1
|
Cahalane RM, Barrett HE, Ross AM, Mulvihill JJE, Purtill H, Selvarajah L, O'Brien J, Kavanagh EG, Moloneye MA, Egan SM, Leahy FC, Griffin TP, Islam MN, O'Shea PM, Walsh MT, O'Connor EM. On the association between circulating biomarkers and atherosclerotic calcification in a cohort of arterial disease participants. Nutr Metab Cardiovasc Dis 2021; 31:1533-1541. [PMID: 33810961 DOI: 10.1016/j.numecd.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Atherosclerotic calcification is a powerful predictor of cardiovascular disease. This study aims to determine whether circulating levels of a local/systemic calcification inhibitor or a marker of bone formation correlate with measures of coronary or extracoronary calcification. METHODS AND RESULTS Clinical computed tomography (CT) was performed on 64 arterial disease participants undergoing carotid and lower extremity endarterectomy. Coronary artery calcium (CAC) scores and volumes were acquired from the CT scans (n = 42). CAC scores and volumes were used to derive CAC density scores. Micro-CT was performed on excised carotid (n = 36) and lower extremity (n = 31) plaques to quantify the volume and volume fraction of extracoronary calcification. Circulating levels of dephospho-uncarboxylated Matrix Gla Protein (dp-ucMGP), fetuin-A, carboxylated and uncarboxylated osteocalcin (ucOC) were quantified using commercial immunoassays. Carotid participant CAC density scores were moderately negatively correlated with plasma dp-ucMGP (rs = -0.592, P = 0.008). A weak negative association was found between CAC scores and %ucOC for all participants (rs = -0.335, P = 0.040). Another weak negative correlation was observed between fetuin-A and the volume of calcification within excised carotid specimens (rs = -0.366, P = 0.031). Despite substantial differences in coronary and extracoronary calcium measurements, the levels of circulating biomarkers did not vary significantly between carotid and lower extremity subgroups. CONCLUSION Correlations identified between circulating biomarkers and measures of coronary and extracoronary calcium were not consistent among participant subgroups. Further research is required to determine the association between circulating biomarkers, coronary and extracoronary calcium.
Collapse
Affiliation(s)
- Rachel M Cahalane
- BioScience and BioEngineering Research, Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland.
| | - Hilary E Barrett
- BioScience and BioEngineering Research, Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland.
| | - Aisling M Ross
- BioScience and BioEngineering Research, Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland.
| | - John J E Mulvihill
- BioScience and BioEngineering Research, Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland.
| | - Helen Purtill
- Health Research Institute, University of Limerick, Ireland; Department of Mathematics and Statistics, Aging Research Centre, University of Limerick, Ireland.
| | | | - Julie O'Brien
- Department of Radiology, University Hospital Limerick, Ireland.
| | - Eamon G Kavanagh
- Department of Vascular Surgery, University Hospital Limerick, Ireland.
| | | | - Siobhan M Egan
- Clinical Research Support Unit, University Hospital Limerick, Ireland.
| | - Fiona C Leahy
- Clinical Research Support Unit, University Hospital Limerick, Ireland.
| | - Tomás P Griffin
- Centre for Endocrinology, Diabetes and Metabolism, Saolta University Health Care Group (SUHCG), Galway University Hospitals, Galway, Ireland; Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, National University of Ireland Galway, Galway, Ireland.
| | - M N Islam
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre, School of Medicine, National University of Ireland Galway, Galway, Ireland; Department of Clinical Biochemistry, University Hospital Galway, Ireland.
| | - Paul M O'Shea
- Department of Clinical Biochemistry, University Hospital Galway, Ireland.
| | - Michael T Walsh
- BioScience and BioEngineering Research, Biomaterials Cluster, Bernal Institute, School of Engineering, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland.
| | - Eibhlís M O'Connor
- Health Research Institute, University of Limerick, Ireland; Department of Biological Sciences, School of Natural Sciences, University of Limerick, Ireland; Alimentary Pharmabiotic Centre, Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
5
|
Kapustin AN, Schoppet M, Schurgers LJ, Reynolds JL, McNair R, Heiss A, Jahnen-Dechent W, Hackeng TM, Schlieper G, Harrison P, Shanahan CM. Prothrombin Loading of Vascular Smooth Muscle Cell-Derived Exosomes Regulates Coagulation and Calcification. Arterioscler Thromb Vasc Biol 2017; 37:e22-e32. [PMID: 28104608 DOI: 10.1161/atvbaha.116.308886] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/28/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The drug warfarin blocks carboxylation of vitamin K-dependent proteins and acts as an anticoagulant and an accelerant of vascular calcification. The calcification inhibitor MGP (matrix Gla [carboxyglutamic acid] protein), produced by vascular smooth muscle cells (VSMCs), is a key target of warfarin action in promoting calcification; however, it remains unclear whether proteins in the coagulation cascade also play a role in calcification. APPROACH AND RESULTS Vascular calcification is initiated by exosomes, and proteomic analysis revealed that VSMC exosomes are loaded with Gla-containing coagulation factors: IX and X, PT (prothrombin), and proteins C and S. Tracing of Alexa488-labeled PT showed that exosome loading occurs by direct binding to externalized phosphatidylserine (PS) on the exosomal surface and by endocytosis and recycling via late endosomes/multivesicular bodies. Notably, the PT Gla domain and a synthetic Gla domain peptide inhibited exosome-mediated VSMC calcification by preventing nucleation site formation on the exosomal surface. PT was deposited in the calcified vasculature, and there was a negative correlation between vascular calcification and the levels of circulating PT. In addition, we found that VSMC exosomes induced thrombogenesis in a tissue factor-dependent and PS-dependent manner. CONCLUSIONS Gamma-carboxylated coagulation proteins are potent inhibitors of vascular calcification suggesting warfarin action on these factors also contributes to accelerated calcification in patients receiving this drug. VSMC exosomes link calcification and coagulation acting as novel activators of the extrinsic coagulation pathway and inducers of calcification in the absence of Gla-containing inhibitors.
Collapse
MESH Headings
- Aged
- Anticoagulants/adverse effects
- Blood Coagulation/drug effects
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Endocytosis
- Endosomes/metabolism
- Exosomes/drug effects
- Exosomes/metabolism
- Extracellular Matrix Proteins/metabolism
- Female
- Humans
- Male
- Middle Aged
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Peptides/pharmacology
- Phosphatidylserines/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Transport
- Prothrombin/metabolism
- Signal Transduction
- Vascular Calcification/chemically induced
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/prevention & control
- Warfarin/adverse effects
- Matrix Gla Protein
Collapse
Affiliation(s)
- Alexander N Kapustin
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Michael Schoppet
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Leon J Schurgers
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Joanne L Reynolds
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Rosamund McNair
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Alexander Heiss
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Willi Jahnen-Dechent
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Tilman M Hackeng
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Georg Schlieper
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Paul Harrison
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.)
| | - Catherine M Shanahan
- From the BHF Centre of Research Excellence, Department of Cardiology, Cardiovascular Division, King's College London, United Kingdom (A.N.K., J.L.R., R.M.N., C.M.S.); Department of Internal Medicine and Cardiology, Philipps-University, Marburg, Germany (M.S.); Department of Biochemistry, Cardiovascular Research Institute CARIM, University of Maastricht, The Netherlands (L.J.S., T.M.H.); Department of Biomedical Engineering (A.H., W.J.-D.) and Department of Nephrology and Clinical Immunology (G.S.), RWTH Aachen University, Germany; and Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, United Kingdom (P.H.).
| |
Collapse
|