1
|
Sanchez-Gimenez R, Peiró ÓM, Bonet G, Carrasquer A, Fragkiadakis GA, Bulló M, Papandreou C, Bardaji A. TCA cycle metabolites associated with adverse outcomes after acute coronary syndrome: mediating effect of renal function. Front Cardiovasc Med 2023; 10:1157325. [PMID: 37441709 PMCID: PMC10333508 DOI: 10.3389/fcvm.2023.1157325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Aims To examine relationships of tricarboxylic acid (TCA) cycle metabolites with risk of cardiovascular events and mortality after acute coronary syndrome (ACS), and evaluate the mediating role of renal function in these associations. Methods This is a prospective study performed among 309 ACS patients who were followed for a mean of 6.7 years. During this period 131 patients developed major adverse cardiovascular events (MACE), defined as the composite of myocardial infarction, hospitalization for heart failure, and all-cause mortality, and 90 deaths were recorded. Plasma concentrations of citrate, aconitate, isocitrate, succinate, malate, fumarate, α-ketoglutarate and d/l-2-hydroxyglutarate were quantified using LC-tandem MS. Multivariable Cox regression models were used to estimate hazard ratios, and a counterfactual-based mediation analysis was performed to test the mediating role of estimated glomerular filtration rate (eGFR). Results After adjustment for traditional cardiovascular risk factors and medications, positive associations were found between isocitrate and MACE (HR per 1 SD, 1.25; 95% CI: 1.03, 1.50), and between aconitate, isocitrate, d/l-2-hydroxyglutarate and all-cause mortality (HR per 1 SD, 1.41; 95% CI: 1.07, 1.84; 1.58; 95% CI: 1.23, 2.02; 1.38; 95% CI: 1.14, 1.68). However, these associations were no longer significant after additional adjustment for eGFR. Mediation analyses demonstrated that eGFR is a strong mediator of these associations. Conclusion These findings underscore the importance of TCA metabolites and renal function as conjunctive targets in the prevention of ACS complications.
Collapse
Affiliation(s)
- Raul Sanchez-Gimenez
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Medicine and Surgery, Rovira I Virgili University, Tarragona, Spain
| | - Óscar M. Peiró
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Medicine and Surgery, Rovira I Virgili University, Tarragona, Spain
| | - Gil Bonet
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Medicine and Surgery, Rovira I Virgili University, Tarragona, Spain
| | - Anna Carrasquer
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Medicine and Surgery, Rovira I Virgili University, Tarragona, Spain
| | - George A. Fragkiadakis
- Department of Nutrition and Dietetics Sciences, School of Health Sciences, Hellenic Mediterranean University, Siteia, Greece
| | - Mònica Bulló
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira I Virgili University, Reus, Spain
- Center of Environmental, Food and Toxicological Technology – TecnATox, Rovira i Virgili University, Reus, Spain
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| | - Christopher Papandreou
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Nutrition and Dietetics Sciences, School of Health Sciences, Hellenic Mediterranean University, Siteia, Greece
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira I Virgili University, Reus, Spain
- Center of Environmental, Food and Toxicological Technology – TecnATox, Rovira i Virgili University, Reus, Spain
| | - Alfredo Bardaji
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Institute of Health Pere Virgili (IISPV), Tarragona-Reus, Spain
- Department of Medicine and Surgery, Rovira I Virgili University, Tarragona, Spain
| |
Collapse
|
2
|
Li Q, Chen W, Huang W, Hou R, Huang X, Xu M, Que L, Wang L, Yang Y. 1H-NMR-Based Metabonomics Study to Reveal the Progressive Metabolism Regulation of SAP Deficiency on ApoE -/- Mice. Metabolites 2022; 12:metabo12121278. [PMID: 36557316 PMCID: PMC9785365 DOI: 10.3390/metabo12121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis is the most common disease of the vascular system and the metabolic disorder is one of its important molecular mechanisms. SAP protein is found to be highly expressed in atherosclerotic blood vessels. Our previous study found that SAP deficiency can significantly inhibit the development of atherosclerosis. However, the regulatory effect of SAP deficiency on AS metabolism is unknown. Based on 1H-NMR metabonomics, this study investigated the serum metabolic changes in ApoE-/-;SAP-/- mice compared with ApoE-/- mice during the whole progression of atherosclerosis. The results showed that acetate, pyruvate, choline and VLDL + LDL were statistically regulated to the normal levels as in C57 mice by SAP deficiency in ApoE-/-;SAP-/- mice at 8 w (without obvious plaques). With the appearance and aggravation of atherosclerotic plaques (8 + 4 w and 8 + 8 w), the four metabolites of acetate, pyruvate, choline and VLDL + LDL were continuously regulated, which were denoted as the metabolic regulatory markers of SAP deficiency. We also found that the changes in these four metabolites had nothing to do with high-fat diet. Therefore, it was revealed that SAP deficiency regulated the metabolic disorders in ApoE-/- prior to the appearance of obvious atherosclerotic plaques, which is one of the important mechanisms leading to the inhibition of atherosclerosis, providing a new basis for the application of SAP in atherosclerosis.
Collapse
Affiliation(s)
- Qian Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wanting Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenbin Huang
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ranran Hou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinping Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Man Xu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Limei Que
- Foshan Fosun Chancheng Hospital, Foshan 528031, China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongxia Yang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangzhou 510006, China
- Correspondence: ; Tel.: +86-(0)20-3935-2197
| |
Collapse
|
3
|
Anxiety disturbs the blood plasma metabolome in acute coronary syndrome patients. Sci Rep 2021; 11:12897. [PMID: 34145340 PMCID: PMC8213718 DOI: 10.1038/s41598-021-92421-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/31/2021] [Indexed: 01/14/2023] Open
Abstract
Coronary heart disease (CHD) is the result of a complex metabolic disorder caused by various environmental and genetic factors, and often has anxiety as a comorbidity. Rupture of atherosclerotic plaque in CHD patients can lead to acute coronary syndrome (ACS). Anxiety is a known independent risk factor for the adverse cardiovascular events and mortality in ACS, but it remains unclear how stress-induced anxiety behavior impacts their blood plasma metabolome and contributes to worsening of CHD. The present study aimed to determine the effect of anxiety on the plasma metabolome in ACS patients. After receiving ethical approval 26 ACS patients comorbid anxiety were recruited and matched 26 ACS patients. Blood plasma samples were collected from the patients and stored at − 80 °C until metabolome profiling. Metabolome analysis was performed by liquid chromatography mass spectrometry (LC–MS), and the data were subjected to multivariate analysis. Disturbance of 39 plasma metabolites was noted in the ACS with comorbid anxiety group compared to the ACS group. These disturbed metabolites were mainly involved in tryptophan metabolism, pyrimidine metabolism, glycerophospholipid metabolism, pentose phosphate pathway, and pentose and glucuronate interconversions. The most significantly affected pathway was tryptophan metabolism including the down-regulation of tryptophan and serotonin. Glycerophospholipids metabolism, pentose and glucuronate interconversions, and pentose phosphate pathway were also greatly affected. These results suggest that anxiety can disturb three translation of material in ACS patients. Besides the above metabolism pathways pyrimidine metabolism was significantly disturbed. Based on the present findings the plasma metabolites monitoring can be recommended and may be conducive to early biomarkers detection for personalized treatment anxiety in CHD patients in future.
Collapse
|
4
|
Inoue KI, Toyoda S, Jojima T, Abe S, Sakuma M, Inoue T. Time-restricted feeding prevents high-fat and high-cholesterol diet-induced obesity but fails to ameliorate atherosclerosis in apolipoprotein E-knockout mice. Exp Anim 2020; 70:194-202. [PMID: 33268668 PMCID: PMC8150245 DOI: 10.1538/expanim.20-0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the leading risk factors for atherosclerosis is obesity, which is commonly caused by a nutrient-rich Western-style diet, sedentary behaviors, and shift
work. Time-restricted (TR) feeding and intermittent fasting are both known to prevent overweight and adiposity, improve glucose tolerance, and decrease plasma
cholesterol in high-fat diet-induced obese mice. Here we examined the overall effects of TR feeding of a Western diet (fat, 40.5 Kcal%; cholesterol, 0.21 g%)
using 8-week-old Apoe−/− mice. Mice were assigned into three groups: (1) an ad libitum (AL) group fed an AL Western
diet, (2) a TR group with restricted access to a Western diet (15 h/day, 12:00 to 3:00 Zeitgeber time [ZT]); and (3) an Ex/TR group fed a TR Western diet and
subjected to physical exercise at 12:00 ZT. Mice in the AL group gained body weight rapidly during the 14-week observation period. With TR feeding, excessive
weight gain, liver adiposity, visceral fat, and brown adipose tissue volume were effectively suppressed. Although TR feeding failed to decrease Oil Red
O-stained aortic plaques in Apoe−/− mice, physical exercise significantly decreased them. Neither TR feeding with exercise nor that
without exercise decreased the mean area under the curve of the plasma cholesterol level or the fasting plasma glucose. Collectively, TR feeding of a Western
diet prevented the development of obesity but failed to ameliorate atherosclerosis in Apoe−/− mice.
Collapse
Affiliation(s)
- Ken-Ichi Inoue
- Comprehensive Research Facilities for Advanced Medical Science, Research Center for Advanced Medical Science, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.,Center of Regenerative Medicine, Dokkyo Medical University Hospital, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Teruo Jojima
- Department of Endocrinology and Metabolism, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Shichiro Abe
- Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Masashi Sakuma
- Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Teruo Inoue
- Comprehensive Research Facilities for Advanced Medical Science, Research Center for Advanced Medical Science, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.,Center of Regenerative Medicine, Dokkyo Medical University Hospital, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.,Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| |
Collapse
|
5
|
Zhou Y, Wang L, Jia L, Lu B, Gu G, Bai L, Cui W. The Monocyte to High-Density Lipoprotein Cholesterol Ratio in the Prediction for Atherosclerosis: A Retrospective Study in Adult Chinese Participants. Lipids 2020; 56:69-80. [PMID: 32895983 DOI: 10.1002/lipd.12276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022]
Abstract
The ratio of monocyte to high-density lipoprotein cholesterol level (MHR) was a newly proposed inflammatory and oxidative stress marker. This study aimed to explore the association between MHR and Brachial-ankle pulse wave velocity (Ba-PWV) in adult Chinese participants. A total of 2029 participants were divided into two groups according to the Ba-PWV: a high Ba-PWV group (Ba-PWV ≥1400 cm/s) and a low Ba-PWV group (Ba-PWV < 1400 cm/s). According to the cut-off points of quartile of MHR, the participants were divided into four groups. The relationship between MHR and Ba-PWV was analyzed. After adjusting for potential confounders, a non-linear relationship between MHR and Ba-PWV was found in the participants, and the inflection point was 7.78 in the non-linear curve. On the left of the inflection point, MHR had a positive correlation with Ba-PWV (OR = 1.17, 95% confidence interval (CI): 1.08 to 1.28, p < 0.01). However, there was no obvious relationship between MHR and Ba-PWV on the right of the inflection point (OR = 0.96, 95% CI: 0.90 to 1.01, p = 0.117). Further demographic analysis demonstrated that the positive relationship between MHR and Ba-PWV was found in the female participants with hypertension family history, but without a current history of hypertension, smoking, or drinking (p < 0.05). An increased MHR is a risk factor of atherosclerosis, which may predict the potential development of atherosclerosis. When the MHR is close to 7.78, it has the highest predictive value for the risk of atherosclerosis occurrence.
Collapse
Affiliation(s)
- Yaqing Zhou
- Department of cardiology, The Second Hospital of Hebei Medical University and Institute of Cardiocerebrovascular Disease of Hebei Province, Shijiazhuang, 050000, China
| | - Liyi Wang
- Department of infection management, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Limei Jia
- Department of physical examination center, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Baojin Lu
- Department of physical examination center, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Guoqiang Gu
- Department of cardiology, The Second Hospital of Hebei Medical University and Institute of Cardiocerebrovascular Disease of Hebei Province, Shijiazhuang, 050000, China
| | - Long Bai
- Department of cardiology, The Second Hospital of Hebei Medical University and Institute of Cardiocerebrovascular Disease of Hebei Province, Shijiazhuang, 050000, China
| | - Wei Cui
- Department of cardiology, The Second Hospital of Hebei Medical University and Institute of Cardiocerebrovascular Disease of Hebei Province, Shijiazhuang, 050000, China
| |
Collapse
|
6
|
Katakami N, Omori K, Taya N, Arakawa S, Takahara M, Matsuoka TA, Tsugawa H, Furuno M, Bamba T, Fukusaki E, Shimomura I. Plasma metabolites associated with arterial stiffness in patients with type 2 diabetes. Cardiovasc Diabetol 2020; 19:75. [PMID: 32527273 PMCID: PMC7291560 DOI: 10.1186/s12933-020-01057-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Although an increased arterial stiffness has been associated with traditional coronary risk factors, the risk factors and pathology of arterial stiffness remain unclear. In this study, we aimed to identify the plasma metabolites associated with arterial stiffness in patients with type 2 diabetes mellitus. METHODS We used the metabolomic data of 209 patients with type 2 diabetes as the first dataset for screening. To form the second dataset for validation, we enlisted an additional 31 individuals with type 2 diabetes. The non-targeted metabolome analysis of fasting plasma samples using gas chromatography coupled with mass spectrometry and the measurement of brachial-ankle pulse wave velocity (baPWV) were performed. RESULTS A total of 65 annotated metabolites were detected. In the screening dataset, there were statistically significant associations between the baPWV and plasma levels of indoxyl sulfate (r = 0.226, p = 0.001), mannitol (r = 0.178, p = 0.010), mesoerythritol (r = 0.234, p = 0.001), and pyroglutamic acid (r = 0.182, p = 0.008). Multivariate regression analyses revealed that the plasma levels of mesoerythritol were significantly (β = 0.163, p = 0.025) and that of indoxyl sulfate were marginally (β = 0.124, p = 0.076) associated with baPWV, even after adjusting for traditional coronary risk factors. In the independent validation dataset, there was a statistically significant association between the baPWV and plasma levels of indoxyl sulfate (r = 0.430, p = 0.016). However, significant associations between the baPWV and plasma levels of the other three metabolites were not confirmed. CONCLUSIONS/INTERPRETATION The plasma levels of indoxyl sulfate were associated with arterial stiffness in Japanese patients with type 2 diabetes. Although the plasma levels of mannitol, mesoerythritol, and pyroglutamic acid were also associated with arterial stiffness, further investigation is needed to verify the results.
Collapse
Affiliation(s)
- Naoto Katakami
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Metabolism and Atherosclerosis, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Kazuo Omori
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naohiro Taya
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shoya Arakawa
- Laboratory of Bioresource Engineering, Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Mitsuyoshi Takahara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taka-Aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Masahiro Furuno
- Laboratory of Bioresource Engineering, Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Eiichiro Fukusaki
- Laboratory of Bioresource Engineering, Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
7
|
Takeda H, Izumi Y, Tamura S, Koike T, Koike Y, Shiomi M, Bamba T. Lipid Profiling of Serum and Lipoprotein Fractions in Response to Pitavastatin Using an Animal Model of Familial Hypercholesterolemia. J Proteome Res 2020; 19:1100-1108. [PMID: 31965805 DOI: 10.1021/acs.jproteome.9b00602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Statins are widely used for the treatment of atherosclerotic cardiovascular diseases. They inhibit cholesterol biosynthesis in the liver and cause pleiotropic effects, including anti-inflammatory and antioxidant effects. To develop novel therapeutic drugs, the effect of blood-borne lipid molecules on the pleiotropic effects of statins must be elucidated. Myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbits, an animal model for hypercholesterolemia, are suitable for the determination of lipid molecules in the blood in response to statins because their lipoprotein metabolism is similar to that of humans. Herein, lipid molecules were investigated by lipidome analysis in response to pitavastatin using WHHLMI rabbits. Various lipid molecules in the blood were measured using a supercritical fluid chromatography triple quadrupole mass spectrometry. Cholesterol and cholesterol ester blood concentrations decreased by reducing the secretion of very low density lipoproteins from the liver. Independent of the inhibition effects of cholesterol biosynthesis, the concentrations of some lipids with anti-inflammation and antioxidant effects (phospholipid molecules with n-6 fatty acid side chains, lysophosphatidylcholines, phosphatidylethanolamine plasmalogens, and ceramide molecules) were significantly altered. These findings may lead to further investigation of the mechanism of statin action.
Collapse
Affiliation(s)
- Hiroaki Takeda
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shohei Tamura
- Institute for Experimental Animals, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Tomonari Koike
- Institute for Experimental Animals, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yui Koike
- Institute for Experimental Animals, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masashi Shiomi
- Institute for Experimental Animals, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.,Division of Comparative Pathophysiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
Shiomi M. The History of the WHHL Rabbit, an Animal Model of Familial Hypercholesterolemia (I) - Contribution to the Elucidation of the Pathophysiology of Human Hypercholesterolemia and Coronary Heart Disease. J Atheroscler Thromb 2019; 27:105-118. [PMID: 31748469 PMCID: PMC7049476 DOI: 10.5551/jat.rv17038-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Animal models that closely resemble both human disease findings and their onset mechanism have contributed to the advancement of biomedical science. The Watanabe heritable hyperlipidemic (WHHL) rabbit and its advanced strains (the coronary atherosclerosis-prone and the myocardial infarction-prone WHHL rabbits) developed at Kobe University (Kobe, Japan), an animal model of human familial hypercholesterolemia, have greatly contributed to the elucidation of the pathophysiology of human lipoprotein metabolism, hypercholesterolemia, atherosclerosis, and coronary heart disease, as described below. 1) The main part of human lipoprotein metabolism has been elucidated, and the low-density lipoprotein (LDL) receptor pathway hypothesis derived from studies using fibroblasts was proven in vivo. 2) Oxidized LDL accumulates in the arterial wall, monocyte adhesion molecules are expressed on arterial endothelial cells, and monocyte-derived macrophages infiltrate the arterial intima, resulting in the formation and progression of atherosclerosis. 3) Coronary lesions differ from aortic lesions in lesion composition. 4) Factors involved in the development of atherosclerosis differ between the coronary arteries and aorta. 5) The rupture of coronary lesions requires secondary mechanical forces, such as spasm, in addition to vulnerable plaques. 6) Specific lipid molecules in the blood have been identified as markers of the progression of coronary lesions. At the end of the breeding of the WHHL rabbit family at Kobe University, this review summarizes the history of the development of the WHHL rabbit family and their contribution to biomedical science.
Collapse
Affiliation(s)
- Masashi Shiomi
- Institute for Experimental Animals, Kobe University Graduate School of Medicine
| |
Collapse
|