a wide range of pharmacological effects, such as anti-obesity and antidiabetic effects. Berberine has antibacterial activity against a variety of microbiota, including many bacterial species, protozoa, plasmodia, fungi, and trypanosomes. OBJECTIVE This review describes the role of berberine and its metabolic effects. It also discusses how it plays a role in glucose metabolism, fat metabolism, weight loss, how it modulates the gut microbiota, and what are its antimicrobial properties along with its potential side effects with maximal tolerable dosage. METHODS Representative studies were considered and analyzed from different scientific databases, including PubMed and Web of Science, for the years 1982-2022. RESULTS Literature analysis shows that berberine affects many biochemical and pharmacological pathways that theoretically yield a positive effect on health and disease. Berberine exhibits neuroprotective properties in various neurodegenerative and neuropsychological ailments. Despite its low bioavailability after oral administration, berberine is a promising tool for several disorders. A possible hypothesis would be the modulation of the gut microbiome. While the evidence concerning the aging process in humans is more limited, preliminary studies have shown positive effects in several models. CONCLUSION Berberine could serve as a potential candidate for the treatment of several diseases. Previous literature has provided a basis for scientists to establish clinical trials in humans. However, for obesity, the evidence appears to be sufficient for hands-on use.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Farah Asghar
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, Lahore, Pakistan
| | - Saba Zafar
- Department of Research, The Women University, Multan, Pakistan
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oksana Khavrona
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Salva Piscopo
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Iryna Lozynska
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Larysa Lenchyk
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Akram Muhammad
- Department of Research, Government College University, Faisalabad, Pakistan
| | - Inna Vladimirova
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, Ukraine
| | - Olha Antoniv
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oksana Tsal
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Taras Upyr
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
15
|
Coppinger C, Pomales B, Movahed MR, Marefat M, Hashemzadeh M. Berberine: A Multi-Target Natural PCSK9 Inhibitor with the Potential to Treat Diabetes, Alzheimer's, Cancer and Cardiovascular Disease. Curr Rev Clin Exp Pharmacol 2024; 19:312-326. [PMID: 38361373 DOI: 10.2174/0127724328250471231222094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 02/17/2024]
Abstract
Berberine is a natural product with a wide range of pharmacological effects. It has antimicrobial, anti-cancer, anti-inflammatory, anti-hyperlipidemic, neuroprotective, and cholesterollowering properties, among others. It has been used in traditional Chinese and Ayurvedic medicine for 3000 years and is generally well-tolerated with few side effects. Its main drawback is low oral bioavailability, which has hindered widespread clinical use. However, recent interest has surged with the emergence of evidence that berberine is effective in treating cancer, diabetes, Alzheimer's disease, and cardiovascular disease via multiple mechanisms. It enhances insulin sensitivity and secretion by pancreatic β-cells in Type 2 Diabetes Mellitus in addition to reducing pro-inflammatory cytokines such as IL-6, IL-1β, TLR4 and TNF-α. These cytokines are elevated in Alzheimer's disease, cardiovascular disease, and diabetes. Reductions in pro-inflammatory cytokine levels are associated with positive outcomes such as improved cognition, reduced cardiovascular events, and improved glucose metabolism and insulin sensitivity. Berberine is a natural PCSK9 inhibitor, which contributes to its hypolipidemic effects. It also increases low-density lipoprotein receptor expression, reduces intestinal cholesterol absorption, and promotes cholesterol excretion from the liver to the bile. This translates into a notable decrease in LDL cholesterol levels. High LDL cholesterol levels are associated with increased cardiovascular disease risk. Novel synthetic berberine derivatives are currently being developed that optimize LDL reduction, bioavailability, and other pharmacokinetic properties.
Collapse
Affiliation(s)
- Caroline Coppinger
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Briana Pomales
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Mohammad Reza Movahed
- Department of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, USA
| | | | - Mehrnoosh Hashemzadeh
- Department of Chemistry, Pima College, Tucson, AZ, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, USA
| |
Collapse
|
16
|
Mushtaq Z, Imran M, Saeed F, Imran A, Ali SW, Shahbaz M, Alsagaby SA, Guerrero Sánchez Y, Umar M, Hussain M, Al Abdimonem W, Al Jbawi E, Mahwish, El-Ghorab AH, Abdelgawad MA. Berberine: a comprehensive Approach to combat human maladies. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2184300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Zarina Mushtaq
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Quid-i-Azam Campus, Lahore, Pakistan
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | | | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Waleed Al Abdimonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Mahwish
- Department of Nutritional Sciences, Government College Women University Faisalabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
17
|
Vijayakumar A, Manod M, Krishna RB, Mathew A, Mohan C. Diversely functionalized isoquinolines and their core-embedded heterocyclic frameworks: a privileged scaffold for medicinal chemistry. RSC Med Chem 2023; 14:2509-2534. [PMID: 38107174 PMCID: PMC10718595 DOI: 10.1039/d3md00248a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/23/2023] [Indexed: 12/19/2023] Open
Abstract
Isoquinoline-enrooted organic small-molecules represent a challenging molecular target in the organic synthesis arsenal attributed to their structural diversity and therapeutic importance. Into the bargain, isoquinolines are significant structural frameworks in modern medicinal chemistry and drug development. Consequently, synthetic organic and medicinal chemists have been intensely interested in efficient synthetic tactics for the sustainable construction of isoquinoline frameworks and their derivatives in enantiopure or racemic forms. This review accentuates an overview of the literature on the modern synthetic approaches exploited in synthesising isoquinolines and their core embedded heterocyclic skeletons from 2021 to 2022. In detail, the methodologies and inspected pharmacological studies for the array of diversely functionalized isoquinolines or their core-embedded heterocyclic/carbocyclic structures involving the introduction of substituents at C-1, C-3, and C-4 carbon and N-2 atom, bond constructions at the C1-N2 atom and C3-N2 atom, and structural scaffolding within isoquinoline compounds have been reviewed. This intensive study highlights the need for and relevance of relatively unexplored bioisosterism employing isoquinoline-based small-molecules in drug design.
Collapse
Affiliation(s)
- Archana Vijayakumar
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - M Manod
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - R Bharath Krishna
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - Abra Mathew
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678577 India
| | - Chithra Mohan
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| |
Collapse
|
18
|
Wang C, Yang Y, Chen J, Dai X, Xing C, Zhang C, Cao H, Guo X, Hu G, Zhuang Y. Berberine Protects against High-Energy and Low-Protein Diet-Induced Hepatic Steatosis: Modulation of Gut Microbiota and Bile Acid Metabolism in Laying Hens. Int J Mol Sci 2023; 24:17304. [PMID: 38139133 PMCID: PMC10744296 DOI: 10.3390/ijms242417304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Berberine (BBR) is a natural alkaloid with multiple biotical effects that has potential as a treatment for fatty liver hemorrhagic syndrome (FLHS). However, the mechanism underlying the protective effect of BBR against FLHS remains unclear. The present study aimed to investigate the effect of BBR on FLHS induced by a high-energy, low-protein (HELP) diet and explore the involvement of the gut microbiota and bile acid metabolism in the protective effects. A total of 90 healthy 140-day-old Hy-line laying hens were randomly divided into three groups, including a control group (fed a basic diet), a HELP group (fed a HELP diet), and a HELP+BBR group (high-energy, high-protein diet supplemented with BBR instead of maize). Our results show that BBR supplementation alleviated liver injury and hepatic steatosis in laying hens. Moreover, BBR supplementation could significantly regulate the gut's microbial composition, increasing the abundance of Actinobacteria and Romboutsia. In addition, the BBR supplement altered the profile of bile acid. Furthermore, the gut microbiota participates in bile acid metabolism, especially taurochenodeoxycholic acid and α-muricholic acid. BBR supplementation could regulate the expression of genes and proteins related to glucose metabolism, lipid synthesis (FAS, SREBP-1c), and bile acid synthesis (FXR, CYP27a1). Collectively, our findings demonstrate that BBR might be a potential feed additive for preventing FLHS by regulating the gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China; (C.W.); (Y.Y.); (J.C.); (X.D.); (C.X.); (C.Z.); (H.C.); (X.G.)
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China; (C.W.); (Y.Y.); (J.C.); (X.D.); (C.X.); (C.Z.); (H.C.); (X.G.)
| |
Collapse
|
19
|
Zhang J, Song J, Li H, Li Z, Chen M, Ma S, Shen R, Lou X. Berberine protects against neomycin-induced ototoxicity by reducing ROS generation and activating the PI3K/AKT pathway. Neurosci Lett 2023; 817:137518. [PMID: 37844727 DOI: 10.1016/j.neulet.2023.137518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
In mammals, aminoglycoside antibiotic-induced injury to hair cells (HCs) and associated spiral ganglion neurons (SGNs) is irreversible and eventually leads to permanent hearing loss. Efforts have been directed towards the advancement of efficacious therapeutic treatments to protect hearing loss, but the ideal substance for treating the damaged cochlear sensory epithelium has yet to be identified. Berberine (BBR), a quaternary ammonium hydroxide extracted from Coptis chinensis, has been found to display potential anti-oxidant and neuroprotective properties. However, its involvement in aminoglycoside antibiotic-induced ototoxicity has yet to be explored or assessed. In the present study, we explored the possible anti-oxidative properties of BBR in mitigating neomycin-triggered ototoxicity. An improved survival of HCs and SGN nerve fibers (NFs) in organ of Corti (OC) explants after neomycin with BBR co-treatment was observed, and BBR treatment attenuated reactive oxygen species (ROS) generation and reduced cleaved caspase-3 signaling by activating six phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling relative subtypes, and the addition of PI3K/AKT suppressor LY294002 resulted in a decrease in the protective effect. The protective effect of BBR against ototoxicity was also evident in a neomycin-injured animal model, as evidenced by the preservation of HC and SGN in mice administered subcutaneous BBR for 7 days. In summary, all results suggest that BBR has potential as a new and effective otoprotective agent, operating via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Junming Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Jianhao Song
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Haobo Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Zhaoxia Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Mengyu Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Shutao Ma
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China
| | - Rong Shen
- Department of Geriatrics, Yueyang Hosptial of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xiangxin Lou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, PR China.
| |
Collapse
|
20
|
Solnier J, Zhang Y, Kuo YC, Du M, Roh K, Gahler R, Wood S, Chang C. Characterization and Pharmacokinetic Assessment of a New Berberine Formulation with Enhanced Absorption In Vitro and in Human Volunteers. Pharmaceutics 2023; 15:2567. [PMID: 38004546 PMCID: PMC10675484 DOI: 10.3390/pharmaceutics15112567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Berberine is a plant-origin quaternary isoquinoline alkaloid with a vast array of biological activities, including antioxidant and blood-glucose- and blood-lipid-lowering effects. However, its therapeutic potential is largely limited by its poor oral bioavailability. The aim of this study was to investigate the in vitro solubility and Caco-2 cell permeability followed by pharmacokinetic profiling in healthy volunteers of a new food-grade berberine delivery system (i.e., Berberine LipoMicel®). X-ray diffractometry (XRD), in vitro solubility, and Caco-2 cell permeability indicated higher bioavailability of LipoMicel Berberine (LMB) compared to the standard formulation. Increased aqueous solubility (up to 1.4-fold), as well as improved Caco-2 cell permeability of LMB (7.18 × 10-5 ± 7.89 × 10-6 cm/s), were observed when compared to standard/unformulated berberine (4.93 × 10-6 ± 4.28 × 10-7 cm/s). Demonstrating better uptake, LMB achieved significant increases in AUC0-24 and Cmax compared to the standard formulation (AUC: 78.2 ± 14.4 ng h/mL vs. 13.4 ± 1.97 ng h/mL, respectively; p < 0.05; Cmax: 15.8 ± 2.6 ng/mL vs. 1.67 ± 0.41 ng/mL) in a pilot study of healthy volunteers (n = 10). No adverse reactions were reported during the study period. In conclusion, LMB presents a highly bioavailable formula with superior absorption (up to six-fold) compared to standard berberine formulation and may, therefore, have the potential to improve the therapeutic efficacy of berberine. The study has been registered on ClinicalTrials.gov with Identifier NCT05370261.
Collapse
Affiliation(s)
- Julia Solnier
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Yiming Zhang
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Yun Chai Kuo
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Min Du
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Kyle Roh
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | | | - Simon Wood
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia;
- InovoBiologic Inc., Calgary, AB Y2N 4Y7, Canada
- Food, Nutrition and Health Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chuck Chang
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| |
Collapse
|
21
|
Oyanna VO, Garcia-Torres KY, Bechtold BJ, Lynch KD, Call MR, Horváth M, Manwill PK, Graf TN, Cech NB, Oberlies NH, Paine MF, Clarke JD. Goldenseal-Mediated Inhibition of Intestinal Uptake Transporters Decreases Metformin Systemic Exposure in Mice. Drug Metab Dispos 2023; 51:1483-1489. [PMID: 37562957 PMCID: PMC10586506 DOI: 10.1124/dmd.123.001360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Goldenseal is a perennial plant native to eastern North America. A recent clinical study reported goldenseal decreased metformin Cmax and area under the blood concentration versus time curve (AUC) by 27% and 23%, respectively, but half-life and renal clearance were unchanged. These observations suggested goldenseal altered processes involved in metformin absorption. The underlying mechanism(s) remain(s) unknown. One mechanism for the decreased metformin systemic exposure is inhibition by goldenseal of intestinal uptake transporters involved in metformin absorption. Goldenseal extract and three goldenseal alkaloids (berberine, (-)-β-hydrastine, hydrastinine) were tested as inhibitors of organic cation transporter (OCT) 3, plasma membrane monoamine transporter (PMAT), and thiamine transporter (THTR) 2 using human embryonic kidney 293 cells overexpressing each transporter. The goldenseal extract, normalized to berberine content, was the strongest inhibitor of each transporter (IC50: 4.9, 13.1, and 5.8 μM for OCT3, PMAT, and THTR2, respectively). A pharmacokinetic study in mice compared the effects of berberine, (-)-β-hydrastine, goldenseal extract, and imatinib (OCT inhibitor) on orally administered metformin. Goldenseal extract and imatinib significantly decreased metformin Cmax by 31% and 25%, respectively, and had no effect on half-life. Berberine and (-)-β-hydrastine had no effect on metformin pharmacokinetics, indicating neither alkaloid alone precipitated the interaction in vivo. A follow-up murine study involving intravenous metformin and oral inhibitors examined the contributions of basolateral enteric/hepatic uptake transporters to the goldenseal-metformin interaction. Goldenseal extract and imatinib had no effect on metformin AUC and half-life, suggesting lack of inhibition of basolateral enteric/hepatic uptake transporters. Results may have implications for patients taking goldenseal with drugs that are substrates for OCT3 and THTR2. SIGNIFICANCE STATEMENT: Goldenseal is used to self-treat respiratory infections and digestive disorders. We investigated potential mechanisms for the clinical pharmacokinetic interaction observed between goldenseal and metformin, specifically inhibition by goldenseal of intestinal uptake transporters (OCT3, PMAT, THTR2) involved in metformin absorption. Goldenseal extract inhibited all three transporters in vitro and decreased metformin systemic exposure in mice. These data may have broader implications for patients co-consuming goldenseal with other drugs that are substrates for these transporters.
Collapse
Affiliation(s)
- Victoria O Oyanna
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Kenisha Y Garcia-Torres
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Baron J Bechtold
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - M Ridge Call
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Miklós Horváth
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Preston K Manwill
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Tyler N Graf
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Nadja B Cech
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Nicholas H Oberlies
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - Mary F Paine
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| | - John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (V.O.O., K.Y.G.-T., B.J.B., K.D.L., M.R.C., M.F.P., J.D.C.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina (P.K.M., T.N.G., N.B.C., N.H.O.); SOLVO Biotechnology, Szeged, Hungary (M.H.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., M.F.P., J.D.C.)
| |
Collapse
|
22
|
Tian E, Sharma G, Dai C. Neuroprotective Properties of Berberine: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2023; 12:1883. [PMID: 37891961 PMCID: PMC10604532 DOI: 10.3390/antiox12101883] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid natural product, is isolated primarily from Coptis chinensis and other Berberis plants. BBR possesses various bioactivities, including antioxidant, anti-inflammation, anticancer, immune-regulation, and antimicrobial activities. Growing scientific evidence underscores BBR's substantial neuroprotective potential, prompting increased interest and scrutiny. In this comprehensive review, we elucidate the neuroprotective attributes of BBR, delineate the underlying molecular mechanisms, and assess its clinical safety and efficacy. The multifaceted molecular mechanisms responsible for BBR's neuroprotection encompass the attenuation of oxidative stress, mitigation of inflammatory responses, inhibition of apoptotic pathways, facilitation of autophagic processes, and modulation of CYP450 enzyme activities, neurotransmitter levels, and gut microbiota composition. Furthermore, BBR engages numerous signaling pathways, including the PI3K/Akt, NF-κB, AMPK, CREB, Nrf2, and MAPK pathways, to confer its neuroprotective effects. This comprehensive review aims to provide a substantial knowledge base, stimulate broader scientific discourse, and facilitate advancements in the application of BBR for neuroprotection.
Collapse
Affiliation(s)
- Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
23
|
Srivastava K, Cao M, Fidan O, Shi Y, Yang N, Nowak-Wegrzyn A, Miao M, Zhan J, Sampson HA, Li XM. Berberine-containing natural-medicine with boiled peanut-OIT induces sustained peanut-tolerance associated with distinct microbiota signature. Front Immunol 2023; 14:1174907. [PMID: 37575233 PMCID: PMC10415201 DOI: 10.3389/fimmu.2023.1174907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/06/2023] [Indexed: 08/15/2023] Open
Abstract
Background Gut microbiota influence food allergy. We showed that the natural compound berberine reduces IgE and others reported that BBR alters gut microbiota implying a potential role for microbiota changes in BBR function. Objective We sought to evaluate an oral Berberine-containing natural medicine with a boiled peanut oral immunotherapy (BNP) regimen as a treatment for food allergy using a murine model and to explore the correlation of treatment-induced changes in gut microbiota with therapeutic outcomes. Methods Peanut-allergic (PA) mice, orally sensitized with roasted peanut and cholera toxin, received oral BNP or control treatments. PA mice received periodic post-therapy roasted peanut exposures. Anaphylaxis was assessed by visualization of symptoms and measurement of body temperature. Histamine and serum peanut-specific IgE levels were measured by ELISA. Splenic IgE+B cells were assessed by flow cytometry. Fecal pellets were used for sequencing of bacterial 16S rDNA by Illumina MiSeq. Sequencing data were analyzed using built-in analysis platforms. Results BNP treatment regimen induced long-term tolerance to peanut accompanied by profound and sustained reduction of IgE, symptom scores, plasma histamine, body temperature, and number of IgE+ B cells (p <0.001 vs Sham for all). Significant differences were observed for Firmicutes/Bacteroidetes ratio across treatment groups. Bacterial genera positively correlated with post-challenge histamine and PN-IgE included Lachnospiraceae, Ruminococcaceae, and Hydrogenanaerobacterium (all Firmicutes) while Verrucromicrobiacea. Caproiciproducens, Enterobacteriaceae, and Bacteroidales were negatively correlated. Conclusions BNP is a promising regimen for food allergy treatment and its benefits in a murine model are associated with a distinct microbiota signature.
Collapse
Affiliation(s)
- Kamal Srivastava
- General Nutraceutical Technology, Elmsford, NY, United States
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Mingzhuo Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ozkan Fidan
- Department of Biological Engineering, Utah State University, Logan, UT, United States
- Department of Bioengineering, Abdullah Gul University, Kayseri, Türkiye
| | - Yanmei Shi
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Nan Yang
- General Nutraceutical Technology, Elmsford, NY, United States
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Anna Nowak-Wegrzyn
- Hassenfeld Children’s Hospital, Department of Pediatrics, New York University (NYU) Grossman School of Medicine, New York, NY, United States
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, Logan, UT, United States
| | - Hugh A. Sampson
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
- Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
24
|
Chen S, Shen W, Liu Y, Dong Q, Shi Y. Efficacy and safety of triple therapy containing berberine, amoxicillin, and vonoprazan for Helicobacter pylori initial treatment: A randomized controlled trial. Chin Med J (Engl) 2023; 136:1690-1698. [PMID: 37469024 DOI: 10.1097/cm9.0000000000002696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND With the development of traditional Chinese medicine research, berberine has shown good efficacy and safety in the eradication of Helicobacter pylori (H. pylori). The present study aimed to evaluate the efficacy and safety of triple therapy containing berberine, amoxicillin, and vonoprazan for the initial treatment of H. pylori. METHODS This study was a single-center, open-label, parallel, randomized controlled clinical trial. Patients with H. pylori infection were randomly (1:1:1) assigned to receive berberine triple therapy (berberine 500 mg, amoxicillin 1000 mg, vonoprazan 20 mg, A group), vonoprazan quadruple therapy (vonoprazan 20 mg, amoxicillin 1000 mg, clarithromycin 500 mg, colloidal bismuth tartrate 220 mg, B group), or rabeprazole quadruple therapy (rabeprazole 10 mg, amoxicillin 1000 mg, clarithromycin 500 mg, colloidal bismuth tartrate 220 mg, C group). The drugs were taken twice daily for 14 days. The main outcome was the H. pylori eradication rate. The secondary outcomes were symptom improvement rate, patient compliance, and incidence of adverse events. Furthermore, factors affecting the eradication rate of H. pylori were further analyzed. RESULTS A total of 300 H. pylori-infected patients were included in this study, and 263 patients completed the study. An intention-to-treat (ITT) analysis showed that the eradication rates of H. pylori in berberine triple therapy, vonoprazan quadruple therapy, and rabeprazole quadruple therapy were 70.0% (70/100), 77.0% (77/100), and 69.0% (69/100), respectively. The per-protocol (PP) analysis showed that the eradication rates of H. pylori in these three groups were 81.4% (70/86), 86.5% (77/89), and 78.4% (69/88), respectively. Both ITT analysis and PP analysis showed that the H. pylori eradication rate did not significantly differ among the three groups (P >0.05). In addition, the symptom improvement rate, overall adverse reaction rate, and patient compliance were similar among the three groups (P >0.05). CONCLUSIONS The efficacy of berberine triple therapy for H. pylori initial treatment was comparable to that of vonoprazan quadruple therapy and rabeprazole quadruple therapy, and it was well tolerated. It could be used as one choice of H. pylori initial treatment.
Collapse
Affiliation(s)
- Shasha Chen
- Postgraduate Department, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Weina Shen
- Postgraduate Department, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yuhuan Liu
- Postgraduate Department, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Qiang Dong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yongquan Shi
- Postgraduate Department, Xi'an Medical University, Xi'an, Shaanxi 710021, China
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
25
|
Li Z, Wang Y, Xu Q, Ma J, Li X, Yan J, Tian Y, Wen Y, Chen T. Berberine and health outcomes: An umbrella review. Phytother Res 2023; 37:2051-2066. [PMID: 36999891 DOI: 10.1002/ptr.7806] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 04/01/2023]
Abstract
Berberine is a plant extract widely used in clinical practice. This review aimed to summarize and to grade the available evidence on the association between berberine consumption and health-related outcomes. The PubMed, Cochrane Library, and Embase databases were searched for meta-analyses of randomized controlled trials (RCTs) assessing the efficacy and safety of berberine from inception to June 30, 2022. The AMSTAR-2 and GRADE system were used to assess the methodological quality and evidence level of the included meta-analyses. A total of 11 eligible meta-analyses were identified from 235 publications, which were published in peer-reviewed journals between 2013 and 2022. The results revealed that berberine significantly affects blood glucose levels, insulin resistance, blood lipids, body parameters and composition, inflammatory markers, colorectal adenomas, and Helicobacter pylori infections as compared to controls. Common side effects of berberine consumption include gastrointestinal symptoms, such as constipation and diarrhea. Berberine is a safe medicinal plant ingredient that improves various clinical outcomes; however, there is a need for improvement of methodological quality in published meta-analyses. Additionally, the clinical effects of berberine need to be confirmed in high-quality RCTs.
Collapse
Affiliation(s)
- Zhongyu Li
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Wang
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Xu
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinxin Ma
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Li
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Yan
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yibing Tian
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yandong Wen
- Department of Chinese Medicine, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Chen
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Bahloul B, Castillo-Henríquez L, Jenhani L, Aroua N, Ftouh M, Kalboussi N, Vega-Baudrit J, Mignet N. Nanomedicine-based potential phyto-drug delivery systems for diabetes. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
27
|
Blais JE, Huang X, Zhao JV. Overall and Sex-Specific Effect of Berberine for the Treatment of Dyslipidemia in Adults: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials. Drugs 2023; 83:403-427. [PMID: 36941490 DOI: 10.1007/s40265-023-01841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Berberine is a nutraceutical that can improve lipid metabolism. Berberine may also affect sex hormones and exert sex-specific lipid-modifying effects, which have been overlooked. This study aimed to comprehensively review the efficacy and safety of berberine in adults for the treatment of dyslipidemia with consideration of potential sex disparity. Data Sources We searched Medline, Embase, Wanfang, CNKI, ClinicalTrials.gov, and the WHO International Clinical Trials Registry Platform from inception to 13 December 2022. No language restrictions were applied. This study was registered in PROSPERO (CRD42021293218) prior to completing the literature search. Study Selection Two blinded reviewers assessed studies for inclusion. Eligible studies were randomized controlled trials in adults that compared berberine versus placebo, and measured blood lipids or lipoproteins. Data Extraction and Synthesis Data extraction was performed by two blinded reviewers using a structured form in Covidence. Risk of bias was assessed using the Cochrane risk of bias tool for randomized trials. Mean differences (MD) were estimated using inverse variance weighting with random effects models for lipid outcomes using R. Adverse events (AEs) were described narratively. Main Outcomes Primary outcomes were low-density lipoprotein (LDL) cholesterol, total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, and apolipoprotein B. Secondary outcomes were gastrointestinal and muscle-related AEs. RESULTS Eighteen studies (n = 1788 participants), conducted mainly in mainland China and Hong Kong (15 studies [83%]), were included with treatment durations ranging from 4 to 24 weeks. Berberine reduced LDL cholesterol (- 0.46 mmol/L, 95% CI - 0.62 to - 0.30, 14 studies, n = 1447), total cholesterol (- 0.48 mmol/L, 95% CI - 0.63 to - 0.33, 17 studies, n = 1637), triglycerides (- 0.34 mmol/L, 95% CI - 0.46 to - 0.23, 18 studies, n = 1661) and apolipoprotein B (- 0.25 g/L, 95% CI - 0.40 to - 0.11, 2 studies, n = 127). Berberine increased HDL cholesterol by 0.06 mmol/L (95% CI 0.00 to 0.11, 15 studies, n = 1471). Notably, the effect on HDL cholesterol was different in women (0.11 mmol/L, 95% CI 0.09 to 0.13) from that in men (- 0.07 mmol/L, 95% CI - 0.16 to 0.02). Among 16 studies that reported AEs, no serious AEs were reported for berberine. Gastrointestinal AEs were reported in 12 studies and tended to be more frequent in participants allocated to berberine versus placebo (2-23% vs 2-15%). CONCLUSIONS Berberine produces small reductions in LDL cholesterol, triglycerides, and apolipoprotein B, with potential sex-specific effects on HDL cholesterol. Large-scale trials that consider sex disparity and assess clinical outcomes are required.
Collapse
Affiliation(s)
- Joseph E Blais
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin Huang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
28
|
Wang X, Tang G, Guo H, Ma J, Liu D, Wang Y, Jin R, Li Z, Tang Y. Research Progress on the Anti-Tumor Mechanism and Reversal of Multidrug Resistance of Zuojin Pill and its Main Components, Evodiamine and Berberine. Nat Prod Commun 2023; 18. [DOI: 10.1177/1934578x231161414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Background Cancer is one of the most serious diseases worldwide that threatens human health and leads to death. Chemotherapy is the main clinical method to treat tumors, but, despite the development of new chemotherapeutic drugs, the multidrug resistance (MDR) of cancer cells to conventional chemotherapeutic drugs remains a major cause of failure in cancer prevention and treatment. Therefore, overcoming this resistance has become a major challenge in cancer prevention and treatment. Method With the in-depth study of traditional Chinese medicines (TCMs) for the treatment of tumors, many such medicines have been found that can reverse MDR and enhance the sensitivity of chemotherapy. ZJW is a famous traditional medicine formula from China, recorded first in an ancient medicine book named Danxi Xinfa. It is composed of Huanglian and Wuzhuyu in a ratio of 6:1 by mass. Conclusion ZJW can inhibit proliferation, induce apoptosis, inhibit invasion and metastasis, and reverse MDR of tumor cells through multiple pathways and multiple targets. In this paper, we briefly review recent research on ZJW and its main components, evodiamine and berberine, in the anti-tumor mechanism and reversal of multidrug resistance.
Collapse
Affiliation(s)
- Xinyi Wang
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Gonghuan Tang
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Hui Guo
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Jingjing Ma
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Dongmei Liu
- No.988 Hospital of Joint Logistic Support Force, Zhengzhou, China
| | - Yuwei Wang
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Ruyi Jin
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Zhi Li
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Yuping Tang
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| |
Collapse
|
29
|
Jiang H, Hou T, Han Y, Lu SB, Liu L, Li DX, Zhu YH, Huang H, Li WJ, Xue XY, Liu YF, Liang XM. Preparation and identification of isoquinoline alkaloids with ATP citrate lyase inhibitory activity from Dactylicapnos scandens. Fitoterapia 2023; 165:105397. [PMID: 36539068 DOI: 10.1016/j.fitote.2022.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Three new isoquinoline alkaloids including a morphine derivative (1), two aporphine alkaloids (2-3), together with five known alkaloids (4-8) were obtained from the extract of Dactylicapnos scandens (D.Don) Hutch. (D. scandens). Their structures and absolute configurations were elucidated by extensive spectroscopic data analysis including HRESIMS, NMR and electronic circular dichroism (ECD) and ECD calculation. Compounds 1-8 were evaluated for ATP Citrate Lyase (ACLY) inhibitory activity through an enzymatic assay. Among them, 2 and 3 showed the high ACLY inhibitory activity with an IC50 value of 10.48 ± 1.59 and 10.89 ± 4.89 μM.
Collapse
Affiliation(s)
- Hui Jiang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Hou
- DICP-CMC Innovation Institute of Medicine, Taizhou 225300, PR China
| | - Yan Han
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Shu-Bin Lu
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Lei Liu
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Ding-Xiang Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Yun-Hui Zhu
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Hang Huang
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Wen-Jie Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Xiang-Ya Xue
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China.
| | - Yan-Fang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China.
| | - Xin-Miao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| |
Collapse
|
30
|
Liu YF, Wang HH, Geng YH, Han L, Tu SH, Wang H. Advances of berberine against metabolic syndrome-associated kidney disease: Regarding effect and mechanism. Front Pharmacol 2023; 14:1112088. [PMID: 36814494 PMCID: PMC9939707 DOI: 10.3389/fphar.2023.1112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
The prevalence of metabolic syndrome (MetS) is drastically growing worldwide, resulting in MetS-associated kidney disease. According to traditional theories, preventing blood pressure, lipid, glycose, and obesity and improving insulin resistance (IR), a couple of medications are required for MetS. It not only lowers patients' compliance but also elevates adverse reactions. Accordingly, we attempted to seek answers from complementary and alternative medicine. Ultimately, berberine (BBR) was chosen due to its efficacy and safety on MetS through multi-pathways and multi-targets. The effects and mechanisms of BBR on obesity, IR, diabetic nephropathy, hypertension, hyperlipidemia, and hyperuricemia were elaborated. In addition, the overall properties of BBR and interventions for various kidney diseases were also collected. However, more clinical trials are expected to further identify the beneficial effects of BBR.
Collapse
Affiliation(s)
- Ya-Fei Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan-Huan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin-Hong Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng-Hao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Nephrology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Deng H, Xu Q, Guo HY, Huang X, Chen F, Jin L, Quan ZS, Shen QK. Application of cinnamic acid in the structural modification of natural products: A review. PHYTOCHEMISTRY 2023; 206:113532. [PMID: 36470328 DOI: 10.1016/j.phytochem.2022.113532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Natural products can generally exhibit a variety of biological activities, but most show mediocre performance in preliminary activity evaluation. Natural products often require structural modification to obtain promising lead compounds. Cinnamic acid (CA) is readily available and has diverse biological activities and low cytotoxicity. Introducing CA into natural products may improve their performance, enhance biological activity, and reduce toxic side effect. Herein, we aimed to discuss related applications of CA in the structural modification of natural products and provide a theoretical basis for future derivatization and drug development of natural products. Published articles, web databases (PubMed, Science Direct, SCI Finder, and CNKI), and clinical trial websites (https://clinicaltrials.gov/) related to natural products and CA derivatives were included in the discussion. Based on the inclusion criteria, 128 studies were selected and discussed herein. Screening natural products of CA derivatives allowed for classification by their biological activities. The full text is organized according to the biological activities of the derivatives, with the following categories: anti-tumor, neuroprotective, anti-diabetic, anti-microbial, anti-parasitic, anti-oxidative, anti-inflammatory, and other activities. The biological activity of each CA derivative is discussed in detail. Notably, most derivatives exhibited enhanced biological activity and reduced cytotoxicity compared with the lead compound. CA has various advantages and can be widely used in the synthesis of natural product derivatives to enhance the properties of drug candidates or lead compounds.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Fener Chen
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Lili Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
32
|
Zhu K, Yao Y, Wang K, Shao F, Zhu Z, Song Y, Zhou Z, Jiang D, Lan X, Qin C. Berberin sustained-release nanoparticles were enriched in infarcted rat myocardium and resolved inflammation. J Nanobiotechnology 2023; 21:33. [PMID: 36709291 PMCID: PMC9883926 DOI: 10.1186/s12951-023-01790-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Inflammatory regulation induced by macrophage polarization is essential for cardiac repair after myocardial infarction (MI). Berberin (BBR) is an isoquinoline tetrasystemic alkaloid extracted from plants. This study analyzes the most likely mechanism of BBR in MI treatment determined via network pharmacology, showing that BBR acts mainly through inflammatory responses. Because platelets (PLTs) can be enriched in the infarcted myocardium, PLT membrane-coated polylactic-co-glycolic acid (PLGA) nanoparticles (BBR@PLGA@PLT NPs) are used, which show enrichment in the infarcted myocardium to deliver BBR sustainably. Compared with PLGA nanoparticles, BBR@PLGA@PLT NPs are more enriched in the infarcted myocardium and exhibit less uptake in the liver. On day three after MI, BBR@PLGA@PLT NPs administration significantly increases the number of repaired macrophages and decreases the number of inflammatory macrophages and apoptotic cells in infarcted rat myocardium. On the 28th day after MI, the BBR@PLGA@PLT group exhibits a protective effect on cardiac function, reduced cardiac collagen deposition, improved scar tissue stiffness, and an excellent angiogenesis effect. In addition, BBR@PLGA@PLT group has no significant impact on major organs either histologically or enzymologically. In summary, the therapeutic effect of BBR@PLGA@PLT NPs on MI is presented in detail from the perspective of the resolution of inflammation, and a new solution for MI treatment is proposed.
Collapse
Affiliation(s)
- Ke Zhu
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,Department of Nuclear Medicine, The First People’s Hospital of Zigong, Zigong, Sichuan China
| | - Yu Yao
- grid.33199.310000 0004 0368 7223Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Kun Wang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.24516.340000000123704535Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuqiang Shao
- Department of Nuclear Medicine, The First People’s Hospital of Zigong, Zigong, Sichuan China
| | - Ziyang Zhu
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China
| | - Yangmeihui Song
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China
| | - Zhangyongxue Zhou
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China
| | - Dawei Jiang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022 Hubei China
| | - Xiaoli Lan
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022 Hubei China
| | - Chunxia Qin
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022 Hubei China
| |
Collapse
|
33
|
Yao J, Wei W, Wen J, Cao Y, Li H. The efficacy and mechanism of berberine in improving aging-related cognitive dysfunction: A study based on network pharmacology. Front Neurosci 2023; 17:1093180. [PMID: 36743801 PMCID: PMC9895386 DOI: 10.3389/fnins.2023.1093180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
Objective To analyze the effects and mechanisms of berberine in the treatment of aging-related cognitive dysfunction based on network pharmacology methods, molecular docking techniques, and animal experiments. Methods A mouse model of cognitive dysfunction was constructed by subcutaneous injection of D-galactose (D-gal) for 10 weeks, and the neuroprotective effects of berberine on aging-related cognitive dysfunction mice were evaluated by the Morris water maze (MWM) and immunofluorescence staining. The targets of berberine were obtained by SwissTargetPrediction, GeneCards, and PharmMapper. Putative targets of cognitive dysfunction were obtained by GeneCards, TTD, and DrugBank database. The STRING database and Cytoscape software were applied for protein-protein interaction (PPI) analysis and further screening of core targets. The DAVID database was used for Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis to clarify the biological processes and pathways involved in the intersection targets, and AutoDockTools was adopted for molecular docking verification of core targets. Finally, the core genes were validated using real-time quantitative PCR. Results The MWM results showed that treatment with berberine significantly improved spatial learning and memory in mice with cognitive decline induced by D-gal. Immunofluorescence staining indicated that berberine modified the levels of aging-related markers in the brain. A total of 386 berberine putative targets associated with cognitive dysfunction were identified based on the public database. The core targets of berberine for improving cognitive function, include Mapk1, Src, Ctnnb1, Akt1, Pik3ca, Tp53, Jun, and Hsp90aa1. GO enrichment and KEGG pathway enrichment analyses indicated that the mechanism of berberine in the treatment of aging-related cognitive dysfunction is attributed to pathways such as PI3K-AKT and MAPK pathways. In vivo experiments further confirmed that Akt1, Ctnnb1, Tp53, and Jun were involved in the neuroprotective actions of berberine. Conclusion This study reveals the multi-target and multi-pathway effects of berberine on regulating aging-related cognitive dysfunction, which provides preclinical evidence and may promote new drug development in mitigating cognitive dysfunction.
Collapse
Affiliation(s)
- Jiuxiu Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Wen
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Yu Cao,
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Hao Li,
| |
Collapse
|
34
|
Ionescu OM, Frincu F, Mehedintu A, Plotogea M, Cirstoiu M, Petca A, Varlas V, Mehedintu C. Berberine-A Promising Therapeutic Approach to Polycystic Ovary Syndrome in Infertile/Pregnant Women. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010125. [PMID: 36676074 PMCID: PMC9864590 DOI: 10.3390/life13010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a disorder with an unknown etiology that features a wide range of endocrine and metabolic abnormalities that hamper fertility. PCOS women experience difficulties getting pregnant, and if pregnant, they are prone to miscarriage, gestational diabetes, pregnancy-induced hypertension and preeclampsia, high fetal morbidity, and perinatal mortality. Insulin, the pancreatic hormone best known for its important role in glucose metabolism, has an underrated position in reproduction. PCOS women who have associated insulin resistance (with consequent hyperinsulinemia) have fertility issues and adverse pregnancy outcomes. Lowering the endogen insulin levels and insulin resistance appears to be a target to improve fertility and pregnancy outcomes in those women. Berberine is an alkaloid with a high concentration in various medicinal herbs that exhibits a hypoglycaemic effect alongside a broad range of other therapeutic activities. Its medical benefits may stand up for treating different conditions, including diabetes mellitus. So far, a small number of pharmacological/clinical trials available in the English language draw attention towards the good results of berberine's use in PCOS women with insulin resistance for improving fertility and pregnancy outcomes. Our study aims to uncover how berberine can counteract the negative effect of insulin resistance in PCOS women and improve fertility and pregnancy outcomes.
Collapse
Affiliation(s)
- Oana-Maria Ionescu
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Francesca Frincu
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
- Correspondence:
| | - Andra Mehedintu
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Mihaela Plotogea
- Department of Obstetrics and Gynecology, “Nicolae Malaxa” Clinical Hospital, 022441 Bucharest, Romania
| | - Monica Cirstoiu
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Aida Petca
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Valentin Varlas
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Claudia Mehedintu
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
35
|
Yang R, Yang Y. Albiflorin attenuates high glucose-induced endothelial apoptosis via suppressing PARP1/NF-κB signaling pathway. Inflamm Res 2023; 72:159-169. [PMID: 36357814 DOI: 10.1007/s00011-022-01666-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Paeonia lactiflora Pall has long been recognized as an anti-inflammatory traditional Chinese herbal medicine. We aimed to study the pharmacological action of albiflorin, an active ingredient extracted from the roots of Paeonia lactiflora Pall, on diabetic vascular complications. METHODS Human umbilical vein endothelial cells (HUVECs) were stimulated with high glucose and treated with 5, 10, and 20 μM albiflorin. CCK-8 assay, EdU staining, Annexin V-FITC staining, transwell assay, scratch test, RT-PCR, ELISA, Western blot, and immunofluorescence were carried out. SwissTargetPrediction database was used for screening targets of albiflorin and molecular docking was done using Autodock Vina software. RESULTS Albiflorin treatment dose-dependently alleviated high glucose-induced viability loss of HUVECs. In addition, albiflorin promoted the proliferation and migration, while inhibited apoptosis and the release of TNF-α, IL-6, and IL-1β in HUVECs. PARP1 was predicted and confirmed to be a target for albiflorin in vitro. Albiflorin targeted PARP1 to inhibit the activation of NF-κB. Transfection of HUVECs with PARP1 overexpression plasmids effectively reversed the effects of albiflorin on high glucose-treated HUVECs. CONCLUSIONS Albiflorin suppressed high glucose-induced endothelial cell apoptosis and inflammation, suggesting its potential in treating diabetic vascular complications. The action of albiflorin possibly caused by its regulation on inhibiting PARP1/NF-κB signaling.
Collapse
Affiliation(s)
- Rong Yang
- Department of Rheumatology and Immunology, Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yang Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
36
|
Effect of Berberis vulgaris Fruit Powder on Visfatin and Metabolic Profiles in Type 2 Diabetes Mellitus Patients: A Randomized, Double-Blind, Placebo-controlled Trial. J Herb Med 2023. [DOI: 10.1016/j.hermed.2023.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Luo Y, Wu J, Liu Y, Shen Y, Zhu F, Wu J, Hu Y. Metabolomics Study of Shaoyao Plants Decoction on the Proximal and Distal Colon in Mice with Dextran Sulfate Sodium-Induced Colitis by UPLC-Q-TOF-MS. Drug Des Devel Ther 2022; 16:4343-4364. [PMID: 36583115 PMCID: PMC9792814 DOI: 10.2147/dddt.s384607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Shaoyao decoction (SYD) is a traditional Chinese medicine used to treat ulcerative colitis (UC). The exact mechanism of action of SYD in UC treatment is still unclear. Here, we examined the therapeutic effects of SYD in mice with dextran sulfate sodium (DSS)-induced colitis and explored the underlying mechanism. Methods The experimental group was divided into normal control, UC, and SYD treatment groups. The UC model of C57BL/6 mice was induced using 3% (w/v) DSS for 7 days. SYD was orally administered for 7 days. The proximal and distal colonic metabolic profiles were detected using quadrupole-time-of-flight mass spectrometry-based untargeted metabolomics. Results SYD significantly increased weight, reduced disease activity index scores, and ameliorated colon length shortening and pathological damage in mice. In the distal colon, SYD increased the abundance of phosphatidic acid and lysophosphatidylethanolamine and decreased the abundance of lactosylceramide, erythrodiol 3-palmitate, and lysophosphatidylcholine. In the proximal colon, SYD increased the abundance of palmitic acid, cyclonormammein, monoacylglyceride, 13S-hydroxyoctadecadienoic acid, and ceanothine C and decreased the abundance of tetracosahexaenoic acid, phosphatidylserine, and diglyceride. Conclusion Our findings revealed that SYD could alleviate UC by regulating metabolic dysfunction, which provides a reference for further studies on SYD.
Collapse
Affiliation(s)
- Yiting Luo
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jin Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yingchao Liu
- Academic Affairs Office, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yan Shen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Fangyuan Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jiaqian Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yuyao Hu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China,Correspondence: Yuyao Hu, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou, People’s Republic of China, Email
| |
Collapse
|
38
|
Wang M, Geng X, Li K, Wang Y, Duan X, Hou C, Zhao L, Zhou H, Zhao D. Berberine ameliorates mesenteric vascular dysfunction by modulating perivascular adipose tissue in diet-induced obese in rats. BMC Complement Med Ther 2022; 22:198. [PMID: 35879716 PMCID: PMC9310483 DOI: 10.1186/s12906-022-03667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Berberine (BBR) has been found to have antiobesity effects, and obesity can lead to adipose tissue degeneration. As a special adipose tissue, perivascular adipose tissue (PVAT) is closely related to vascular function and affects vasoconstriction and relaxation. What happens to PVAT in the early stages of diet-induced obesity and how BBR affects vascular function is the focus of our experimental study.
Methods
Sprague–Dawley rats were fed a high-fat diet (fat 34% kcal) for 4 weeks to simulate early obesity. Obese rats were treated with BBR (200 mg/kg) or metformin (MET, 100 mg/kg) by gavage for 2 weeks. The mesenteric arterioles were studied by atomic force microscopy (AFM). The force vs. time curves were observed and analysed to indicate vascular function. Nitric oxide (NO) and noradrenaline (NA) release was quantified using an organ bath with fluorescence assays and ELISA, respectively. Network pharmacology was used to analyse the overlapping targets related to BBR and obesity-related diseases, and the expression of NOS in mesenteric PVAT was further analysed with immunohistochemistry and real-time PCR. The serum inflammatory factor levels were tested.
Results
BBR significantly reduced the levels of blood glucose, blood lipids and inflammatory factors in serum. It also effectively improved abnormal mesenteric vasoconstriction and relaxation in obese rats. There was no significant change in mesenteric vascular structure, but NO production and eNOS expression were significantly increased in mesenteric PVAT (P < 0.01), and NA was decreased (P < 0.05) in obese rats. All these changes in the mesenteric arterioles and PVAT of obese rats were reversed by treatment with BBR and MET.
Conclusions
In diet-induced obesity in rats, the function of vasoconstriction and relaxation in mesenteric arterioles is altered, NO is increased, and NA is decreased in mesenteric PVAT. All these changes were reversed by BBR, suggesting a novel effect of BBR in ameliorating mesenteric vascular dysfunction by regulating PVAT.
Collapse
|
39
|
Study of Hypoglycemic Activity of Novel 9-N-alkyltetrahydroberberine Derivatives. Int J Mol Sci 2022; 23:ijms232214186. [PMID: 36430664 PMCID: PMC9698964 DOI: 10.3390/ijms232214186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Novel 9-N-alkyltetrahydroberberine derivatives were synthesized, among which, based on the results of OGTT, one compound containing the longest aliphatic substituent was selected for study in mice C57BL/6Ay, which demonstrate obesity, impaired glucose tolerance, and concomitant liver non-alcoholic fatty disease. Administration of this substance at a dose of 15 mg/kg for four weeks improved the insulin sensitivity of mice, which resulted in a decrease in fasting glucose levels and improved the tolerance of mice to OGTT glucose loading. A decrease in the level of lactate in the blood and a decrease in the amount of glucokinase in the liver were also found. The introduction of compound 3c did not have a toxic effect on animals based on biochemical data, histological analysis, and measurements of general parameters such as body weight and feed intake. Thus, the 9-N-heptyltetrahydroberberine derivative showed prominent hypoglycemic effects, which makes it promising to obtain and study other derivatives with longer substituents.
Collapse
|
40
|
Arifian H, Maharani R, Megantara S, Gazzali AM, Muchtaridi M. Amino-Acid-Conjugated Natural Compounds: Aims, Designs and Results. Molecules 2022; 27:molecules27217631. [PMID: 36364457 PMCID: PMC9654077 DOI: 10.3390/molecules27217631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Protein is one of the essential macronutrients required by all living things. The breakdown of protein produces monomers known as amino acids. The concept of conjugating natural compounds with amino acids for therapeutic applications emerged from the fact that amino acids are important building blocks of life and are abundantly available; thus, a greater shift can result in structural modification, since amino acids contain a variety of sidechains. This review discusses the data available on amino acid–natural compound conjugates that were reported with respect to their backgrounds, the synthetic approach and their bioactivity. Several amino acid–natural compound conjugates have shown enhanced pharmacokinetic characteristics, including absorption and distribution properties, reduced toxicity and increased physiological effects. This approach could offer a potentially effective system of drug discovery that can enable the development of pharmacologically active and pharmacokinetically acceptable molecules.
Collapse
Affiliation(s)
- Hanggara Arifian
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Pharmacochemistry, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Rani Maharani
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Saisn Malaysia, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
- Correspondence:
| |
Collapse
|
41
|
Cazzaniga M, Zonzini GB, Di Pierro F, Moricoli S, Bertuccioli A. Gut Microbiota, Metabolic Disorders and Breast Cancer: Could Berberine Turn Out to Be a Transversal Nutraceutical Tool? A Narrative Analysis. Int J Mol Sci 2022; 23:12538. [PMID: 36293390 PMCID: PMC9604377 DOI: 10.3390/ijms232012538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
Metabolic disorders, mainly characterized as the marked alteration of the lipid and carbohydrate profile, in addition to the clinical presence of the direct consequences of these alterations, are pathological conditions that have considerably increased in prevalence in recent years. They are directly linked to the onset of various pathologies, including cancer, particularly breast cancer, and are hormone-responsive. Alongside the known conditions responsible for this scenario, such as nutrition and lifestyle in general, the importance of both the colonic microbiota and the various organs and systems is becoming increasingly evident. In fact, it is now evident that microbial dysbiosis plays a fundamental role in the onset of these metabolic disorders, and therefore how these conditions are indirectly responsible for the onset and progression of neoplasms. Indirect mechanisms such as an altered Firmicutes/Bacteroidetes ratio; the formation of metabolites such as short-chain fatty acids (SCFAs), in particular, butyrate, which is capable of acting as a tumor suppressor; and the glucuronidase activity of estroboloma (bacteria responsible for estrogen metabolism) are just some of the most important mechanisms that contribute to the history of breast cancer. It is therefore understandable that in clinical terms, it is essential to associate the modulation of metabolic disorders and the microbial conditions that contribute to generating them with common therapies, preferably using compounds and solutions that are effective and acceptable for the patient without side effects. Nutraceuticals such as berberine (active both in metabolic scenarios and in the microbiota) and interventions modulating the microbial structure such as the use of probiotics and prebiotics seem to be ideal solutions for these preventive and no-longer-ignorable strategies in the light of numerous data now present in the literature.
Collapse
Affiliation(s)
| | | | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy
- Digestive Endoscopy Unit and Gastroenterology, Fondazione Poliambulanza, 25124 Brescia, Italy
| | | | - Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
42
|
Ghavipanje N, Fathi Nasri MH, Farhangfar SH, Ghiasi SE, Vargas-Bello-Pérez E. Berberine supplementation modulates the somatotropic axis and ameliorates glucose tolerance in dairy goats during late gestation and early lactation. BMC Vet Res 2022; 18:357. [PMID: 36153497 PMCID: PMC9508731 DOI: 10.1186/s12917-022-03452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pregnancy, parturition, and the onset of lactation represent an enormous physiological and hormonal challenge to the homeostasis of dairy animals, being a risk for their health and reproduction. Thus, as a part of the homothetic changes in preparturition period, goats undergo a period of IR as well as uncoupled GH/IGF-1 axis. The objective for this study was to determine the effect of berberine (BBR) during the peripartal period on hormonal alteration and somatotropic axis in dairy goats as well as glucose and insulin kinetics during an intravenous glucose tolerance test (IVGTT). At 21 days before the expected kidding date, 24 primiparous Saanen goats were assigned randomly to 4 dietary treatments. Goats were fed a basal diet from wk. 3 antepartum (AP) until wk. 3 postpartum (PP) supplemented with 0 (CTRL), 1 (BBR1), 2 (BBR2), and 4 (BBR4) g/d BBR. Blood samples were collected on days - 21, - 14, - 7, 0, 7, 14, and 21 relative to the expected kidding date. An IVGTT was also performed on day 22 PP. RESULTS Compared with CTRL, supplementation with either BBR2 or BBR4 increased DMI at kidding day and PP, as well as body conditional score (BCS) and milk production (p ≤ 0.05). On d 7 and 14 PP plasma glucose was higher in BBR2- and BBR4-treated than in CTRL. The glucagon concentration was not affected by BBR during the experimental period. However, supplemental BBR indicated a tendency to decrease in cortisol concentration on days 7 (p = 0.093) and 14 (p = 0.100) PP. Lower plasma GH was observed in BBR than in non-BBR goats (p ≤ 0.05). Plasma IGF-1 concentration was enhanced in both BBR2 and BBR4 at kidding and day 7 PP (p ≤ 0.05). During the IVGTT, glucose area under the curve (AUC), clearance rate (CR), T1/2, and Tbasal was lower (p ≤ 0.05) in both BBR2 and BBR4 goats as compared with CTRL. Likewise, the insulin CR was higher (p ≤ 0.05) in goats receiving either BBR2 or BBR4 which was accompanied by a lower insulin T1/2 and AUC. CONCLUSIONS Altogether, our results indicated an improved glucose and insulin status along with the modulation of the somatotropic axis and glucose and insulin response to IVGTT in dairy goats supplemented with 2 and 4 g/d BBR.
Collapse
Affiliation(s)
- Navid Ghavipanje
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, 97175-331, Iran.
| | | | | | - Seyyed Ehsan Ghiasi
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, 97175-331, Iran
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading, RG6 6EU, UK.
| |
Collapse
|
43
|
Khan F, Khan H, Khan A, Yamasaki M, Moustaid-Moussa N, Al-Harrasi A, Rahman SM. Autophagy in adipogenesis: Molecular mechanisms and regulation by bioactive compounds. Biomed Pharmacother 2022; 155:113715. [PMID: 36152415 DOI: 10.1016/j.biopha.2022.113715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
White adipose tissue expands rapidly due to increased adipocyte number (hyperplasia) and size (hypertrophy), which results in obesity. Adipogenesis is a process of the formation of mature adipocytes from precursor cells. Additionally, obesity-related metabolic complications, such as fatty liver and insulin resistance, are linked to adipogenesis. On the contrary, autophagy is a catabolic process; essential to maintain cellular homeostasis via the degradation or recycling of unnecessary or damaged components. Importantly, autophagy dictates obesity and adipogenesis. Hence, a clear understanding of how autophagy regulates adipogenesis is crucial for drug development and the prevention and treatment of obesity and its associated disorders, such as type 2 diabetes, cardiovascular disease, and cancer. In this review, we highlighted recent findings regarding the crosstalk between adipogenesis and autophagy, as well as the molecules involved. Furthermore, the review discussed how bioactive compounds regulate adipogenesis by manipulating autophagy and underlying molecular mechanisms. Based on in vitro and animal studies, we summarized the effects of bioactive compounds on adipogenesis and autophagy. Hence, human studies are necessary to validate the effectiveness and optimal dosage of these bioactive compounds.
Collapse
Affiliation(s)
- Faizullah Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman; Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200 Khyber Pakhtunkhwa, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200 Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Masao Yamasaki
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Naima Moustaid-Moussa
- Texas Tech University, Nutritional Sciences, Lubbock, TX 79409, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Shaikh Mizanoor Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman.
| |
Collapse
|
44
|
Zhang S, Liu X, Li L, Zhang Y, Wang X, Li Y, Huang Y, Pan G. The interaction of alkaloids in Coptis chinensis Franch -Tetradium ruticarpum (A. Juss.) T.G. Hartley with hOCT1 and hOCT2. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115395. [PMID: 35597409 DOI: 10.1016/j.jep.2022.115395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuojin Pill, a traditional poly-herbal drug, comprises Coptis chinensis Franch - Tetradium ruticarpum (A. Juss.) T.G. Hartley (6:1). The significant quantity of alkaloids found in the participating herbs is a key aspect of the Zuojin Pill. According to traditional Chinese medicine (TCM), these numerous alkaloidal compounds within Zuojin Pill have various essential therapeutic effects. AIM OF THE STUDY The alkaloids in Tetradium are mainly indole alkaloids, while the alkaloids in Coptis are mostly isoquinoline alkaloids with low bioavailability. Alkaloids and their metabolites are nitrogen-containing compounds or weakly alkaline substances that can be partially ionized under physiological pH conditions. Fortunately, organic cation transporters (OCTs) play a crucial role in the cellular uptake of weakly alkaline compounds. Therefore, we speculated that the alkaloidal compounds might interact with liver cation transporters hOCT1 and kidney cation transporters hOCT2 to alter cell drug disposal. In order to clarify our hypothesis, a series of alkaloids-OCTs interaction experiments were conducted. MATERIALS AND METHODS HEK293 cells stably expressing hOCT1 and hOCT2 were modeled and evaluated. Afterward, high-content screening (HCS) was conducted to analyze whether the main alkaloids and their metabolites of Coptis - Tetradium were inhibitors of hOCT1 and hOCT2 transporters. Meanwhile, LC-MS/MS was used to investigate whether the alkaloidal compounds were substrates of hOCT1 and hOCT2 transporters. Finally, drug interactions at the cellular level were assessed by LC-MS/MS after co-administration of berberine and rutacorine. RESULTS Berberine, jateorhizine, coptisine, epiberberine, columbamine, demethyleneberberine, and berberrubine could significantly inhibit hOCT1 and hOCT2 activity. Isoquinoline alkaloids, including berberine, jateorhizine, coptisine, epiberberine, columbamine, and palmatine, were substrates of hOCT1 and hOCT2, but not the indole alkaloids evodiamine and rutaecarpine. Furthermore, evodiamine at a concentration of 20 μmol/L had a trivial effect on berberine accumulation in HEK293-hOCT2 cells. CONCLUSIONS These results support the idea that alkaloidal compounds within Coptis and Tetradium have hOCT1 and hOCT2 inhibitory activity or be their substrates, and the increased oral bioavailability of berberine in vivo was closely related to the potential interactions of small molecules in Coptis- Tetradium. Overall, our study provides a framework for investigating the potential interactions of small molecules in Coptis- Tetradium.
Collapse
Affiliation(s)
- Siqian Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, PR China.
| | - Xiaomei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, PR China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, PR China.
| | - Yuwei Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, PR China.
| | - Xiaoming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, PR China.
| | - Yuhong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, PR China.
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China.
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China.
| |
Collapse
|
45
|
Wang L, Hu Z, Yang W, Loo SKF, Ip SP, Xian YF, Lin ZX. Anti-atopic dermatitis effect of a modified Huang-Lian-Jie-Du decoction and its active fraction on 2,4-dinitrobenzene and MC903-induced mouse models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154346. [PMID: 35872445 DOI: 10.1016/j.phymed.2022.154346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/05/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Huang-Lian-Jie-Du Decoction is a traditional Chinese medicine formula which has long been used to treat inflammatory skin disease including AD. However, Gardeniae Fructus, a component herb of HLJDD, has noticeable toxicity in liver and kidney. We therefore replaced Gardeniae Fructus with Dictamni Cortex with a hope to derive at a modified HLJDD (MHLJDD) with better safety profile. PURPOSE The present study aimed to develop MHLJDD and identify its active fraction as innovative therapeutic agents for AD using 2,4-dinitrobenzene (DNCB) and calcipotriol (MC903)-sensitized mouse models of AD. METHODS MHLJDD and the combination of the 1-butanol-soluble-fraction and the water-soluble-fraction (MHLJDD-F) were given intragastrically to the DNCB-induced mice and MC903-induced mice for two weeks. The body weight, dorsal skin/ear thickness and severity of AD symptoms of the mice were measured throughout the study. Scratching behaviors were observed after drug treatment. The blood and dorsal skin/ear tissues of mice were harvested for histopathological examination and biochemical analyses. RESULTS The results revealed that DNCB- and MC903-induced AD symptoms, including skin thickening, dryness, erythema and excoriations, in the dorsal skin and ears were significantly alleviated in the MHLJDD and MHLJDD-F-treated mice. Ceramides content and protein expressions of filaggrin and loricrin were also up-regulated after treatment with MHLJDD and MHLJDD-F. In addition, skin inflammation induced by DNCB and MC903 were markedly suppressed in the MHLJDD and MHLJDD-F-treated mice, and the action mechanisms involve suppression of the release of inflammatory cytokines, as well as downregulation of the activation of NF-κB and MAPKs pathways. Besides, MHLJDD and MHLJDD-F could reverse the abundance of gut microbiota induced by DNCB in mice. CONCLUSIONS MHLJDD and MHLJDD-F could markedly relieve AD-like symptoms induced by DNCB and MC903 in mice through, at least in part, improving the epidermal barrier function and inhibiting skin inflammation via suppressing the activation of NF-κB and MAPKs pathways and regulation of the gut microflora dysbiosis. This study reported for the first time that MHLJDD and its active fraction could be used as innovative therapeutic agents for AD.
Collapse
Affiliation(s)
- Lan Wang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Room 101-J, 1/F, Li Wai Chun Building, Shatin, NT, China Hong Kong Special Administrative Region
| | - Zhen Hu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Room 101-J, 1/F, Li Wai Chun Building, Shatin, NT, China Hong Kong Special Administrative Region
| | - Wen Yang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Room 101-J, 1/F, Li Wai Chun Building, Shatin, NT, China Hong Kong Special Administrative Region
| | - Steven King Fan Loo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Room 101-J, 1/F, Li Wai Chun Building, Shatin, NT, China Hong Kong Special Administrative Region; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, China Hong Kong Special Administrative Region
| | - Siu Po Ip
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Room 101-J, 1/F, Li Wai Chun Building, Shatin, NT, China Hong Kong Special Administrative Region
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Room 101-J, 1/F, Li Wai Chun Building, Shatin, NT, China Hong Kong Special Administrative Region.
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Room 101-J, 1/F, Li Wai Chun Building, Shatin, NT, China Hong Kong Special Administrative Region; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, China Hong Kong Special Administrative Region; Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, China Hong Kong Special Administrative Region.
| |
Collapse
|
46
|
Ghavipanje N, Fathi Nasri MH, Vargas-Bello-Pérez E. An insight into the potential of berberine in animal nutrition: Current knowledge and future perspectives. J Anim Physiol Anim Nutr (Berl) 2022; 107:808-829. [PMID: 36031857 DOI: 10.1111/jpn.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/10/2022] [Accepted: 08/06/2022] [Indexed: 11/30/2022]
Abstract
In animal nutrition, the interest for novel feed additives has expanded with elevating industry standards and consumer awareness besides the demand for healthy animal-derived food products. Consumer and animal health are leading concerns dictating the importance of novel animal feed additives. Berberine (BBR) is a natural pentacyclic isoquinoline alkaloid that has exhibited diverse pharmacological properties, including metabolism-regulating, hepatoprotective, and inflammatory alleviative in addition to its antioxidant activity. Despite detailed information on cellular mechanisms associated with BBR therapeutics, and strong clinical evidence, only a few studies have focused on BBR applied to animal nutrition. However, great pieces of evidence have shown that dietary BBR supplementation could result in improved growth performance, enhanced oxido-inflammatory markers, and mitigated metabolic dysfunctions in both monogastric and ruminant animals. The data discussed in the present review may set the basis for further research on BBR in animal diets for developing novel strategies aiming to improve animal health as well as products with beneficial properties for humans.
Collapse
Affiliation(s)
- Navid Ghavipanje
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | | | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
47
|
Wang Y, Zheng T, Huo Y, Du W. Exploration of Isoquinoline Alkaloids as Potential Inhibitors against Human Islet Amyloid Polypeptide. ACS Chem Neurosci 2022; 13:2164-2175. [PMID: 35797238 DOI: 10.1021/acschemneuro.2c00206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) is one of the most concerning public health problems because of its high incidence, multiple complications, and difficult treatment. Human islet amyloid polypeptide (hIAPP) is closely linked to T2DM because its abnormal self-assembly causes membrane damage and cell dysfunction. The development of potential inhibitors to prevent hIAPP fibrillation is a promising strategy for the intervention and treatment of diabetes. Natural isoquinoline alkaloids are used as effective medication that targets different biomolecules. Although studies explored the efficacy of berberine, jatrorrhizine, and chelerythrine in diabetes, the underlying mechanism remains unclear. Herein, three isoquinoline alkaloids are selected to reveal their roles in hIAPP aggregation, disaggregation, and cell protection. All three compounds displayed good inhibitory effects on peptide fibrillation, scattered the preformed fibrils into small oligomers and most monomers, and upregulated cell viability by reducing hIAPP oligomerization. Moreover, combined biophysical analyses indicated that the compounds affected the β-sheet structure and hydrophobicity of polypeptides significantly, and the benzo[c]phenanthridine structure of chelerythrine was beneficial to the inhibition of hIAPP aggregation and their hydrophobic interaction, compared with that of berberine and jatrorrhizine. Our work elaborated the effects of these alkaloids on hIAPP fibrillation and reveals a possible mechanism for these compounds against T2DM.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ting Zheng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yan Huo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
48
|
Demethyleneberberine, a potential therapeutic agent in neurodegenerative disorders: a proposed mechanistic insight. Mol Biol Rep 2022; 49:10101-10113. [PMID: 35657450 DOI: 10.1007/s11033-022-07594-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Neurodegenerative disorders are a diverse variety of diseases that can be distinguished from developing degeneration of neurons in the CNS. Several alkaloids have shown mounting effects in neurodegenerative disorders, and berberine is one of them. Demethyleneberberine is a metabolite of berberine that has better blood-brain barrier crossing capacity. Demethyleneberberine possesses anti-inflammatory, anti-oxidant, and mitochondrial targeting properties. However, neither the pharmacological action nor the molecular mechanism of action of demethyleneberberine on neurodegenerative disorders has been explored yet. MATERIALS AND METHODS A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elseveier) databases was carried out with the help of keywords like "Demethyleneberberine; neuroinflammation; oxidative stress; Neuroprotective; Neurodegenerative disorders" till date. CONCLUSION This review focus on the neuroprotective potential of demethyleneberberine in neurodegenerative disorders by attenuating different pathways, i.e., NF-κB, MAPK, and AMPK signalling.
Collapse
|
49
|
He Q, Chen B, Wang G, Zhou D, Zeng H, Li X, Song Y, Yu X, Liang W, Chen H, Liu X, Wu Q, Wu L, Zhang L, Li H, Hu X, Zhou W. Co-Crystal of Rosiglitazone With Berberine Ameliorates Hyperglycemia and Insulin Resistance Through the PI3K/AKT/TXNIP Pathway In Vivo and In Vitro. Front Pharmacol 2022; 13:842879. [PMID: 35571083 PMCID: PMC9096649 DOI: 10.3389/fphar.2022.842879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by insulin resistance and hyperglycemia. This study examined the effect and elucidated the mechanism of improvement of hyperglycemia and insulin resistance by a co-crystal of rosiglitazone with berberine (RB) in high-sugar high-fat diet (HSHFD)-induced diabetic KKAy mice. Methods: Diabetic KKAy mice were randomly divided into seven groups: KKAy model control group (DM control) treated with 3% sodium carboxymethyl cellulose; RB groups, administered daily with RB 0.7 mg/kg (RB-L), 2.11 mg/kg (RB-M), or 6.33 mg/kg (RB-H); positive control groups, administered daily with rosiglitazone 1.04 mg/kg (RSG), berberine 195 mg/kg (BBR), or combination of 1.04 mg/kg RSG and 1.08 mg/kg BBR (MIX). Test compounds were administered orally for 8 weeks. Non-diabetic C57BL/6J mice were used as normal control (NC). Blood glucose, food intake, body weight, glucose-lipid metabolism, and pathological changes in the pancreas and liver were examined. We further evaluated the mechanism of action of RB in C2C12 and HepG2 cells stimulated with high glucose and palmitate. Results: RB treatment improved glucolipid metabolism and insulin resistance in diabetic KKAy mice. RB reduced blood glucose levels, white fat index, plasma triglyceride (TG), low-density lipoprotein (LDL), gastric inhibitory peptide (GIP), and insulin levels, increased the levels of plasma glucagon-like peptide-1 (GLP-1), high-density lipoprotein (HDL), and glycogen content in the liver and muscle; and improved oral glucose tolerance test (OGTT), insulin tolerance test (ITT), and pathological changes in the pancreas and liver of KKAy mice. Moreover, RB upregulated p-PI3K and p-AKT levels and reduced TXNIP expression in KKAy mice and in HepG2 and C2C12 cells. Conclusion: These data indicate that RB ameliorates insulin resistance and metabolic disorders, and the mechanism might be through regulating the PI3K/AKT/TXNIP signaling pathway . Thus, the co-crystal drug RB may be considered as a potential antidiabetic agent for future clinical therapy.
Collapse
Affiliation(s)
- Qichen He
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Duanfang Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Hongfang Zeng
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Yi Song
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Xiaoping Yu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Wenxin Liang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Huiling Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Xu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Qiuya Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Lihong Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Limei Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Huizhen Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiangnan Hu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, China.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| |
Collapse
|
50
|
Yadav A, Yadav SS, Singh S, Dabur R. Natural products: Potential therapeutic agents to prevent skeletal muscle atrophy. Eur J Pharmacol 2022; 925:174995. [PMID: 35523319 DOI: 10.1016/j.ejphar.2022.174995] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
Abstract
The skeletal muscle (SkM) is the largest organ, which plays a vital role in controlling musculature, locomotion, body heat regulation, physical strength, and metabolism of the body. A sedentary lifestyle, aging, cachexia, denervation, immobilization, etc. Can lead to an imbalance between protein synthesis and degradation, which is further responsible for SkM atrophy (SmA). To date, the understanding of the mechanism of SkM mass loss is limited which also restricted the number of drugs to treat SmA. Thus, there is an urgent need to develop novel approaches to regulate muscle homeostasis. Presently, some natural products attained immense attraction to regulate SkM homeostasis. The natural products, i.e., polyphenols (resveratrol, curcumin), terpenoids (ursolic acid, tanshinone IIA, celastrol), flavonoids, alkaloids (tomatidine, magnoflorine), vitamin D, etc. exhibit strong potential against SmA. Some of these natural products have been reported to have equivalent potential to standard treatments to prevent body lean mass loss. Indeed, owing to the large complexity, diversity, and slow absorption rate of bioactive compounds made their usage quite challenging. Moreover, the use of natural products is controversial due to their partially known or elusive mechanism of action. Therefore, the present review summarizes various experimental and clinical evidence of some important bioactive compounds that shall help in the development of novel strategies to counteract SmA elicited by various causes.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|