1
|
Gao Y, Pan Y, Jia C. Influencing factors and improvement methods of coronary artery plaque evaluation in CT. Front Cardiovasc Med 2024; 11:1395350. [PMID: 38984352 PMCID: PMC11232181 DOI: 10.3389/fcvm.2024.1395350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/14/2024] [Indexed: 07/11/2024] Open
Abstract
Accurate evaluation of the nature and composition of coronary plaque involves clinical follow-up and prognosis. Coronary CT angiography is the most commonly non-invasive method for plaque evaluation, however, the qualitative and quantitative evaluation of plaque based on CT value is inaccurate, due to the influence of luminal attenuation, tube voltage, parameter setting and the subjectivity.
Collapse
Affiliation(s)
- Yaqi Gao
- Department of Cardiovascular Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yao Pan
- Department of Cardiovascular Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chongfu Jia
- Department of Cardiovascular Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Omori H, Matsuo H, Fujimoto S, Sobue Y, Nozaki Y, Nakazawa G, Takahashi K, Osawa K, Okubo R, Kaneko U, Sato H, Kajiya T, Miyoshi T, Ichikawa K, Abe M, Kitagawa T, Ikenaga H, Saji M, Iguchi N, Ijichi T, Mikamo H, Kurata A, Moroi M, Iijima R, Malkasian S, Crabtree T, Min JK, Earls JP, Nakanishi R. Determination of lipid-rich plaques by artificial intelligence-enabled quantitative computed tomography using near-infrared spectroscopy as reference. Atherosclerosis 2023; 386:117363. [PMID: 37944269 DOI: 10.1016/j.atherosclerosis.2023.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS Artificial intelligence quantitative CT (AI-QCT) determines coronary plaque morphology with high efficiency and accuracy. Yet, its performance to quantify lipid-rich plaque remains unclear. This study investigated the performance of AI-QCT for the detection of low-density noncalcified plaque (LD-NCP) using near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS). METHODS The INVICTUS Registry is a multi-center registry enrolling patients undergoing clinically indicated coronary CT angiography and IVUS, NIRS-IVUS, or optical coherence tomography. We assessed the performance of various Hounsfield unit (HU) and volume thresholds of LD-NCP using maxLCBI4mm ≥ 400 as the reference standard and the correlation of the vessel area, lumen area, plaque burden, and lesion length between AI-QCT and IVUS. RESULTS This study included 133 atherosclerotic plaques from 47 patients who underwent coronary CT angiography and NIRS-IVUS The area under the curve of LD-NCP<30HU was 0.97 (95% confidence interval [CI]: 0.93-1.00] with an optimal volume threshold of 2.30 mm3. Accuracy, sensitivity, and specificity were 94% (95% CI: 88-96%], 93% (95% CI: 76-98%), and 94% (95% CI: 88-98%), respectively, using <30 HU and 2.3 mm3, versus 42%, 100%, and 27% using <30 HU and >0 mm3 volume of LD-NCP (p < 0.001 for accuracy and specificity). AI-QCT strongly correlated with IVUS measurements; vessel area (r2 = 0.87), lumen area (r2 = 0.87), plaque burden (r2 = 0.78) and lesion length (r2 = 0.88), respectively. CONCLUSIONS AI-QCT demonstrated excellent diagnostic performance in detecting significant LD-NCP using maxLCBI4mm ≥ 400 as the reference standard. Additionally, vessel area, lumen area, plaque burden, and lesion length derived from AI-QCT strongly correlated with respective IVUS measurements.
Collapse
Affiliation(s)
- Hiroyuki Omori
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Hitoshi Matsuo
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Shinichiro Fujimoto
- Department of Cardiovascular Biology and Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Yoshihiro Sobue
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Yui Nozaki
- Department of Cardiovascular Biology and Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Gaku Nakazawa
- Department of Cardiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kuniaki Takahashi
- Department of Cardiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuhiro Osawa
- Department of General Internal Medicine 3, Kawasaki Medical School General Medical Center, Okayama Red-Cross Hospital, Okayama, Japan
| | - Ryo Okubo
- Toho University Omori Medical Center, Tokyo, Japan
| | | | - Hideyuki Sato
- Edogawa Hospital Tokyo, Japan; Department of Radiological Technology, Juntendo University Hospital, Tokyo, Japan
| | | | - Toru Miyoshi
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Keishi Ichikawa
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | | | - Toshiro Kitagawa
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroki Ikenaga
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mike Saji
- Toho University Omori Medical Center, Tokyo, Japan; Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| | - Nobuo Iguchi
- Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| | - Takeshi Ijichi
- Department of Cardiology, Tokai University, School of Medicine, Kanagawa, Japan
| | - Hiroshi Mikamo
- Department of Cardiology, Toho University Sakura Medical Center, Chiba, Japan
| | - Akira Kurata
- Department of Cardiology, Shikoku Cancer Center, Department of Radiology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masao Moroi
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Raisuke Iijima
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | | | | | | | - James P Earls
- Cleerly Inc., CO, USA; George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | |
Collapse
|
3
|
Bienstock S, Lin F, Blankstein R, Leipsic J, Cardoso R, Ahmadi A, Gelijns A, Patel K, Baldassarre LA, Hadley M, LaRocca G, Sanz J, Narula J, Chandrashekhar YS, Shaw LJ, Fuster V. Advances in Coronary Computed Tomographic Angiographic Imaging of Atherosclerosis for Risk Stratification and Preventive Care. JACC Cardiovasc Imaging 2023; 16:1099-1115. [PMID: 37178070 DOI: 10.1016/j.jcmg.2023.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/04/2023] [Accepted: 02/01/2023] [Indexed: 05/15/2023]
Abstract
The diagnostic evaluation of coronary artery disease is undergoing a dramatic transformation with a new focus on atherosclerotic plaque. This review details the evidence needed for effective risk stratification and targeted preventive care based on recent advances in automated measurement of atherosclerosis from coronary computed tomography angiography (CTA). To date, research findings support that automated stenosis measurement is reasonably accurate, but evidence on variability by location, artery size, or image quality is unknown. The evidence for quantification of atherosclerotic plaque is unfolding, with strong concordance reported between coronary CTA and intravascular ultrasound measurement of total plaque volume (r >0.90). Statistical variance is higher for smaller plaque volumes. Limited data are available on how technical or patient-specific factors result in measurement variability by compositional subgroups. Coronary artery dimensions vary by age, sex, heart size, coronary dominance, and race and ethnicity. Accordingly, quantification programs excluding smaller arteries affect accuracy for women, patients with diabetes, and other patient subsets. Evidence is unfolding that quantification of atherosclerotic plaque is useful to enhance risk prediction, yet more evidence is required to define high-risk patients across varied populations and to determine whether such information is incremental to risk factors or currently used coronary computed tomography techniques (eg, coronary artery calcium scoring or visual assessment of plaque burden or stenosis). In summary, there is promise for the utility of coronary CTA quantification of atherosclerosis, especially if it can lead to targeted and more intensive cardiovascular prevention, notably for those patients with nonobstructive coronary artery disease and high-risk plaque features. The new quantification techniques available to imagers must not only provide sufficient added value to improve patient care, but also add minimal and reasonable cost to alleviate the financial burden on our patients and the health care system.
Collapse
Affiliation(s)
- Solomon Bienstock
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fay Lin
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ron Blankstein
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathon Leipsic
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Rhanderson Cardoso
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amir Ahmadi
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Annetine Gelijns
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Krishna Patel
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lauren A Baldassarre
- Department of Cardiovascular Medicine and Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael Hadley
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gina LaRocca
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Javier Sanz
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jagat Narula
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Leslee J Shaw
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Valentin Fuster
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
4
|
Nadel J, Tumanov S, Kong SM, Chen W, Giannotti N, Sivasubramaniam V, Rashid I, Ugander M, Jabbour A, Stocker R. Intraplaque Myeloperoxidase Activity as Biomarker of Unstable Atheroma and Adverse Clinical Outcomes in Human Atherosclerosis. JACC. ADVANCES 2023; 2:100310. [PMID: 38939599 PMCID: PMC11198609 DOI: 10.1016/j.jacadv.2023.100310] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/23/2023] [Accepted: 02/11/2023] [Indexed: 06/29/2024]
Abstract
Background The detection of unstable atherosclerosis remains elusive. Intraplaque myeloperoxidase (MPO) activity causes plaque destabilization in preclinical models, holding promise for clinical translation as a novel imaging biomarker. Objectives The purpose of this study was to assess whether MPO activity is greater in unstable human plaques, how this relates to cardiovascular events and current/emerging non-invasive imaging techniques. Methods Thirty-one carotid endarterectomy specimens and 12 coronary trees were collected. MPO activity was determined in 88 individual samples through the conversion of hydroethidine to the MPO-specific adduct 2-chloroethidium and compared with macroscopic validation, histology, clinical outcomes, and computed tomography-derived high and low attenuation plaques and perivascular adipose tissue. Non-parametric statistical analysis utilizing Mann-Whitney U and Kruskal-Wallis tests for univariate and group comparisons were performed. Results Unstable compared with stable plaque had higher MPO activity (carotid endarterectomy: n = 26, 4.2 ± 3.1 vs 0.2 ± 0.3 nmol/mgp; P < 0.0001; coronary: n = 17, 0.6 ± 0.5 vs 0.001 ± 0.003 nmol/mgp; P = 0.0006). Asymptomatic, stroke-free patients had lower MPO activity compared to those with symptoms or ipsilateral stroke (n = 12, 3.7 ± 2.1 vs 0.1 ± 0.2 nmol/mgp; P = 0.002). Computed tomography-determined plaque attenuation did not differentiate MPO activity (n = 30, 0.1 ± 0.1 vs 0.2 ± 0.3 nmol/mgp; P = 0.23) and MPO activity was not found in perivascular adipose tissue. Conclusions MPO is active within unstable human plaques and correlates with symptomatic carotid disease and stroke, yet current imaging parameters do not identify plaques with active MPO. As intraplaque MPO activity can be imaged non-invasively through novel molecular imaging probes, ongoing investigations into its utility as a diagnostic tool for high-risk atherosclerosis is warranted.
Collapse
Affiliation(s)
- James Nadel
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Cardiology Department, St Vincent’s Hospital, Sydney, Australia
- School of Medicine, University of New South Wales, Sydney, Australia
| | - Sergey Tumanov
- Heart Research Institute, The University of Sydney, Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | - Weiyu Chen
- Heart Research Institute, The University of Sydney, Sydney, Australia
| | - Nicola Giannotti
- Medical Imaging Science, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | - Imran Rashid
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, Ohio, USA
| | - Martin Ugander
- Faculty of Medicine and Health, Kolling Institute, Royal North Shore Hospital, The University of Sydney, Sydney, Australia
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - Andrew Jabbour
- Cardiology Department, St Vincent’s Hospital, Sydney, Australia
- School of Medicine, University of New South Wales, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Ota H, Matsuo H, Imai S, Nakashima Y, Kawase Y, Okubo M, Takahashi H, Kawai H, Sobue Y, Kawasaki M, Kondo T, Muramatsu T, Izawa H. Multimodality imaging to identify lipid-rich coronary plaques and predict periprocedural myocardial injury: Association between near-infrared spectroscopy and coronary computed tomography angiography. Front Cardiovasc Med 2023; 10:1127121. [PMID: 37077746 PMCID: PMC10108678 DOI: 10.3389/fcvm.2023.1127121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundThis study compares the efficacy of coronary computed tomography angiography (CCTA) and near-infrared spectroscopy intravascular ultrasound (NIRS–IVUS) in patients with significant coronary stenosis for predicting periprocedural myocardial injury during percutaneous coronary intervention (PCI).MethodsWe prospectively enrolled 107 patients who underwent CCTA before PCI and performed NIRS–IVUS during PCI. Based on the maximal lipid core burden index for any 4-mm longitudinal segments (maxLCBI4mm) in the culprit lesion, we divided the patients into two groups: lipid-rich plaque (LRP) group (maxLCBI4mm ≥ 400; n = 48) and no-LRP group (maxLCBI4mm < 400; n = 59). Periprocedural myocardial injury was a postprocedural cardiac troponin T (cTnT) elevation of ≥5 times the upper limit of normal.ResultsThe LRP group had a significantly higher cTnT (p = 0.026), lower CT density (p < 0.001), larger percentage atheroma volume (PAV) by NIRS–IVUS (p = 0.036), and larger remodeling index measured by both CCTA (p = 0.020) and NIRS–IVUS (p < 0.001). A significant negative linear correlation was found between maxLCBI4mm and CT density (rho = −0.552, p < 0.001). Multivariable logistic regression analysis identified maxLCBI4mm [odds ratio (OR): 1.006, p = 0.003] and PAV (OR: 1.125, p = 0.014) as independent predictors of periprocedural myocardial injury, while CT density was not an independent predictor (OR: 0.991, p = 0.22).ConclusionCCTA and NIRS–IVUS correlated well to identify LRP in culprit lesions. However, NIRS–IVUS was more competent in predicting the risk of periprocedural myocardial injury.
Collapse
Affiliation(s)
- Hideaki Ota
- Department of Cardiology, Gifu Heart Center, Gifu, Japan
- Department of Cardiology, Fujita Health University Hospital, Toyoake, Japan
- Correspondence: Hideaki Ota
| | - Hitoshi Matsuo
- Department of Cardiology, Gifu Heart Center, Gifu, Japan
| | - Shunsuke Imai
- Department of Radiology, Gifu Heart Center, Gifu, Japan
| | | | | | - Munenori Okubo
- Department of Cardiology, Gifu Heart Center, Gifu, Japan
| | - Hiroshi Takahashi
- Department of Cardiology, Fujita Health University Hospital, Toyoake, Japan
| | - Hideki Kawai
- Department of Cardiology, Fujita Health University Hospital, Toyoake, Japan
| | - Yoshihiro Sobue
- Department of Cardiology, Gifu Heart Center, Gifu, Japan
- Department of Cardiology, Fujita Health University Bantane Hospital, Nagoya, Japan
| | | | - Takeshi Kondo
- Department of Cardiology, Gifu Heart Center, Gifu, Japan
| | - Takashi Muramatsu
- Department of Cardiology, Fujita Health University Hospital, Toyoake, Japan
| | - Hideo Izawa
- Department of Cardiology, Fujita Health University Hospital, Toyoake, Japan
| |
Collapse
|
6
|
Han D, van Diemen P, Kuronuma K, Lin A, Motwani M, McElhinney P, Tomasino GF, Park C, Kwan A, Tzolos E, Klein E, Grodecki K, Shou B, Tamarappoo B, Cadet S, Danad I, Driessen RS, Berman DS, Slomka PJ, Dey D, Knaapen P. Sex differences in computed tomography angiography-derived coronary plaque burden in relation to invasive fractional flow reserve. J Cardiovasc Comput Tomogr 2023; 17:112-119. [PMID: 36670043 PMCID: PMC10148895 DOI: 10.1016/j.jcct.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Distinct sex-related differences exist in coronary artery plaque burden and distribution. We aimed to explore sex differences in quantitative plaque burden by coronary CT angiography (CCTA) in relation to ischemia by invasive fractional flow reserve (FFR). METHODS This post-hoc analysis of the PACIFIC trial included 581 vessels in 203 patients (mean age 58.1 ± 8.7 years, 63.5% male) who underwent CCTA and per-vessel invasive FFR. Quantitative assessment of total, calcified, non-calcified, and low-density non-calcified plaque burden were performed using semiautomated software. Significant ischemia was defined as invasive FFR ≤0.8. RESULTS The per-vessel frequency of ischemia was higher in men than women (33.5% vs. 7.5%, p < 0.001). Women had a smaller burden of all plaque subtypes (all p < 0.01). There was no sex difference on total, calcified, or non-calcified plaque burdens in vessels with ischemia; only low-density non-calcified plaque burden was significantly lower in women (beta: -0.183, p = 0.035). The burdens of all plaque subtypes were independently associated with ischemia in both men and women (For total plaque burden (5% increase): Men, OR: 1.15, 95%CI: 1.06-1.24, p = 0.001; Women, OR: 1.96, 95%CI: 1.11-3.46, p = 0.02). No significant interaction existed between sex and total plaque burden for predicting ischemia (interaction p = 0.108). The addition of quantitative plaque burdens to stenosis severity and adverse plaque characteristics improved the discrimination of ischemia in both men and women. CONCLUSIONS In symptomatic patients with suspected CAD, women have a lower CCTA-derived burden of all plaque subtypes compared to men. Quantitative plaque burden provides independent and incremental predictive value for ischemia, irrespective of sex.
Collapse
Affiliation(s)
- Donghee Han
- Department of Imaging and Medicine and the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Pepijn van Diemen
- Department of Cardiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Keiichiro Kuronuma
- Department of Imaging and Medicine and the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew Lin
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Manish Motwani
- Manchester Heart Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Priscilla McElhinney
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Caroline Park
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alan Kwan
- Department of Imaging and Medicine and the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Evangelos Tzolos
- Department of Imaging and Medicine and the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Eyal Klein
- Department of Imaging and Medicine and the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kajetan Grodecki
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Benjamin Shou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Balaji Tamarappoo
- Department of Imaging and Medicine and the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Cardiovascular Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sebastien Cadet
- Department of Imaging and Medicine and the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ibrahim Danad
- Department of Cardiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Roel S Driessen
- Department of Cardiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Daniel S Berman
- Department of Imaging and Medicine and the Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Piotr J Slomka
- Artificial Interlligence in Medicine Program, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul Knaapen
- Department of Cardiology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Usami K, Watabe H, Hoshi T, Sakai S, Hiraya D, Sato A, Ieda M. Impact of coronary plaque characteristics on periprocedural myocardial injury in elective percutaneous coronary intervention. Eur Radiol 2022; 33:3020-3028. [PMID: 36441216 DOI: 10.1007/s00330-022-09288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 11/06/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To investigate the relationship between periprocedural myocardial injury (PMI) and plaque characteristics detected by multidetector computed tomography (MDCT) and cardiac magnetic resonance imaging (CMR). MATERIALS AND METHODS This observational retrospective study, between July 2012 and October 2019, included chronic coronary syndrome patients undergoing elective percutaneous coronary intervention (PCI) after MDCT and CMR. High-intensity plaque (HIP) on non-contrast T1-weighted imaging was defined as a coronary plaque-to-myocardium signal intensity ratio of ≥ 1.4. High-risk plaque (HRP) in MDCT displayed ≥ 2 features: positive remodeling, low-attenuation plaque, spotty calcification, and napkin-ring sign. PMI was defined as an increase in cardiac troponin T levels > 5 times the upper normal limit at 24 h after PCI. RESULTS Ninety-five target lesions in 76 patients (mean age ± standard deviation, 67 years ± 9; 62 males [82%]) were included. Twenty-one patients (24 lesions) were assigned to the PMI group, while 55 patients (71 lesions) to the non-PMI group. Presence of HRP characteristics on MDCT and HIP on CMR was significantly higher in the PMI group. Multivariate logistic regression analysis showed that HRP in MDCT and HIP in CMR were significant independent predictors of PMI. Target lesions with HRP on MDCT and HIP on CMR were significantly more likely to develop PMI. In 141 plaques with ≥ 50% stenosis (76 patients), patients with PMI had significantly more frequent HRP in MDCT and HIP in CMR in target and non-target lesions. CONCLUSIONS MDCT and CMR can play an important role in the detection of high-risk lesions for PMI following elective PCI. KEY POINTS • Multivariate logistic regression analysis showed that high-risk plaque on MDCT and high-intensity plaque on MRI were significant independent predictors of periprocedural myocardial injury (PMI). • Target lesions with high-risk plaque on MDCT and high-intensity plaque on CMR were significantly more likely to develop PMI. • In 141 plaques with ≥ 50% stenosis, patients with PMI were significantly more likely to have high-risk plaques on MDCT and high-intensity plaque on CMR in target and non-target lesions.
Collapse
Affiliation(s)
- Kyohei Usami
- Department of Cardiology, National Hospital Organization Mito Medical Center, Mito, Japan
| | - Hiroaki Watabe
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan.
| | - Tomoya Hoshi
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Shunsuke Sakai
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Daigo Hiraya
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Akira Sato
- Department of Cardiology, University of Yamanashi, Yamanashi, Japan
| | - Masaki Ieda
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| |
Collapse
|
8
|
Munnur RK, Cheng K, Laggoune J, Talman A, Muthalaly R, Nerlekar N, Baey YW, Nogic J, Lin A, Cameron JD, Seneviratne S, Wong DTL. Quantitative plaque characterisation and association with acute coronary syndrome on medium to long term follow up: insights from computed tomography coronary angiography. Cardiovasc Diagn Ther 2022; 12:415-425. [PMID: 36033222 PMCID: PMC9412217 DOI: 10.21037/cdt-21-763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Abstract
Background Computed tomography coronary angiography (CTCA) is an established imaging modality widely used for diagnosing coronary artery stenosis with expanding potential for comprehensive assessment of coronary artery disease (CAD). Lesion-based analyses of high-risk plaques (HRP) on CTCA may aid further in prognostication presenting with stable chest pain. We conduct qualitative and quantitative assessments to identify HRPs that are associated with acute coronary syndrome (ACS) on a medium to long term follow-up. Methods Retrospective cohort study of patients who underwent CTCA for suspected CAD. Obstructive stenosis (OS) is defined as ≥50% and the presence of HRP and its constituents: positive-remodelling (PR), low-attenuation-plaque (LAP; <56 HU), very-low-attenuation-plaque (vLAP; <30 HU) and spotty-calcification (SC) were recorded. A cross-sectional quantitative analysis of HRP was performed at the site of minimum-luminal-area (MLA). The primary endpoint was fatal or non-fatal ACS on follow-up. Results A total of 1,257 patients were included (mean age 61±14 years old and 51% male) with a median follow-up of 7.24 years (interquartile range 5.5 to 7.7 years). The occurrence of ACS was significantly higher in HRP (+) patients compared to HRP (−) patients and patients with no plaques (20.5% vs. 1.6% vs. 0.4%, log-rank test P<0.001). ACS was more frequent in HRP (+)/OS (+) patients (20.7%) compared to HRP (+)/OS (−) patients (8.6%), HRP (−)/OS (+) patients (1.8%) and HRP (−)/OS (−) patients (1.0%). OS, cross-sectional plaque area (PA) and the presence of vLAP identified those HRP lesions that were more likely to cause future ACS. Cross-sectional LAP area (<56 HU) in HRP lesions added incremental prognostic value to OS in predicting ACS (P=0.008). Conclusions The presence of OS and the LAP area at the site of MLA identify the HRP lesions that have the greatest association with development of future ACS.
Collapse
Affiliation(s)
- Ravi K Munnur
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Kevin Cheng
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Jordan Laggoune
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Andrew Talman
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Rahul Muthalaly
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Nitesh Nerlekar
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Yi-Wei Baey
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Jason Nogic
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Andrew Lin
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - James D Cameron
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Sujith Seneviratne
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Dennis T L Wong
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia.,South Australian Health Medical Research Institute (SAHMRI), Adelaide, Australia
| |
Collapse
|
9
|
van den Hoogen IJ, Stuijfzand WJ, Gianni U, van Rosendael AR, Bax AM, Lu Y, Tantawy SW, Hollenberg EJ, Andreini D, Al-Mallah MH, Cademartiri F, Chinnaiyan K, Chow BJW, Conte E, Cury RC, Feuchtner G, Gonçalves PDA, Hadamitzky M, Kim YJ, Leipsic J, Maffei E, Marques H, Plank F, Pontone G, Villines TC, Lee SE, Al'Aref SJ, Baskaran L, Danad I, Gransar H, Budoff MJ, Samady H, Virmani R, Berman DS, Chang HJ, Narula J, Min JK, Bax JJ, Lin FY, Shaw LJ. Early versus late acute coronary syndrome risk patterns of coronary atherosclerotic plaque. Eur Heart J Cardiovasc Imaging 2022; 23:1314-1323. [PMID: 35904766 DOI: 10.1093/ehjci/jeac114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS The temporal instability of coronary atherosclerotic plaque preceding an incident acute coronary syndrome (ACS) is not well defined. We sought to examine differences in the volume and composition of coronary atherosclerosis between patients experiencing an early (≤90 days) versus late ACS (>90 days) after baseline coronary computed tomography angiography (CCTA). METHODS AND RESULTS From a multicenter study, we enrolled patients who underwent a clinically indicated baseline CCTA and experienced ACS during follow-up. Separate core laboratories performed blinded adjudication of ACS events and quantification of CCTA including compositional plaque volumes by Hounsfield units (HU): calcified plaque >350 HU, fibrous plaque 131-350 HU, fibrofatty plaque 31-130 HU and necrotic core <30 HU. In 234 patients (mean age 62 ± 12 years, 36% women), early and late ACS occurred in 129 and 105 patients after a mean of 395 ± 622 days, respectively. Patients with early ACS had a greater maximal diameter stenosis and maximal cross-sectional plaque burden as compared to patients with late ACS (P < 0.05). Larger total, fibrous, fibrofatty, and necrotic core volumes were observed in the early ACS group (P < 0.05). Findings for total, fibrous, fibrofatty, and necrotic core volumes were reproduced in an external validation cohort (P < 0.05). CONCLUSIONS Volumetric differences in composition of coronary atherosclerosis exist between ACS patients according to their timing antecedent to the acute event. These data support that a large burden of non-calcified plaque on CCTA is strongly associated with near-term plaque instability and ACS risk.
Collapse
Affiliation(s)
- Inge J van den Hoogen
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.,Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Wijnand J Stuijfzand
- Amsterdam University Medical Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Umberto Gianni
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | | | - A Maxim Bax
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.,Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Yao Lu
- Department of Healthcare Policy and Research, New York-Presbyterian Hospital and the Weill Cornell Medical College, New York, NY, USA
| | - Sara W Tantawy
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.,Faculty of Medicine, Department of Radiology, Ain Shams University, Cairo, Egypt
| | - Emma J Hollenberg
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | | | - Mouaz H Al-Mallah
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | | | | | - Benjamin J W Chow
- Department of Medicine and Radiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Edoardo Conte
- Centro Cardiologico Monzino, IRCCS Milan, Milan, Italy
| | - Ricardo C Cury
- Department of Radiology, Miami Cardiac and Vascular Institute, Miami, FL, USA
| | - Gudrun Feuchtner
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Martin Hadamitzky
- Department of Radiology and Nuclear Medicine, German Heart Center Munich, Munich, Germany
| | - Yong-Jin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | - Jonathon Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Erica Maffei
- Department of Radiology, Area Vasta 1/ASUR Marche, Urbino, Italy
| | - Hugo Marques
- UNICA, Unit of Cardiovascular Imaging, Hospital da Luz, Lisbon, Portugal
| | - Fabian Plank
- Department of Cardiology, Innsbruck Medical University, Innsbruck, Austria
| | | | - Todd C Villines
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Sang-Eun Lee
- Division of Cardiology, Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul, Korea.,Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Subhi J Al'Aref
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Lohendran Baskaran
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA.,Department of Cardiovascular Medicine, National Heart Centre, Singapore
| | - Ibrahim Danad
- Amsterdam University Medical Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Heidi Gransar
- Department of Imaging, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Matthew J Budoff
- Department of Medicine, Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Habib Samady
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Renu Virmani
- Department of Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Daniel S Berman
- Department of Imaging and Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Hyuk-Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, NY, USA
| | | | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fay Y Lin
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Leslee J Shaw
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
10
|
Yamaura H, Otsuka K, Ishikawa H, Shirasawa K, Fukuda D, Kasayuki N. Determinants of Non-calcified Low-Attenuation Coronary Plaque Burden in Patients Without Known Coronary Artery Disease: A Coronary CT Angiography Study. Front Cardiovasc Med 2022; 9:824470. [PMID: 35463764 PMCID: PMC9021435 DOI: 10.3389/fcvm.2022.824470] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Background Although epicardial adipose tissue (EAT) is associated with coronary artery disease (CAD), it is unclear whether EAT volume (EAV) can be used to diagnose high-risk coronary plaque burden associated with coronary events. This study aimed to investigate (1) the prognostic impact of low-attenuation non-calcified coronary plaque (LAP) burden on patient level analysis, and (2) the association of EAV with LAP volume in patients without known CAD undergoing coronary computed tomography angiography (CCTA). Materials and Methods This retrospective study consisted of 376 patients (male, 57%; mean age, 65.2 ± 13 years) without known CAD undergoing CCTA. Percent LAP volume (%LAP, <30 HU) was calculated as the LAP volume divided by the vessel volume. EAT was defined as adipose tissue with a CT attenuation value ranging from −250 to −30 HU within the pericardial sac. The primary endpoint was a composite event of death, non-fatal myocardial infarction, and unstable angina and worsening symptoms requiring unplanned coronary revascularization >3 months after CCTA. The determinants of %LAP (Q4) were analyzed using a multivariable logistic regression model. Results During the follow-up period (mean, 2.2 ± 0.9 years), the primary endpoint was observed in 17 patients (4.5%). The independent predictors of the primary endpoint were %LAP (Q4) (hazard ratio [HR], 3.05; 95% confidence interval [CI], 1.09–8.54; p = 0.033] in the Cox proportional hazard model adjusted by CAD-RADS category. Cox proportional hazard ratio analysis demonstrated that %LAP (Q4) was a predictor of the primary endpoint, independnet of CAD severity, Suita score, EAV, or CACS. The independent determinants of %LAP (Q4) were CACS ≥218.3 (p < 0.0001) and EAV ≥125.3 ml (p < 0.0001). The addition of EAV to CACS significantly improved the area under the curve (AUC) to identify %LAP (Q4) than CACS alone (AUC, EAV + CACS vs. CACS alone: 0.728 vs. 0.637; p = 0.013). Conclusions CCTA-based assessment of EAV, CACS, and LAP could help improve personalized cardiac risk management by administering patient-suited therapy.
Collapse
Affiliation(s)
- Hiroki Yamaura
- Department of Cardiovascular Medicine, Kashibaseiki Hospital, Kashiba, Japan
| | - Kenichiro Otsuka
- Department of Cardiovascular Medicine, Kashibaseiki Hospital, Kashiba, Japan.,Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hirotoshi Ishikawa
- Department of Cardiovascular Medicine, Kashibaseiki Hospital, Kashiba, Japan.,Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kuniyuki Shirasawa
- Department of Cardiovascular Medicine, Kashibaseiki Hospital, Kashiba, Japan
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Noriaki Kasayuki
- Department of Cardiovascular Medicine, Kashibaseiki Hospital, Kashiba, Japan
| |
Collapse
|
11
|
Williams MC, Earls JP, Hecht H. Quantitative assessment of atherosclerotic plaque, recent progress and current limitations. J Cardiovasc Comput Tomogr 2022; 16:124-137. [PMID: 34326003 DOI: 10.1016/j.jcct.2021.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022]
Abstract
An important advantage of computed tomography coronary angiography (CCTA) is its ability to visualize the presence and severity of atherosclerotic plaque, rather than just assessing coronary artery stenoses. Until recently, assessment of plaque subtypes on CCTA relied on visual assessment of the extent of calcified/non-calcified plaque, or visually identifying high-risk plaque characteristics. Recent software developments facilitate the quantitative assessment of plaque volume or burden on CCTA, and the identification of subtypes of plaque based on their attenuation density. These techniques have shown promise in single and multicenter studies, demonstrating that the amount and type of plaque are associated with subsequent cardiac events. However, there are a number of limitations to the application of these techniques, including the limitations imposed by the spatial resolution of current CT scanners, challenges from variations between reconstruction algorithms, and the additional time to perform these assessments. At present, these are a valuable research technique, but not yet part of routine clinical practice. Future advances that improve CT resolution, standardize acquisition techniques and reconstruction algorithms and automate image analysis will improve the clinical utility of these techniques. This review will discuss the technical aspects of quantitative plaque analysis and present pro and con arguments for the routine use of quantitative plaque analysis on CCTA.
Collapse
Affiliation(s)
- Michelle C Williams
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| | - James P Earls
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Harvey Hecht
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Quantitative plaque assessment by coronary computed tomography angiography: An up-to-date review. IMAGING 2021. [DOI: 10.1556/1647.2021.00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Coronary computed tomography angiography has an emerging role in the diagnostic workup of coronary artery disease. Due to its high sensitivity and negative predictive value, coronary computed tomography angiography can rule out obstructive coronary artery diseases and substitute invasive coronary angiography in many cases. In addition, coronary computed tomography angiography provides a unique information beyond stenosis grading as it can visualize atherosclerosis and quantify its extent. Qualitative and quantitative plaque assessment provides an incremental value in the prediction of future major adverse cardiac events. Moreover, determining adverse plaque features has a potential to identify advanced atherosclerosis and patients at increased risk of acute coronary syndrome. Nevertheless, challenges may emerge with the process of quantifying coronary plaques due to limited reproducibility, lack of automated, standardized and validated techniques. Therefore, reliable quantified data are scarce due to the various computed tomography scanners and software platforms and investigations with small sample sizes. Radiomics and machine learning-based image processing methods are relatively new in the field of cardiovascular plaque imaging. These techniques hold the promise to improve diagnostic performance, reproducibility and prognostic value of computed tomography based plaque assessment.
Collapse
|
13
|
van Rosendael AR, van den Hoogen IJ, Gianni U, Ma X, Tantawy SW, Bax AM, Lu Y, Andreini D, Al-Mallah MH, Budoff MJ, Cademartiri F, Chinnaiyan K, Choi JH, Conte E, Marques H, de Araújo Gonçalves P, Gottlieb I, Hadamitzky M, Leipsic JA, Maffei E, Pontone G, Shin S, Kim YJ, Lee BK, Chun EJ, Sung JM, Lee SE, Virmani R, Samady H, Sato Y, Stone PH, Berman DS, Narula J, Blankstein R, Min JK, Lin FY, Shaw LJ, Bax JJ, Chang HJ. Association of Statin Treatment With Progression of Coronary Atherosclerotic Plaque Composition. JAMA Cardiol 2021; 6:1257-1266. [PMID: 34406326 DOI: 10.1001/jamacardio.2021.3055] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Importance The density of atherosclerotic plaque forms the basis for categorizing calcified and noncalcified morphology of plaques. Objective To assess whether alterations in plaque across a range of density measurements provide a more detailed understanding of atherosclerotic disease progression. Design, Setting, and Participants This cohort study enrolled 857 patients who underwent serial coronary computed tomography angiography 2 or more years apart and had quantitative measurements of coronary plaques throughout the entire coronary artery tree. The study was conducted from 2013 to 2016 at 13 sites in 7 countries. Main Outcomes and Measures The main outcome was progression of plaque composition of individual coronary plaques. Six plaque composition types were defined on a voxel-level basis according to the plaque attenuation (expressed in Hounsfield units [HU]): low attenuation (-30 to 75 HU), fibro-fatty (76-130 HU), fibrous (131-350 HU), low-density calcium (351-700 HU), high-density calcium (701-1000 HU), and 1K (>1000 HU). The progression rates of these 6 compositional plaque types were evaluated according to the interaction between statin use and baseline plaque volume, adjusted for risk factors and time interval between scans. Plaque progression was also examined based on baseline calcium density. Analysis was performed among lesions matched at baseline and follow-up. Data analyses were conducted from August 2019 through March 2020. Results In total, 2458 coronary lesions in 857 patients (mean [SD] age, 62.1 [8.7] years; 540 [63.0%] men; 548 [63.9%] received statin therapy) were included. Untreated coronary lesions increased in volume over time for all 6 compositional types. Statin therapy was associated with volume decreases in low-attenuation plaque (β, -0.02; 95% CI, -0.03 to -0.01; P = .001) and fibro-fatty plaque (β, -0.03; 95% CI, -0.04 to -0.02; P < .001) and greater progression of high-density calcium plaque (β, 0.02; 95% CI, 0.01-0.03; P < .001) and 1K plaque (β, 0.02; 95% CI, 0.01-0.03; P < .001). When analyses were restricted to lesions without low-attenuation plaque or fibro-fatty plaque at baseline, statin therapy was not associated with a change in overall calcified plaque volume (β, -0.03; 95% CI, -0.08 to 0.02; P = .24) but was associated with a transformation toward more dense calcium. Interaction analysis between baseline plaque volume and calcium density showed that more dense coronary calcium was associated with less plaque progression. Conclusions and Relevance The results suggest an association of statin use with greater rates of transformation of coronary atherosclerosis toward high-density calcium. A pattern of slower overall plaque progression was observed with increasing density. All findings support the concept of reduced atherosclerotic risk with increased densification of calcium.
Collapse
Affiliation(s)
- Alexander R van Rosendael
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York.,Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Inge J van den Hoogen
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York.,Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Umberto Gianni
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York.,Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy
| | - Xiaoyue Ma
- Department of Healthcare Policy and Research, NewYork-Presbyterian Hospital and Weill Cornell Medical College, New York
| | - Sara W Tantawy
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York
| | - A Maxim Bax
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York.,Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Yao Lu
- Department of Healthcare Policy and Research, NewYork-Presbyterian Hospital and Weill Cornell Medical College, New York
| | | | - Mouaz H Al-Mallah
- Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Matthew J Budoff
- Department of Medicine, Los Angeles Biomedical Research Institute, Torrance, California
| | | | - Kavitha Chinnaiyan
- Department of Cardiology, William Beaumont Hospital, Royal Oak, Michigan
| | | | - Edoardo Conte
- Cardiovascular Imaging Center, SDN IRCCS, Naples, Italy
| | - Hugo Marques
- UNICA, Unit of Cardiovascular Imaging, Hospital da Luz, Lisboa, Portugal
| | | | - Ilan Gottlieb
- Department of Radiology, Casa de Saude São Jose, Rio de Janeiro, Brazil
| | - Martin Hadamitzky
- Department of Radiology and Nuclear Medicine, German Heart Center Munich, Munich, Germany
| | - Jonathon A Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erica Maffei
- Department of Radiology, Area Vasta 1/ASUR Marche, Urbino, Italy
| | | | - Sanghoon Shin
- Division of Cardiology, Department of Internal Medicine, Ewha Woman's University Seoul Hospital, Seoul, Korea
| | - Yong-Jin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | - Byoung Kwon Lee
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ju Chun
- Seoul National University Bundang Hospital, Sungnam, South Korea
| | - Ji Min Sung
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea.,Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Sang-Eun Lee
- Division of Cardiology, Department of Internal Medicine, Ewha Woman's University Seoul Hospital, Seoul, Korea.,Yonsei-Cedars-Sinai Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Renu Virmani
- Department of Pathology, CVPath Institute, Gaithersburg, Maryland
| | - Habib Samady
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Yu Sato
- Department of Pathology, CVPath Institute, Gaithersburg, Maryland
| | - Peter H Stone
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel S Berman
- Department of Imaging and Medicine, Cedars Sinai Medical Center, Los Angeles, California
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, New York
| | - Ron Blankstein
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Fay Y Lin
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York
| | - Leslee J Shaw
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands.,Heart Center, University of Turku and Turku University Hospital, Turku, Finland
| | - Hyuk-Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea.,Ontact Health Inc, Seoul, South Korea
| |
Collapse
|
14
|
Low attenuation plaque volume on coronary computed tomography angiography is associated with plaque progression. Coron Artery Dis 2021; 33:176-181. [PMID: 34618752 DOI: 10.1097/mca.0000000000001103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Patient-related clinical factors, laboratory factors, and some imaging factors may lead to statistical bias when investigating coronary plaque progression. In this study, we avoided patient characteristics by comparing morphological characteristics of plaque progression and nonprogression within the same patient with multiple plaques. METHODS From August 2011 to December 2018, 177 consecutive patients with 424 plaques who were followed with coronary computed tomography angiography (CTA) were reviewed retrospectively. Follow-up images of the plaques were used to determine whether the plaque volume or stenosis grade increased. The plaques were divided into progressive and nonprogressive groups. Logistic regression analysis was used to identify the factors associated with plaque progression. Through clinical follow-up, we analyzed whether the factors associated with plaque progression were related to major adverse cardiac events (MACEs). RESULTS There were 223 plaques that progressed during a mean follow-up period of 27.6 ± 15.9 months. The univariate logistic regression model revealed that only low attenuation plaque (LAP) volume (P = 0.02) was associated with plaque progression. After a mean post-CTA follow-up period of 36.7 ± 18.4 months, 37 patients experienced MACEs, and LAP volume was significantly related to future MACEs. CONCLUSION Only a high baseline LAP volume was associated with plaque progression, and patients with progressive plaques and a high LAP volume were more likely to have future MACEs. More attention should be given to plaques with LAP volumes larger than 2.4 mm3.
Collapse
|
15
|
Bays HE, Khera A, Blaha MJ, Budoff MJ, Toth PP. Ten things to know about ten imaging studies: A preventive cardiology perspective ("ASPC top ten imaging"). Am J Prev Cardiol 2021; 6:100176. [PMID: 34327499 PMCID: PMC8315431 DOI: 10.1016/j.ajpc.2021.100176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Knowing the patient's current cardiovascular disease (CVD) status, as well as the patient's current and future CVD risk, helps the clinician make more informed patient-centered management recommendations towards the goal of preventing future CVD events. Imaging tests that can assist the clinician with the diagnosis and prognosis of CVD include imaging studies of the heart and vascular system, as well as imaging studies of other body organs applicable to CVD risk. The American Society for Preventive Cardiology (ASPC) has published "Ten Things to Know About Ten Cardiovascular Disease Risk Factors." Similarly, this "ASPC Top Ten Imaging" summarizes ten things to know about ten imaging studies related to assessing CVD and CVD risk, listed in tabular form. The ten imaging studies herein include: (1) coronary artery calcium imaging (CAC), (2) coronary computed tomography angiography (CCTA), (3) cardiac ultrasound (echocardiography), (4) nuclear myocardial perfusion imaging (MPI), (5) cardiac magnetic resonance (CMR), (6) cardiac catheterization [with or without intravascular ultrasound (IVUS) or coronary optical coherence tomography (OCT)], (7) dual x-ray absorptiometry (DXA) body composition, (8) hepatic imaging [ultrasound of liver, vibration-controlled transient elastography (VCTE), CT, MRI proton density fat fraction (PDFF), magnetic resonance spectroscopy (MRS)], (9) peripheral artery / endothelial function imaging (e.g., carotid ultrasound, peripheral doppler imaging, ultrasound flow-mediated dilation, other tests of endothelial function and peripheral vascular imaging) and (10) images of other body organs applicable to preventive cardiology (brain, kidney, ovary). Many cardiologists perform cardiovascular-related imaging. Many non-cardiologists perform applicable non-cardiovascular imaging. Cardiologists and non-cardiologists alike may benefit from a working knowledge of imaging studies applicable to the diagnosis and prognosis of CVD and CVD risk - both important in preventive cardiology.
Collapse
Affiliation(s)
- Harold E. Bays
- Louisville Metabolic and Atherosclerosis Research Center, 3288 Illinois Avenue, Louisville KY 40213 USA
| | - Amit Khera
- UT Southwestern Medical Center, Dallas, TX USA
| | - Michael J. Blaha
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore MD USA
| | - Matthew J Budoff
- Department of Medicine, Lundquist Institute at Harbor-UCLA, Torrance CA USA
| | - Peter P. Toth
- CGH Medical Cener, Sterling, IL 61081 USA
- Cicarrone center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
16
|
Kitahara S, Kataoka Y, Miura H, Nishii T, Nishimura K, Murai K, Iwai T, Nakamura H, Hosoda H, Matama H, Doi T, Nakashima T, Honda S, Fujino M, Nakao K, Yoneda S, Nishihira K, Kanaya T, Otsuka F, Asaumi Y, Tsujita K, Noguchi T, Yasuda S. The feasibility and limitation of coronary computed tomographic angiography imaging to identify coronary lipid-rich atheroma in vivo: Findings from near-infrared spectroscopy analysis. Atherosclerosis 2021; 322:1-7. [PMID: 33706078 DOI: 10.1016/j.atherosclerosis.2021.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Coronary computed tomography angiography (CCTA) non-invasively visualizes lipid-rich plaque. However, this ability is not fully validated in vivo. The current study aimed to elucidate the association of CCTA features with near-infrared spectroscopy-derived lipidic plaque measure in patients with coronary artery disease. METHODS 95 coronary lesions (culprit/non-culprit = 51/44) in 35 CAD subjects were evaluated by CCTA and NIRS imaging. CT density, positive remodeling, spotty calcification, napkin-ring sign and NIRS-derived maximum 4-mm lipid-core burden index (maxLCBI4mm) were analyzed by two independent physicians. The association of CCTA-derived plaque features with maxLCBI4mm ≥ 400 was evaluated. RESULTS The median CT density and maxLCBI4mm were 57.7 Hounsfield units (HU) and 304, respectively. CT density (r = -0.75, p < 0.001) and remodeling index (RI) (r = 0.58, p < 0.001) were significantly associated with maxLCBI4mm, respectively. Although napkin-ring sign (p < 0.001) showed higher prevalence of maxLCBI4mm ≥ 400 than those without it, spotty calcification did not (p = 0.13). On multivariable analysis, CT density [odds ratio (OR) = 0.95, 95% confidence interval (CI) = 0.93-0.97; p < 0.001] and positive remodeling [OR = 7.71, 95%CI = 1.37-43.41, p = 0.02] independently predicted maxLCBI4mm ≥ 400. Receiver operating characteristic curve analysis demonstrated CT density <32.9 HU (AUC = 0.92, sensitivity = 85.7%, specificity = 91.7%) and RI ≥ 1.08 (AUC = 0.83, sensitivity = 74.3%, specificity = 85.0%) as optimal cut-off values of maxLCBI4mm ≥ 400. Of note, only 52.6% at lesions with one of these plaque features exhibited maxLCBI4mm ≥ 400, whereas the frequency of maxLCBI4mm ≥ 400 was highest at those with both features (88.5%, p < 0.001 for trend). CONCLUSIONS CT density <32.9 HU and RI ≥ 1.08 were associated with lipid-rich plaque on NIRS imaging. Our findings underscore the synergistic value of CT density and positive remodeling to detect lipid-rich plaque by CCTA.
Collapse
Affiliation(s)
- Satoshi Kitahara
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Osaka, Japan; Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Osaka, Japan.
| | - Hiroyuki Miura
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Osaka, Japan
| | - Tatsuya Nishii
- Department of Radiology, National Cerebral & Cardiovascular Center, Osaka, Japan
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiology, National Cerebral & Cardiovascular Center, Osaka, Japan
| | - Kota Murai
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Osaka, Japan; Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takamasa Iwai
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Osaka, Japan
| | - Hayato Nakamura
- Division of Internal Medicine, Okinawa Prefectural Yaeyama Hospotal, Ishigaki, Okinawa, Japan
| | - Hayato Hosoda
- Department of Cardiology, Chikamori Hospital, Kochi, Japan
| | - Hideo Matama
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Osaka, Japan; Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahito Doi
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Osaka, Japan
| | - Takahiro Nakashima
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Satoshi Honda
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Osaka, Japan
| | - Masashi Fujino
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Osaka, Japan
| | - Kazuhiro Nakao
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Osaka, Japan
| | - Shuichi Yoneda
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Osaka, Japan
| | - Kensaku Nishihira
- Department of Cardiology, Miyazaki Medical Association Hospital, Miyazaki, Japan
| | - Tomoaki Kanaya
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, Tochigi, Japan
| | - Fumiyuki Otsuka
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Osaka, Japan
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Osaka, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Osaka, Japan; Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Osaka, Japan; Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
17
|
Driessen RS, Bom MJ, van Diemen PA, Schumacher SP, Leonora RM, Everaars H, van Rossum AC, Raijmakers PG, van de Ven PM, van Kuijk CC, Lammertsma AA, Knuuti J, Ahmadi A, Min JK, Leipsic JA, Narula J, Danad I, Knaapen P. Incremental prognostic value of hybrid [15O]H2O positron emission tomography-computed tomography: combining myocardial blood flow, coronary stenosis severity, and high-risk plaque morphology. Eur Heart J Cardiovasc Imaging 2020; 21:1105-1113. [PMID: 32959061 PMCID: PMC7971168 DOI: 10.1093/ehjci/jeaa192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/25/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS This study sought to determine the prognostic value of combined functional testing using positron emission tomography (PET) perfusion imaging and anatomical testing using coronary computed tomography angiography (CCTA)-derived stenosis severity and plaque morphology in patients with suspected coronary artery disease (CAD). METHODS AND RESULTS In this retrospective study, 539 patients referred for hybrid [15O]H2O PET-CT imaging because of suspected CAD were investigated. PET was used to determine myocardial blood flow (MBF), whereas CCTA images were evaluated for obstructive stenoses and high-risk plaque (HRP) morphology. Patients were followed up for the occurrence of all-cause death and non-fatal myocardial infarction (MI). During a median follow-up of 6.8 (interquartile range 4.8-7.8) years, 42 (7.8%) patients experienced events, including 23 (4.3%) deaths, and 19 (3.5%) MIs. Annualized event rates for normal vs. abnormal results of PET MBF, CCTA-derived stenosis, and HRP morphology were 0.6 vs. 2.1%, 0.4 vs. 2.1%, and 0.8 vs. 2.8%, respectively (P < 0.001 for all). Cox regression analysis demonstrated prognostic values of PET perfusion imaging [hazard ratio (HR) 3.75 (1.84-7.63), P < 0.001], CCTA-derived stenosis [HR 5.61 (2.36-13.34), P < 0.001], and HRPs [HR 3.37 (1.83-6.18), P < 0.001] for the occurrence of death or MI. However, only stenosis severity [HR 3.01 (1.06-8.54), P = 0.039] and HRPs [HR 1.93 (1.00-3.71), P = 0.049] remained independently associated. CONCLUSION PET-derived MBF, CCTA-derived stenosis severity, and HRP morphology were univariably associated with death and MI, whereas only stenosis severity and HRP morphology provided independent prognostic value.
Collapse
Affiliation(s)
- Roel S Driessen
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Michiel J Bom
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Pepijn A van Diemen
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Stefan P Schumacher
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Remi M Leonora
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Henk Everaars
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Albert C van Rossum
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Pieter G Raijmakers
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Peter M van de Ven
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cornelis C van Kuijk
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, 20520 Turku, Finland
| | - Amir Ahmadi
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, One Gustave L Levy Place, Box 1030, New York, NY 10029, USA
| | - James K Min
- Department of Radiology, New York-Presbyterian Hospital, Weill Cornell Medicine, 413 E 69th Street, Suite 108, New York, NY 10021, USA
| | - Jonathon A Leipsic
- Department of Medicine and Radiology, University of British Columbia, 2775 Laurel St. Vancouver, BC V5Z 1M9, Canada
| | - Jagat Narula
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, One Gustave L Levy Place, Box 1030, New York, NY 10029, USA
| | - Ibrahim Danad
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Paul Knaapen
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
18
|
Abdelrahman KM, Chen MY, Dey AK, Virmani R, Finn AV, Khamis RY, Choi AD, Min JK, Williams MC, Buckler AJ, Taylor CA, Rogers C, Samady H, Antoniades C, Shaw LJ, Budoff MJ, Hoffmann U, Blankstein R, Narula J, Mehta NN. Coronary Computed Tomography Angiography From Clinical Uses to Emerging Technologies: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 76:1226-1243. [PMID: 32883417 PMCID: PMC7480405 DOI: 10.1016/j.jacc.2020.06.076] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/08/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Evaluation of coronary artery disease (CAD) using coronary computed tomography angiography (CCTA) has seen a paradigm shift in the last decade. Evidence increasingly supports the clinical utility of CCTA across various stages of CAD, from the detection of early subclinical disease to the assessment of acute chest pain. Additionally, CCTA can be used to noninvasively quantify plaque burden and identify high-risk plaque, aiding in diagnosis, prognosis, and treatment. This is especially important in the evaluation of CAD in immune-driven conditions with increased cardiovascular disease prevalence. Emerging applications of CCTA based on hemodynamic indices and plaque characterization may provide personalized risk assessment, affect disease detection, and further guide therapy. This review provides an update on the evidence, clinical applications, and emerging technologies surrounding CCTA as highlighted at the 2019 National Heart, Lung and Blood Institute CCTA Summit.
Collapse
Affiliation(s)
- Khaled M Abdelrahman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Marcus Y Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Amit K Dey
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Renu Virmani
- Department of Pathology, CVPath Institute, Gaithersburg, Maryland
| | - Aloke V Finn
- Department of Pathology, CVPath Institute, Gaithersburg, Maryland
| | - Ramzi Y Khamis
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Andrew D Choi
- Division of Cardiology and Department of Radiology, The George Washington University School of Medicine, Washington, DC
| | - James K Min
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, New York
| | - Michelle C Williams
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging, Queen's Medical Research Institute University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Habib Samady
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Leslee J Shaw
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, New York
| | - Matthew J Budoff
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ron Blankstein
- Departments of Medicine (Cardiovascular Division) and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jagat Narula
- Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josée and Henry R. Kravis Center for Cardiovascular Health Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, New York
| | - Nehal N Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
19
|
Hu W, Wu X, Dong D, Cui LB, Jiang M, Zhang J, Wang Y, Wang X, Gao L, Tian J, Cao F. Novel radiomics features from CCTA images for the functional evaluation of significant ischaemic lesions based on the coronary fractional flow reserve score. Int J Cardiovasc Imaging 2020; 36:2039-2050. [DOI: 10.1007/s10554-020-01896-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/21/2020] [Indexed: 04/12/2023]
|
20
|
Matsumoto H, Watanabe S, Kyo E, Tsuji T, Ando Y, Eisenberg E, Otaki Y, Manabe O, Cadet S, Slomka PJ, Tamarappoo BK, Berman DS, Dey D. Improved Evaluation of Lipid-Rich Plaque at Coronary CT Angiography: Head-to-Head Comparison with Intravascular US. Radiol Cardiothorac Imaging 2019; 1:e190069. [PMID: 32076671 DOI: 10.1148/ryct.2019190069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023]
Abstract
Purpose To improve the evaluation of low-attenuation plaque (LAP) by using semiautomated software and to assess whether the use of a proposed automated function (LAP editor) that excludes voxels adjacent to the outer vessel wall improves the relationship between LAP and the presence and size of the lipid-rich component (LRC) verified at intravascular US. At coronary CT angiography, quantification of LAP can improve risk stratification. Plaque, defined as the area between the vessel and the lumen wall, is prone to partial volume effects from the surrounding pericoronary adipose tissue. Materials and Methods The percentage of LAP (%LAP), defined as the percentage of noncalcified plaque with an attenuation value lower than 30 HU (LAP/total plaque volume) at greater than or equal to 0 mm (%LAP0), greater than or equal to 0.1 mm (%LAP0.1), greater than or equal to 0.3 mm (%LAP0.3), greater than or equal to 0.5 mm (%LAP0.5), and greater than or equal to 0.7 mm (%LAP0.7) inward from the vessel wall boundaries, were quantified in 155 plaques in 90 patients who underwent coronary CT angiography before intravascular US. At intravascular US, the LRC was identified by using echo attenuation, and its size was measured by using the attenuation score (summed score/analysis length) based on the attenuation arc (1 = < 90°, 2 = 90° to < 180°, 3 = 180° to < 270°, 4 = 270°-360°) for every 1 mm. Results Use of LAP editing improved the ability for discriminating LRC (areas under receiver operating characteristic curve: 0.667 with %LAP0, 0.713 with %LAP0.1 [P < .001 for comparison with %LAP0]), 0.778 with %LAP0.3 [P < .001], 0.825 with %LAP0.5 [P < .001], 0.802 with %LAP0.7 [P = .002]). %LAP0.5 had the strongest correlation (r = 0.612, P < .001) with LRC size, whereas %LAP0 resulted in the weakest correlation (r = 0.307; P < .001). Conclusion Evaluation of LAP at coronary CT angiography can be significantly improved by excluding voxels that are adjacent to the vessel wall boundaries by 0.5 mm.Supplemental material is available for this article.© RSNA, 2019.
Collapse
Affiliation(s)
- Hidenari Matsumoto
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Satoshi Watanabe
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Eisho Kyo
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Takafumi Tsuji
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Yosuke Ando
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Evann Eisenberg
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Yuka Otaki
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Osamu Manabe
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Sebastien Cadet
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Piotr J Slomka
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Balaji K Tamarappoo
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Daniel S Berman
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| | - Damini Dey
- Department of Imaging (H.M., E.E., Y.O., O.M., S.C., P.J.S., B.K.T., D.S.B.), Heart Institute (B.K.T., D.S.B.), and Biomedical Imaging Research Institute (D.D.), Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, and Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan (S.W., E.K., T.T., Y.A.)
| |
Collapse
|
21
|
Nakanishi R, Motoyama S, Leipsic J, Budoff MJ. How accurate is atherosclerosis imaging by coronary computed tomography angiography? J Cardiovasc Comput Tomogr 2019; 13:254-260. [DOI: 10.1016/j.jcct.2019.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/11/2019] [Accepted: 06/10/2019] [Indexed: 02/01/2023]
|
22
|
Effect of tube potential and luminal contrast attenuation on atherosclerotic plaque attenuation by coronary CT angiography: In vivo comparison with intravascular ultrasound. J Cardiovasc Comput Tomogr 2019; 13:219-225. [DOI: 10.1016/j.jcct.2019.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/08/2018] [Indexed: 12/26/2022]
|
23
|
Matsumoto H, Watanabe S, Kyo E, Tsuji T, Ando Y, Otaki Y, Cadet S, Gransar H, Berman DS, Slomka P, Tamarappoo BK, Dey D. Standardized volumetric plaque quantification and characterization from coronary CT angiography: a head-to-head comparison with invasive intravascular ultrasound. Eur Radiol 2019; 29:6129-6139. [PMID: 31028446 DOI: 10.1007/s00330-019-06219-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES We sought to evaluate the accuracy of standardized total plaque volume (TPV) measurement and low-density non-calcified plaque (LDNCP) assessment from coronary CT angiography (CTA) in comparison with intravascular ultrasound (IVUS). METHODS We analyzed 118 plaques without extensive calcifications from 77 consecutive patients who underwent CTA prior to IVUS. CTA TPV was measured with semi-automated software comparing both scan-specific (automatically derived from scan) and fixed attenuation thresholds. From CTA, %LDNCP was calculated voxels below multiple LDNCP thresholds (30, 45, 60, 75, and 90 Hounsfield units [HU]) within the plaque. On IVUS, the lipid-rich component was identified by echo attenuation, and its size was measured using attenuation score (summed score ∕ analysis length) based on attenuation arc (1 = < 90°; 2 = 90-180°; 3 = 180-270°; 4 = 270-360°) every 1 mm. RESULTS TPV was highly correlated between CTA using scan-specific thresholds and IVUS (r = 0.943, p < 0.001), with no significant difference (2.6 mm3, p = 0.270). These relationships persisted for calcification patterns (maximal IVUS calcium arc of 0°, < 90°, or ≥ 90°). The fixed thresholds underestimated TPV (- 22.0 mm3, p < 0.001) and had an inferior correlation with IVUS (p < 0.001) compared with scan-specific thresholds. A 45-HU cutoff yielded the best diagnostic performance for identification of lipid-rich component, with an area under the curve of 0.878 vs. 0.840 for < 30 HU (p = 0.023), and corresponding %LDNCP resulted in the strongest correlation with the lipid-rich component size (r = 0.691, p < 0.001). CONCLUSIONS Standardized noninvasive plaque quantification from CTA using scan-specific thresholds correlates highly with IVUS. Use of a < 45-HU threshold for LDNCP quantification improves lipid-rich plaque assessment from CTA. KEY POINTS • Standardized scan-specific threshold-based plaque quantification from coronary CT angiography provides an accurate total plaque volume measurement compared with intravascular ultrasound. • Attenuation histogram-based low-density non-calcified plaque quantification can improve lipid-rich plaque assessment from coronary CT angiography.
Collapse
Affiliation(s)
- Hidenari Matsumoto
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA.
| | - Satoshi Watanabe
- Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan
| | - Eisho Kyo
- Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan
| | - Takafumi Tsuji
- Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan
| | - Yosuke Ando
- Department of Cardiology, Kusatsu Heart Center, Kusatsu, Shiga, Japan
| | - Yuka Otaki
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
| | - Sebastien Cadet
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
| | - Heidi Gransar
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
| | - Daniel S Berman
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
| | - Piotr Slomka
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
| | - Balaji K Tamarappoo
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA, 90048, USA
- The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
24
|
Al-Mallah MH. Unlocking the secrets of high-risk lipid rich plaque: Are we there? Atherosclerosis 2018; 275:382-383. [PMID: 29961600 DOI: 10.1016/j.atherosclerosis.2018.06.873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Mouaz H Al-Mallah
- Advanced Cardiac Imaging, King Abdulaziz Cardiac Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|