1
|
Lin L, Chu J, An S, Liu X, Tan R. The Biological Mechanisms and Clinical Roles of RNA-Binding Proteins in Cardiovascular Diseases. Biomolecules 2024; 14:1056. [PMID: 39334823 PMCID: PMC11430443 DOI: 10.3390/biom14091056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
RNA-binding proteins (RBPs) have pivotal roles in cardiovascular biology, influencing various molecular mechanisms underlying cardiovascular diseases (CVDs). This review explores the significant roles of RBPs, focusing on their regulation of RNA alternative splicing, polyadenylation, and RNA editing, and their impact on CVD pathogenesis. For instance, RBPs are crucial in myocardial injury, contributing to disease progression and repair mechanisms. This review systematically analyzes the roles of RBPs in myocardial injury, arrhythmias, myocardial infarction, and heart failure, revealing intricate interactions that influence disease outcomes. Furthermore, the potential of RBPs as therapeutic targets for cardiovascular dysfunction is explored, highlighting the advances in drug development and clinical research. This review also discusses the emerging role of RBPs as biomarkers for cardiovascular diseases, offering insights into their diagnostic and prognostic potential. Despite significant progress, current research faces several limitations, which are critically examined. Finally, this review identifies the major challenges and outlines future research directions to advance the understanding and application of RBPs in cardiovascular medicine.
Collapse
Affiliation(s)
- Lizhu Lin
- Department of Anaesthesiology, The First People’s Hospital of Qinzhou, The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou 535000, China;
| | - Jiemei Chu
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; (J.C.); (S.A.)
| | - Sanqi An
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; (J.C.); (S.A.)
| | - Xinli Liu
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; (J.C.); (S.A.)
| | - Runxian Tan
- Department of Laboratory Medicine, The First People’s Hospital of Qinzhou, The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou 535000, China
| |
Collapse
|
2
|
Völkers M, Preiss T, Hentze MW. RNA-binding proteins in cardiovascular biology and disease: the beat goes on. Nat Rev Cardiol 2024; 21:361-378. [PMID: 38163813 DOI: 10.1038/s41569-023-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Cardiac development and function are becoming increasingly well understood from different angles, including signalling, transcriptional and epigenetic mechanisms. By contrast, the importance of the post-transcriptional landscape of cardiac biology largely remains to be uncovered, building on the foundation of a few existing paradigms. The discovery during the past decade of hundreds of additional RNA-binding proteins in mammalian cells and organs, including the heart, is expected to accelerate progress and has raised intriguing possibilities for better understanding the intricacies of cardiac development, metabolism and adaptive alterations. In this Review, we discuss the progress and new concepts on RNA-binding proteins and RNA biology and appraise them in the context of common cardiovascular clinical conditions, from cell and organ-wide perspectives. We also discuss how a better understanding of cardiac RNA-binding proteins can fill crucial knowledge gaps in cardiology and might pave the way to developing better treatments to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg and Mannheim, Germany
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.
| |
Collapse
|
3
|
Lujan DA, Ochoa JL, Beswick EJ, Howard TA, Hathaway HJ, Perrone-Bizzozero NI, Hartley RS. Cold-Inducible RNA Binding Protein Impedes Breast Tumor Growth in the PyMT Murine Model for Breast Cancer. Biomedicines 2024; 12:340. [PMID: 38397942 PMCID: PMC10886683 DOI: 10.3390/biomedicines12020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
RNA binding proteins (RBPs) post-transcriptionally regulate gene expression by associating with regulatory sequences in the untranslated regions of mRNAs. Cold-inducible RBP (CIRP) is a stress-induced RBP that was recently shown to modulate inflammation in response to cellular stress, where it increases or decreases pro-tumorigenic (proinflammatory) cytokines in different contexts. CIRP expression is altered in several cancers, including breast cancer, but the effects of CIRP on inflammation in breast cancer is not known. Here, we investigate if CIRP alters growth and the inflammatory profile of breast tumors. Transgenic mice overexpressing CIRP in the mammary epithelium were crossed with the PyMT mouse model of breast cancer, and the effects on both early and late tumorigenesis and inflammation were assessed. The effects of CIRP knockdown were also assessed in Py2T cell grafts. Overexpression of CIRP led to decreased tumorigenesis in the PyMT mouse model. Conversely, the knockdown of CIRP in Py2T cell grafts led to increased tumor growth. Luminex cytokine assays assessed the effects on the inflammatory environment. CIRP/PyMT mammary glands/mammary tumors and serum had decreased cytokines that promote inflammation, angiogenesis, and metastasis compared to PyMT mammary glands and serum, documenting a shift towards an environment less supportive of tumorigenesis. CIRP overexpression also decreased CD4+ helper T cells and increased CD8+ cytotoxic T cells in mammary tumors. Overall, these data support a role for CIRP as a potent antitumor molecule that suppresses both local and systemic pro-tumorigenic inflammation.
Collapse
Affiliation(s)
- Daniel A. Lujan
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Joey L. Ochoa
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Ellen J. Beswick
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40506, USA;
| | - Tamara A. Howard
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Helen J. Hathaway
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA;
| | - Rebecca S. Hartley
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (D.A.L.); (J.L.O.); (T.A.H.); (H.J.H.)
| |
Collapse
|
4
|
Coronelli MM, Coppi F, Mattioli AV. Inflammation, atherosclerosis and hypertension: the impact of depression and stress on their complex relationship. Future Cardiol 2024; 20:27-33. [PMID: 38127553 DOI: 10.2217/fca-2023-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
This future perspective analyzes the complex relationship between inflammation and atherosclerosis and arterial hypertension. The involvement of inflammation in atherosclerosis has led to research therapies that target inflammation to prevent or treat cardiovascular disease. This aspect has recently been included in the treatment management of residual cardiovascular risk. The recent pandemic has exacerbated cardiovascular risk both through an increase in unhealthy lifestyle behaviors and through the reduction of cardiovascular screening. What actions to take? Primary prevention campaigns for healthy subjects with specific attention to young people.
Collapse
Affiliation(s)
| | - Francesca Coppi
- Department of Medical & Surgical Sciences for Children & Adults, University of Modena & Reggio Emilia, Modena, 41100, Italy
| | - Anna Vittoria Mattioli
- Department of Medical & Surgical Sciences for Children & Adults, University of Modena & Reggio Emilia, Modena, 41100, Italy
| |
Collapse
|
5
|
Zheng X, Zhou B, Li Y, Zhong H, Huang Z, Gu M. Transcriptome-wide N 6-methyladenosine methylation profile of atherosclerosis in mice. BMC Genomics 2023; 24:774. [PMID: 38097926 PMCID: PMC10720251 DOI: 10.1186/s12864-023-09878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a critical pathological event during the progression of cardiovascular diseases. It exhibits fibrofatty lesions on the arterial wall and lacks effective treatment. N6-methyladenosine (m6A) is the most common modification of eukaryotic RNA and plays an important role in regulating the development and progression of cardiovascular diseases. However, the role of m6A modification in AS remains largely unknown. Therefore, in this study, we explored the transcriptome distribution of m6A modification in AS and its potential mechanism. METHODS Methylation Quantification Kit was used to detect the global m6A levels in the aorta of AS mice. Western blot was used to analyze the protein level of methyltransferases. Methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were used to obtain the first transcriptome range analysis of the m6A methylene map in the aorta of AS mice, followed by bioinformatics analysis. qRT-PCR and MeRIP-qRT-PCR were used to measure the mRNA and m6A levels in target genes. RESULTS The global m6A and protein levels of methyltransferase METTL3 were significantly increased in the aorta of AS mice. However, the protein level of demethylase ALKBH5 was significantly decreased. Through MeRIP-seq, we obtained m6A methylation maps in AS and control mice. In total, 26,918 m6A peaks associated with 13,744 genes were detected in AS group, whereas 26,157 m6A peaks associated with 13,283 genes were detected in the control group. Peaks mainly appeared in the coding sequence (CDS) regions close to the stop codon with the RRACH motif. Moreover, functional enrichment analysis demonstrated that m6A-containing genes were significantly enriched in AS-relevant pathways. Interestingly, a negative correlation between m6A methylation abundance and gene expression level was found through the integrated analysis of MeRIP-seq and RNA-seq data. Among the m6A-modified genes, a hypo-methylated but up-regulated (hypo-up) gene Fabp5 may be a potential biomarker of AS. CONCLUSIONS Our study provides transcriptome-wide m6A methylation for the first time to determine the association between m6A modification and AS progression. Our study lays a foundation for further exploring the pathogenesis of AS and provides a new direction for the treatment of AS.
Collapse
Affiliation(s)
- Xinbin Zheng
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, 570203, Haikou, Hainan, P. R. China
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China
| | - Bo Zhou
- Department of Cardiology, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China
| | - Yuzhen Li
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China
| | - Hengren Zhong
- Clinical Research Center, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China
| | - Zhengxin Huang
- Department of Cardiology, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China.
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China.
| | - Minhua Gu
- Department of Cardiology, Hainan Provincial Hospital of Traditional Chinese Medicine, 570203, Haikou, Hainan, P. R. China.
- Hospital of Chinese Medicine affiliated by Hainan Medical University, 570203, Haikou, Hainan, P. R. China.
| |
Collapse
|
6
|
Ruffenach G, Medzikovic L, Sun W, Hong J, Eghbali M. Functions of RNA-Binding Proteins in Cardiovascular Disease. Cells 2023; 12:2794. [PMID: 38132114 PMCID: PMC10742114 DOI: 10.3390/cells12242794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Gene expression is under tight regulation from the chromatin structure that regulates gene accessibility by the transcription machinery to protein degradation. At the transcript level, this regulation falls on RNA-binding proteins (RBPs). RBPs are a large and diverse class of proteins involved in all aspects of a transcript's lifecycle: splicing and maturation, localization, stability, and translation. In the past few years, our understanding of the role of RBPs in cardiovascular diseases has expanded. Here, we discuss the general structure and function of RBPs and the latest discoveries of their role in pulmonary and systemic cardiovascular diseases.
Collapse
Affiliation(s)
- Grégoire Ruffenach
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| | - Lejla Medzikovic
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| | - Wasila Sun
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| | - Jason Hong
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| |
Collapse
|
7
|
Nossent AY, Binder CJ. Noncoding RNAs in atherosclerosis. Atherosclerosis 2023; 374:21-23. [PMID: 37169701 DOI: 10.1016/j.atherosclerosis.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Anne Yaël Nossent
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Christoph J Binder
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|