1
|
Makhmudova U, Steinhagen-Thiessen E, Volpe M, Landmesser U. Advances in nucleic acid-targeted therapies for cardiovascular disease prevention. Cardiovasc Res 2024; 120:1107-1125. [PMID: 38970537 DOI: 10.1093/cvr/cvae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 07/08/2024] Open
Abstract
Nucleic acid-based therapies are being rapidly developed for prevention and management of cardiovascular diseases (CVD). Remarkable advancements have been achieved in the delivery, safety, and effectiveness of these therapeutics in the past decade. These therapies can also modulate therapeutic targets that cannot be sufficiently addressed using traditional drugs or antibodies. Among the nucleic acid-targeted therapeutics under development for CVD prevention are RNA-targeted approaches, including antisense oligonucleotides (ASO), small interfering RNAs (siRNA), and novel genome editing techniques. Genetic studies have identified potential therapeutic targets that are suggested to play a causative role in development and progression of CVD. RNA- and DNA-targeted therapeutics can be particularly well delivered to the liver, where atherogenic lipoproteins and angiotensinogen (AGT) are produced. Current targets in lipid metabolism include proprotein convertase subtilisin/kexin type 9 (PCSK9), apolipoprotein A (ApoA), apolipoprotein C3 (ApoC3), angiopoietin-like 3 (ANGPTL3). Several large-scale clinical development programs for nucleic acid-targeted therapies in cardiovascular prevention are under way, which may also be attractive from a therapy adherence point of view, given the long action of these therapeutics. In addition to genome editing, the concept of gene transfer is presently under assessment in preclinical and clinical investigations as a potential approach for addressing low-density lipoprotein receptor deficiency. Furthermore, ongoing research is exploring the use of RNA-targeted therapies to treat arterial hypertension by reducing hepatic angiotensinogen (AGT) production. This review summarizes the rapid translation of siRNA and ASO therapeutics as well as gene editing into clinical studies to treat dyslipidemia and arterial hypertension for CVD prevention. It also outlines potential innovative therapeutic options that are likely relevant to the future of cardiovascular medicine.
Collapse
Affiliation(s)
- Umidakhon Makhmudova
- Department of Cardiology, Angiology, and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik/Centrum, Charitéplatz 1, 10117 Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Friede Springer Cardiovascular Prevention Center at Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik/Centrum, Charitéplatz 1, 10117 Berlin, Germany
- Department of Endocrinology and Metabolic Diseases, Charite Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035-1039, Rome 00189, Italy
- Cardiology Department, IRCCS San Raffaele Roma, Via di Valcannuta 250, Rome 00166, Italy
| | - Ulf Landmesser
- Department of Cardiology, Angiology, and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik/Centrum, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Cardiovascular Research, DZHK, Partner Site Berlin, Germany
| |
Collapse
|
2
|
Incocciati A, Cappelletti C, Masciarelli S, Liccardo F, Piacentini R, Giorgi A, Bertuccini L, De Berardis B, Fazi F, Boffi A, Bonamore A, Macone A. Ferritin-based disruptor nanoparticles: A novel strategy to enhance LDL cholesterol clearance via multivalent inhibition of PCSK9-LDL receptor interaction. Protein Sci 2024; 33:e5111. [PMID: 39150051 PMCID: PMC11328107 DOI: 10.1002/pro.5111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/17/2024]
Abstract
Hypercholesterolemia, characterized by elevated low-density lipoprotein (LDL) cholesterol levels, is a significant risk factor for cardiovascular disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in cholesterol metabolism by regulating LDL receptor degradation, making it a therapeutic target for mitigating hypercholesterolemia-associated risks. In this context, we aimed to engineer human H ferritin as a scaffold to present 24 copies of a PCSK9-targeting domain. The rationale behind this protein nanoparticle design was to disrupt the PCSK9-LDL receptor interaction, thereby attenuating the PCSK9-mediated impairment of LDL cholesterol clearance. The N-terminal sequence of human H ferritin was engineered to incorporate a 13-amino acid linear peptide (Pep2-8), which was previously identified as the smallest PCSK9 inhibitor. Exploiting the quaternary structure of ferritin, engineered nanoparticles were designed to display 24 copies of the targeting peptide on their surface, enabling a multivalent binding effect. Extensive biochemical characterization confirmed precise control over nanoparticle size and morphology, alongside robust PCSK9-binding affinity (KD in the high picomolar range). Subsequent efficacy assessments employing the HepG2 liver cell line demonstrated the ability of engineered ferritin's ability to disrupt PCSK9-LDL receptor interaction, thereby promoting LDL receptor recycling on cell surfaces and consequently enhancing LDL uptake. Our findings highlight the potential of ferritin-based platforms as versatile tools for targeting PCSK9 in the management of hypercholesterolemia. This study not only contributes to the advancement of ferritin-based therapeutics but also offers valuable insights into novel strategies for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Alessio Incocciati
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Chiara Cappelletti
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Francesca Liccardo
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Roberta Piacentini
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
- Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Lucia Bertuccini
- Core Facilities, Microscopy Area, Istituto Superiore di Sanita, Rome, Italy
| | - Barbara De Berardis
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessandra Bonamore
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Eslami SM, Padhi C, Rahman IR, van der Donk WA. Expression and Subcellular Localization of Lanthipeptides in Human Cells. ACS Synth Biol 2024; 13:2128-2140. [PMID: 38925629 PMCID: PMC11264318 DOI: 10.1021/acssynbio.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/19/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cyclic peptides, such as most ribosomally synthesized and post-translationally modified peptides (RiPPs), represent a burgeoning area of interest in therapeutic and biotechnological research because of their conformational constraints and reduced susceptibility to proteolytic degradation compared to their linear counterparts. Herein, an expression system is reported that enables the production of structurally diverse lanthipeptides and derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus, the endoplasmic reticulum, and the plasma membrane is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide-based cyclic peptide inhibitors of native, organelle-specific protein-protein interactions in mammalian systems.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chandrashekhar Padhi
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Imran R. Rahman
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Biochemistry, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Mahjoubin-Tehran M, Rezaei S, Santos RD, Jamialahmadi T, Almahmeed W, Sahebkar A. Targeting PCSK9 as a key player in lipid metabolism: exploiting the therapeutic and biosensing potential of aptamers. Lipids Health Dis 2024; 23:156. [PMID: 38796450 PMCID: PMC11128129 DOI: 10.1186/s12944-024-02151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
The degradation of low-density lipoprotein receptor (LDLR) is induced by proprotein convertase subtilisin/kexin type 9 (PCSK9), resulting in elevated plasma concentrations of LDL cholesterol. Therefore, inhibiting the interactions between PCSK9 and LDLR is a desirable therapeutic goal for managing hypercholesterolemia. Aptamers, which are RNA or single-stranded DNA sequences, can recognize their targets based on their secondary structure. Aptamers exhibit high selectivity and affinity for binding to target molecules. The systematic evolution of ligands by exponential enrichment (SELEX), a combination of biological approaches, is used to screen most aptamers in vitro. Due to their unique advantages, aptamers have garnered significant interest since their discovery and have found extensive applications in various fields. Aptamers have been increasingly utilized in the development of biosensors for sensitive detection of pathogens, analytes, toxins, drug residues, and malignant cells. Furthermore, similar to monoclonal antibodies, aptamers can serve as therapeutic tools. Unlike certain protein therapeutics, aptamers do not elicit antibody responses, and their modified sugars at the 2'-positions generally prevent toll-like receptor-mediated innate immune responses. The focus of this review is on aptamer-based targeting of PCSK9 and the application of aptamers both as biosensors and therapeutic agents.
Collapse
Affiliation(s)
- Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Bartolomei M, Li J, Capriotti AL, Fanzaga M, d’Adduzio L, Laganà A, Cerrato A, Mulinacci N, Cecchi L, Bollati C, Lammi C. Olive ( Olea europaea L.) Seed as New Source of Cholesterol-Lowering Bioactive Peptides: Elucidation of Their Mechanism of Action in HepG2 Cells and Their Trans-Epithelial Transport in Differentiated Caco-2 Cells. Nutrients 2024; 16:371. [PMID: 38337656 PMCID: PMC10857614 DOI: 10.3390/nu16030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The production of olive oil has important economic repercussions in Mediterranean countries but also a considerable impact on the environment. This production generates enormous quantities of waste and by-products, which can be exploited as new raw materials to obtain innovative ingredients and therefore make the olive production more sustainable. In a previous study, we decided to foster olive seeds by generating two protein hydrolysates using food-grade enzymes, alcalase (AH) and papain (PH). These hydrolysates have shown, both in vitro and at the cellular level, antioxidant and antidiabetic activities, being able to inhibit the activity of the DPP-IV enzyme and modulate the secretion of GLP-1. Given the multifunctional behavior of peptides, both hydrolysates displayed dual hypocholesterolemic activity, inhibiting the activity of HMGCoAR and impairing the PPI of PCSK9/LDLR, with an IC50 equal to 0.61 mg/mL and 0.31 mg/mL for AH and PH, respectively. Furthermore, both samples restored LDLR protein levels on the membrane of human hepatic HepG2 cells, increasing the uptake of LDL from the extracellular environment. Since intestinal bioavailability is a key component of bioactive peptides, the second objective of this work is to evaluate the capacity of AH and PH peptides to be transported by differentiated human intestinal Caco-2 cells. The peptides transported by intestinal cells have been analyzed using mass spectrometry analysis, identifying a mixture of stable peptides that may represent new ingredients with multifunctional qualities for the development of nutraceuticals and functional foods to delay the onset of metabolic syndrome, promoting the principles of environmental sustainability.
Collapse
Affiliation(s)
- Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| | - Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy (A.L.); (A.C.)
| | - Melissa Fanzaga
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| | - Lorenza d’Adduzio
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy (A.L.); (A.C.)
| | - Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy (A.L.); (A.C.)
| | - Nadia Mulinacci
- Department of Neuroscience, Psychology, Drug and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, 50019 Florence, Italy;
| | - Lorenzo Cecchi
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies, University of Florence, Via Donizetti, 50144 Florence, Italy;
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (M.B.); (M.F.); (L.d.)
| |
Collapse
|
6
|
Bao X, Liang Y, Chang H, Cai T, Feng B, Gordon K, Zhu Y, Shi H, He Y, Xie L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Signal Transduct Target Ther 2024; 9:13. [PMID: 38185721 PMCID: PMC10772138 DOI: 10.1038/s41392-023-01690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China.
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China.
- Center for Clinical Research, Fudan University Pudong Medical Center, Shanghai, China.
- Clinical Research Center for Cell-based Immunotherapy, Fudan University, Shanghai, China.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Fudan University Pudong Medical Center, Shanghai, China
| | - Hanman Chang
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Tianji Cai
- Department of Sociology, University of Macau, Taipa, Macau, China
| | - Baijie Feng
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China
| | - Konstantin Gordon
- Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-tech Park, Shanghai, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Volkova A, Shulgin B, Helmlinger G, Peskov K, Sokolov V. Optimization of the MACE endpoint composition to increase power in studies of lipid-lowering therapies-a model-based meta-analysis. Front Cardiovasc Med 2024; 10:1242845. [PMID: 38304061 PMCID: PMC10832431 DOI: 10.3389/fcvm.2023.1242845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024] Open
Abstract
Aims To develop a model-informed methodology for the optimization of the Major Adverse Cardiac Events (MACE) composite endpoint, based on a model-based meta-analysis across anti-hypercholesterolemia trials of statin and anti-PCSK9 drugs. Methods and results Mixed-effects meta-regression modeling of stand-alone MACE outcomes was performed, with therapy type, population demographics, baseline and change over time in lipid biomarkers as predictors. Randomized clinical trials up to June 28, 2022, of either statins or anti-PCSK9 therapies were identified through a systematic review process in PubMed and ClinicalTrials.gov databases. In total, 54 studies (270,471 patients) were collected, reporting 15 different single cardiovascular events. Treatment-mediated decrease in low density lipoprotein cholesterol, baseline levels of remnant and high-density lipoprotein cholesterol as well as non-lipid population characteristics and type of therapy were identified as significant covariates for 10 of the 15 outcomes. The required sample size per composite 3- and 4-point MACE endpoint was calculated based on the estimated treatment effects in a population and frequencies of the incorporated events in the control group, trial duration, and uncertainty in model parameters. Conclusion A quantitative tool was developed and used to benchmark different compositions of 3- and 4-point MACE for statins and anti-PCSK9 therapies, based on the minimum population size required to achieve statistical significance in relative risk reduction, following meta-regression modeling of the single MACE components. The approach we developed may be applied towards the optimization of the design of future trials in dyslipidemia disorders as well as in other therapeutic areas.
Collapse
Affiliation(s)
- Alina Volkova
- Modeling and Simulation Decisions FZ—LLC, Dubai, United Arab Emirates
- Sirius University of Science and Technology, Sirius, Russia
| | - Boris Shulgin
- Research Center of Model-Informed Drug Development, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Kirill Peskov
- Modeling and Simulation Decisions FZ—LLC, Dubai, United Arab Emirates
- Sirius University of Science and Technology, Sirius, Russia
- Research Center of Model-Informed Drug Development, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Victor Sokolov
- Modeling and Simulation Decisions FZ—LLC, Dubai, United Arab Emirates
- Sirius University of Science and Technology, Sirius, Russia
| |
Collapse
|
8
|
Yuan D, Xu N, Song Y, Zhang Z, Xu J, Liu Z, Tang X, Han Y, Chen Y, Zhang Y, Zhu P, Guo X, Wang Z, Liu R, Wang Q, Yao Y, Feng Y, Zhao X, Yuan J. Association Between Free Fatty Acids and Cardiometabolic Risk in Coronary Artery Disease: Results From the PROMISE Study. J Clin Endocrinol Metab 2023; 109:125-134. [PMID: 37540767 DOI: 10.1210/clinem/dgad416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Indexed: 08/06/2023]
Abstract
CONTEXT The association between free fatty acids (FFAs) and unfavorable clinical outcomes has been reported in the general population. However, evidence in the secondary prevention population is relatively scarce. OBJECTIVE We aimed to examine the relationship between FFA and cardiovascular risk in patients with coronary artery disease (CAD). METHODS This study was based on a multicenter cohort of patients with CAD enrolled from January 2015 to May 2019. The primary outcome was all-cause death. Secondary outcomes included cardiac death and major adverse cardiovascular events (MACE), a composite of death, myocardial infarction, and unplanned revascularization. RESULTS During a follow-up of 2 years, there were 468 (3.0%) all-cause deaths, 335 (2.1%) cardiac deaths, and 1279 (8.1%) MACE. Elevated FFA levels were independently associated with increased risks of all-cause death, cardiac death, and MACE (all P < .05). Moreover, When FFA were combined with an original model derived from the Cox regression, there were significant improvements in discrimination and reclassification for prediction of all-cause death (net reclassification improvement [NRI] 0.245, P < .001; integrated discrimination improvement [IDI] 0.004, P = .004), cardiac death (NRI 0.269, P < .001; IDI 0.003, P = .006), and MACE (NRI 0.268, P < .001; IDI 0.004, P < .001). Notably, when stratified by age, we found that the association between FFA with MACE risk appeared to be stronger in patients aged ≥60 years compared with those aged <60 years. CONCLUSION In patients with CAD, FFAs are associated with all-cause death, cardiac death, and MACE. Combined evaluation of FFAs with other traditional risk factors could help identify high-risk individuals who may require closer monitoring and aggressive treatment.
Collapse
Affiliation(s)
- Deshan Yuan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Na Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Ying Song
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Zheng Zhang
- Department of Cardiology, the First Hospital of Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jingjing Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Zhenyu Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Xiaofang Tang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Yaling Han
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110000, People's Republic of China
| | - Yan Chen
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Yongzhen Zhang
- Department of Cardiology, Peking University Third Hospital, Beijing 100037, People's Republic of China
| | - Pei Zhu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Xiaogang Guo
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine (FAHZU), Hangzhou 310000, People's Republic of China
| | - Zhifang Wang
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang 453000, People's Republic of China
| | - Ru Liu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Qingsheng Wang
- Department of Cardiology, the First Hospital of Qinhuangdao, Qinhuangdao 066000, People's Republic of China
| | - Yi Yao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Yingqing Feng
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangzhou 510000, People's Republic of China
| | - Xueyan Zhao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Jinqing Yuan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People's Republic of China
| |
Collapse
|
9
|
Gill PK, Hegele RA. New Biological Therapies for Low-Density Lipoprotein Cholesterol. Can J Cardiol 2023; 39:1913-1930. [PMID: 37562541 DOI: 10.1016/j.cjca.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
Depressed low-density lipoprotein cholesterol concentration protects against atherosclerotic cardiovascular disease. Natural hypocholesterolemia states can have a monogenic etiology, caused by pathogenic loss of function variants in the PCSK9, ANGPTL3, MTTP, or APOB genes. In this focused review, we discuss development and clinical use of several new therapeutics that inhibit these gene products to target elevated levels of low-density lipoprotein cholesterol. In particular, inhibitors of proprotein convertase subtilisin kexin type 9 (PCSK9) have notably affected clinical practice, followed recently by inhibition of angiopoietin-like 3 (ANGPTL3). Currently used in the clinic are alirocumab and evolocumab, two anti-PCSK9 monoclonal antibodies, inclisiran, a small interfering RNA that prevents PCSK9 translation, evinacumab, an anti-ANGPTL3 monoclonal antibody, and lomitapide, a small-molecule inhibitor of microsomal triglyceride transfer protein. Additional therapies are in preclinical or clinical trial stages of development. These consist of other monoclonal antibodies, antisense oligonucleotides, small-molecule inhibitors, mimetic peptides, adnectins, vaccines, and gene-editing therapies. Vaccines and gene-editing therapies in particular hold great potential to confer active long-term attenuation or provide single-treatment life-long knock-down of PCSK9 or ANGPTL3 activity. Biologic therapies inspired by monogenic hypocholesterolemia states are becoming valuable tools to help protect against atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Praneet K Gill
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
10
|
Eslami SM, Rahman IR, van der Donk WA. Expression of Lanthipeptides in Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563208. [PMID: 37961259 PMCID: PMC10634679 DOI: 10.1101/2023.10.19.563208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cyclic peptides represent a burgeoning area of interest in therapeutic and biotechnological research. In opposition to their linear counterparts, cyclic peptides, such as certain ribosomally synthesized and post-translationally modified peptides (RiPPs), are more conformationally constrained and less susceptible to proteolytic degradation. The lanthipeptide RiPP cytolysin L forms a covalently enforced helical structure that may be used to disrupt helical interactions at protein-protein interfaces. Herein, an expression system is reported to produce lanthipeptides and structurally diverse cytolysin L derivatives in mammalian cells. Successful targeting of lanthipeptides to the nucleus is demonstrated. In vivo expression and targeting of such peptides in mammalian cells may allow for screening of lanthipeptide inhibitors of native protein-protein interactions.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Imran R. Rahman
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
11
|
Raschi E, Casula M, Cicero AFG, Corsini A, Borghi C, Catapano A. Beyond statins: New pharmacological targets to decrease LDL-cholesterol and cardiovascular events. Pharmacol Ther 2023; 250:108507. [PMID: 37567512 DOI: 10.1016/j.pharmthera.2023.108507] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
The pharmacological treatment of dyslipidemia, a major modifiable risk factor for developing atherosclerotic cardiovascular disease (ASCVD), remains a debated and controversial issue, not only in terms of the most appropriate therapeutic range for lipid levels, but also with regard to the optimal strategy and sequence approach (stepwise vs upstream therapy). Current treatment guidelines for the management of dyslipidemia focus on the intensity of low-density lipoprotein cholesterol (LDL-C) reduction, stratified according to risk for developing ASCVD. Beyond statins and ezetimibe, different medications targeting LDL-C have been recently approved by regulatory agencies with potential innovative mechanisms of action, including proprotein convertase subtilisin/kexin type 9 modulators (monoclonal antibodies such as evolocumab and alirocumab; small interfering RNA molecules such as inclisiran), ATP-citrate lyase inhibitors (bempedoic acid), angiopoietin-like 3 inhibitors (evinacumab), and microsomal triglyceride transfer protein inhibitors (lomitapide). An understanding of their pharmacological aspects, benefit-risk profile, including impact on hard cardiovascular endpoints beyond LDL-C reduction, and potential advantages from the patient perspective (e.g., adherence) - the focus of this evidence-based review - is crucial for practitioners across medical specialties to minimize therapeutic inertia and support clinical practice.
Collapse
Affiliation(s)
- Emanuel Raschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Manuela Casula
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy; IRCCS AOU S. Orsola-Malpighi, Bologna, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy; IRCCS AOU S. Orsola-Malpighi, Bologna, Italy
| | | |
Collapse
|
12
|
Landmesser U, Makhmudova U. New Chapter in the PCSK9 Book: Oral Inhibition of PCSK9 Binding to the LDL Receptor With a Macrocyclic Peptide. Circulation 2023; 148:159-161. [PMID: 37428833 DOI: 10.1161/circulationaha.123.065407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Affiliation(s)
- Ulf Landmesser
- Department of Cardiology, Angiology, and Intensive Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany (U.L., U.M.)
- Friede Springer Cardiovascular Prevention Center at Charité, Berlin, Germany (U.L., U.M.)
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany (U.L.)
- Berlin Institute of Health, Germany (U.L.)
| | - Umidakhon Makhmudova
- Department of Cardiology, Angiology, and Intensive Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany (U.L., U.M.)
- Friede Springer Cardiovascular Prevention Center at Charité, Berlin, Germany (U.L., U.M.)
| |
Collapse
|
13
|
Zhao Q, Sun S, Zhou F, Yue J, Luo X, Qu X. The Inhibition of Evolocumab on Non-Infarct-Related Artery Disease in Patients with ST-Elevation Myocardial Infarction. Int J Gen Med 2023; 16:2771-2781. [PMID: 37408846 PMCID: PMC10319277 DOI: 10.2147/ijgm.s417481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
Purpose The effects of combing evolocumab and statin on the clinical outcome and physiological function of coronary arteries in STEMI patients with non-infarct-related artery (NIRA) disease are still unclear. Methods A total of 355 STEMI patients with NIRA were enrolled in this study, who underwent combined quantitative flow ratio (QFR) at baseline and after 12 months of treatment with statin monotherapy or statin plus evolocumab. Results Diameter stenosis and lesion length were significantly lower in the group undergoing statin plus evolocumab. While the group exhibited significantly higher minimum lumen diameter (MLD), and QFR values. Statin plus evolocumab (OR = 0.350; 95% CI: 0.149-0.824; P = 0.016) and plaque lesion length (OR = 1.223; 95% CI: 1.102-1.457; P = 0.033) were independently associated with rehospitalization for unstable angina (UA) within 12 months. Conclusion Evolocumab combined with statin therapy can significantly improve the anatomical and physiological function of the coronary arteries and downregulate the re-hospitalization rate due to UA in STEMI patients with NIRA.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Cardiology, 1st Affiliated Hospital of Harbin Medical University, Harbin, 150086, People’s Republic of China
| | - Siyuan Sun
- Department of Cardiology, People’s Hospital of Taihe County, Taihe, Anhui, 236600, People’s Republic of China
| | - Fanghui Zhou
- Department of Hematology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Jingkun Yue
- Department of Cardiology, People’s Hospital of Taihe County, Taihe, Anhui, 236600, People’s Republic of China
| | - Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Xiufen Qu
- Department of Cardiology, 1st Affiliated Hospital of Harbin Medical University, Harbin, 150086, People’s Republic of China
| |
Collapse
|
14
|
Lammi C, Fassi EMA, Manenti M, Brambilla M, Conti M, Li J, Roda G, Camera M, Silvani A, Grazioso G. Computational Design, Synthesis, and Biological Evaluation of Diimidazole Analogues Endowed with Dual PCSK9/HMG-CoAR-Inhibiting Activity. J Med Chem 2023. [PMID: 37261954 DOI: 10.1021/acs.jmedchem.3c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9) is responsible for the degradation of the hepatic low-density lipoprotein receptor (LDLR), which regulates circulating cholesterol levels. Consequently, the PCSK9 inhibition is a valuable therapeutic approach for the treatment of hypercholesterolemia and cardiovascular diseases. In our studies, we discovered Rim13, a polyimidazole derivative reducing the protein-protein interaction between PCSK9 and LDLR with an IC50 of 1.6 μM. The computational design led to the optimization of the shape of the PCSK9/ligand complementarity, enabling the discovery of potent diimidazole derivatives. In fact, carrying out biological assays to fully characterize the cholesterol-lowering activity of the new analogues and using both biochemical and cellular techniques, compound Dim16 displayed improved PCSK9 inhibitory activity (IC50 0.9 nM). Interestingly, similar to other lupin-derived peptides and their synthetic analogues, some compounds in this series showed dual hypocholesterolemic activity since some of them complementarily inhibited the 3-hydroxy-3-methylglutaryl coenzyme A reductase.
Collapse
Affiliation(s)
- Carmen Lammi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Enrico M A Fassi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Marco Manenti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 10, 20133 Milan, Italy
| | - Marta Brambilla
- Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy
| | - Maria Conti
- Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy
| | - Jianqiang Li
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Gabriella Roda
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Marina Camera
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
- Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 10, 20133 Milan, Italy
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
15
|
Ahamad S, Bhat SA. Recent Update on the Development of PCSK9 Inhibitors for Hypercholesterolemia Treatment. J Med Chem 2022; 65:15513-15539. [PMID: 36446632 DOI: 10.1021/acs.jmedchem.2c01290] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The proprotein convertase subtilisin/kexin-type 9 (PCSK9) binds to low-density lipoprotein receptors (LDLR), thereby trafficking them to lysosomes upon endocytosis and enhancing intracellular degradation to prevent their recycling. As a result, the levels of circulating LDL cholesterol (LDL-C) increase, which is a prominent risk factor for developing atherosclerotic cardiovascular diseases (ASCVD). Thus, PCSK9 has become a promising therapeutic target that offers a fertile testing ground for new drug modalities to regulate plasma LDL-C levels to prevent ASCVD. In this review, we have discussed the role of PCSK9 in lipid metabolism and briefly summarized the current clinical status of modalities targeting PCSK9. In particular, a detailed overview of peptide-based PCSK9 inhibitors is presented, which emphasizes their structural features and design, therapeutic effects on patients, and preclinical cardiovascular disease (CVD) models, along with PCSK9 modulation mechanisms. As a promising alternative to monoclonal antibodies (mAbs) for managing LDL-C, anti-PCSK9 peptides are emerging as a prospective next generation therapy.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
16
|
Doolan JA, Williams GT, Hilton KLF, Chaudhari R, Fossey JS, Goult BT, Hiscock JR. Advancements in antimicrobial nanoscale materials and self-assembling systems. Chem Soc Rev 2022; 51:8696-8755. [PMID: 36190355 PMCID: PMC9575517 DOI: 10.1039/d1cs00915j] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Antimicrobial resistance is directly responsible for more deaths per year than either HIV/AIDS or malaria and is predicted to incur a cumulative societal financial burden of at least $100 trillion between 2014 and 2050. Already heralded as one of the greatest threats to human health, the onset of the coronavirus pandemic has accelerated the prevalence of antimicrobial resistant bacterial infections due to factors including increased global antibiotic/antimicrobial use. Thus an urgent need for novel therapeutics to combat what some have termed the 'silent pandemic' is evident. This review acts as a repository of research and an overview of the novel therapeutic strategies being developed to overcome antimicrobial resistance, with a focus on self-assembling systems and nanoscale materials. The fundamental mechanisms of action, as well as the key advantages and disadvantages of each system are discussed, and attention is drawn to key examples within each field. As a result, this review provides a guide to the further design and development of antimicrobial systems, and outlines the interdisciplinary techniques required to translate this fundamental research towards the clinic.
Collapse
Affiliation(s)
- Jack A Doolan
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - George T Williams
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - Rajas Chaudhari
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| |
Collapse
|
17
|
Chen R, Zhao H, Zhou J, Wang Y, Li J, Zhao X, Li N, Liu C, Zhou P, Chen Y, Song L, Yan H. Prognostic Impacts of LL-37 in Relation to Lipid Profiles of Patients with Myocardial Infarction: A Prospective Cohort Study. Biomolecules 2022; 12:biom12101482. [PMID: 36291690 PMCID: PMC9599865 DOI: 10.3390/biom12101482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background. In vivo studies show that LL-37 inhibits the progression of atherosclerosis and predicts a lower risk of recurrent ischemia in patients with acute myocardial infarction (AMI), which could be mediated by the modulation of lipid metabolism. The current study aimed to investigate the effects of various lipid contents on the prognostic impacts of LL-37 in patients with AMI. Methods. A total of 1567 consecutive AMI patients were prospectively recruited from March 2017 to January 2020. Patients were firstly stratified into two groups by the median level of LL-37 and then stratified by levels of various lipid contents and proprotein convertase subtilisin/kexin type 9 (PCSK9). Cox regression with multiple adjustments was performed to analyze associations between LL-37, lipid profiles, PCSK9, and various outcomes. The primary outcome was major adverse cardiovascular event (MACE), a composite of all-cause death, recurrent MI, and ischemic stroke. Results. During a median follow-up of 786 (726−1107) days, a total of 252 MACEs occurred. A high level of LL-37 was associated with lower risk of MACE in patients with elevated lipoprotein(a) (≥300 mg/L, hazard ratio (HR): 0.49, 95% confidence interval (CI): 0.29−0.86, p = 0.012) or PCSK9 levels above the median (≥47.4 ng/mL, HR: 0.57, 95% CI: 0.39−0.82, p < 0.001), which was not observed for those without elevated lp(a) (<300 mg/L, HR: 0.96, 95% CI: 0.70−1.31, p = 0.781, pinteraction = 0.035) or PCSK9 (<47.4 ng/mL, HR: 1.02, 95% CI: 0.68−1.54, p = 0.905, pinteraction = 0.032). Conclusions. For patients with AMI, a high level of LL-37 was associated with lower ischemic risk among patients with elevated lp(a) and PCSK9.
Collapse
Affiliation(s)
- Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 510000, China
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 510000, China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
- Correspondence: (H.Z.); (H.Y.)
| | - Jinying Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Ying Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Nan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 510000, China
| | - Hongbing Yan
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 510000, China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
- Correspondence: (H.Z.); (H.Y.)
| |
Collapse
|
18
|
Zhang Y, Wang L, Tombling BJ, Lammi C, Huang YH, Li Y, Bartolomei M, Hong B, Craik DJ, Wang CK. Improving Stability Enhances In Vivo Efficacy of a PCSK9 Inhibitory Peptide. J Am Chem Soc 2022; 144:19485-19498. [DOI: 10.1021/jacs.2c08029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuhui Zhang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Li Wang
- NHC Key Laboratory of Biotechnology Antibiotics and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, & Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing100050, China
| | - Benjamin J. Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Carmen Lammi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milan, Via L. Mangiagalli 25, 20133Milan, Italy
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Yue Li
- NHC Key Laboratory of Biotechnology Antibiotics and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, & Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing100050, China
| | - Martina Bartolomei
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milan, Via L. Mangiagalli 25, 20133Milan, Italy
| | - Bin Hong
- NHC Key Laboratory of Biotechnology Antibiotics and CAMS Key Laboratory of Synthetic Biology for Drug Innovation, & Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing100050, China
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD4072, Australia
| | - Conan K. Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD4072, Australia
| |
Collapse
|
19
|
Salekeen R, Haider AN, Akhter F, Billah MM, Islam ME, Didarul Islam KM. Lipid oxidation in pathophysiology of atherosclerosis: Current understanding and therapeutic strategies. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2022; 14:200143. [PMID: 36060286 PMCID: PMC9434419 DOI: 10.1016/j.ijcrp.2022.200143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
A marked increase in the global prevalence of ischemic heart disease demands focused research for novel and more effective therapeutic strategies. At present, atherosclerotic cardiovascular disease (ACVD) is the leading cause of the global incidence of heart attacks and a major contributor to many peripheral cardiac diseases. Decades of research have unearthed the complex and multidimensional pathophysiology of ACVD encompassing oxidative stress, redox imbalance, lipid peroxidation, pro-inflammatory signaling, hyperglycemic stress and diabetes mellitus, chronic low-grade inflammation and aging, immune dysregulation, vascular dysfunction, loss of hemostasis, thrombosis, and fluid shear stress. However, the scientific basis of therapeutic interventions using conventional understandings of the disease mechanisms has been subject to renewed scrutiny with novel findings in recent years. This critical review attempts to revise the pathophysiological mechanisms of atherosclerosis using a recent body of literature, with a focus on lipid metabolism and associated cellular and biochemical processes. The comprehensive study encompasses different molecular perspectives in the development and progression of coronary atherosclerosis. The review also summarizes currently prescribed small molecule therapeutics in inflammation and ACVD, and overviews prospective management measures under development including peptides and microRNA therapeutics. The study provides updated insights into the current knowledge of coronary atherosclerosis, and highlights the need for effective prevention, management and development of novel intervention approaches to overcome this chronic epidemic.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Abu Nasim Haider
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Dhaka, 1212, Bangladesh
| | - Fouzia Akhter
- Khulna Medical College Hospital, Khulna, 9000, Bangladesh
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Md Emdadul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
20
|
Early statin use and cardiovascular outcomes after myocardial infarction: A population-based case-control study. Atherosclerosis 2022; 354:8-14. [DOI: 10.1016/j.atherosclerosis.2022.06.1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022]
|
21
|
Abstract
PURPOSE OF REVIEW We reviewed lipid-modifying therapies and the risk of stroke and other cerebrovascular outcomes, with a focus on newer therapies. RECENT FINDINGS Statins and ezetimibe reduce ischemic stroke risk without increasing hemorrhagic stroke risk. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors similarly reduce ischemic stroke risk in statin-treated patients with atherosclerosis without increasing hemorrhagic stroke, even with very low achieved low-density lipoprotein cholesterol levels. Icosapent ethyl reduces the risk of total and first ischemic stroke in patients with established cardiovascular disease or diabetes mellitus. Clinical outcome trials are underway for newer lipid-modifying agents, including inclisiran, bempedoic acid, and pemafibrate. New biologic agents including evinacumab, pelacarsen, olpasiran, and SLN360 are also discussed. In addition to statins and ezetimibe, PCSK9 inhibitors and icosapent ethyl reduce the risk of ischemic stroke without increasing the risk of hemorrhagic stroke. These therapies dramatically expand options for reducing stroke in high-risk settings.
Collapse
|
22
|
Abstract
This article reviews the discovery of PCSK9, its structure-function characteristics, and its presently known and proposed novel biological functions. The major critical function of PCSK9 deduced from human and mouse studies, as well as cellular and structural analyses, is its role in increasing the levels of circulating low-density lipoprotein (LDL)-cholesterol (LDLc), via its ability to enhance the sorting and escort of the cell surface LDL receptor (LDLR) to lysosomes. This implicates the binding of the catalytic domain of PCSK9 to the EGF-A domain of the LDLR. This also requires the presence of the C-terminal Cys/His-rich domain, its binding to the secreted cytosolic cyclase associated protein 1, and possibly another membrane-bound "protein X". Curiously, in PCSK9-deficient mice, an alternative to the downregulation of the surface levels of the LDLR by PCSK9 is taking place in the liver of female mice in a 17β-estradiol-dependent manner by still an unknown mechanism. Recent studies have extended our understanding of the biological functions of PCSK9, namely its implication in septic shock, vascular inflammation, viral infections (Dengue; SARS-CoV-2) or immune checkpoint modulation in cancer via the regulation of the cell surface levels of the T-cell receptor and MHC-I, which govern the antitumoral activity of CD8+ T cells. Because PCSK9 inhibition may be advantageous in these processes, the availability of injectable safe PCSK9 inhibitors that reduces by 50% to 60% LDLc above the effect of statins is highly valuable. Indeed, injectable PCSK9 monoclonal antibody or small interfering RNA could be added to current immunotherapies in cancer/metastasis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| |
Collapse
|
23
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7:131. [PMID: 35459215 PMCID: PMC9033871 DOI: 10.1038/s41392-022-00955-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zi-Yang Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|