1
|
Islamagič L, Tjørnild MJ, Carlson Hanse L, Nygaard JV, Hasenkam JM. Biomechanical comparison of porcine mitral leaflets with porcine small intestinal submucosa extracellular matrix. Proc Inst Mech Eng H 2023; 237:435-442. [PMID: 36882979 DOI: 10.1177/09544119231158248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Porcine small intestinal submucosa extracellular matrix (SIS-ECM) used for cardiac valve repair has shown conflicting clinical outcomes with respect to calcification and failure. This may be related to differences in biomechanical properties of the material compared with the host site. The aim of this study was to compare the biomechanical properties of porcine mitral valve leaflets with SIS-ECM. Fresh porcine anterior and posterior mitral leaflet samples were cut radially and circumferentially. Similarly, 2- and 4-layered SIS-ECM were cut in orthogonal directions: length and width. Samples were subjected to a uniaxial tensile test or a dynamic mechanical analysis. Results show that the load of the porcine anterior circumferential leaflet was 39.5 N (2.4-48.5 N), which was significantly higher compared with the 2-layered length SIS-ECM which was 7.5 N (7-7.9 N), and the 4- layered length SIS-ECM which was 7.5 N (7.1-8.1 N) (p < 0.001). The load of the posterior circumferential leaflet was 9.7 N (8.3-10.7 N), which is still significantly higher when compared with the two versions of SIS-ECM. The degree of anisotropy (i.e. the ratio between circumferential-radial and width-length properties) was higher for the anterior- (ratio: 19) and posterior leaflet (ratio: 6) than the 2-layered (ratio: 5.1) and 4-layered SIS-ECM (ratio: 1.9). Especially 2-layered SIS-ECM more closely resembles the posterior mitral leaflet than the anterior mitral leaflet tissue and would be more suitable as a repair material in this position. Additionally, the anisotropic properties of mitral leaflets and SIS-ECM underscore the importance of correct orientation of the implant to ensure optimal reconstruction.
Collapse
Affiliation(s)
- Lejla Islamagič
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marcell Juan Tjørnild
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lisa Carlson Hanse
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Vinge Nygaard
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - John Michael Hasenkam
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Fitzpatrick DJ, Pham K, Ross CJ, Hudson LT, Laurence DW, Yu Y, Lee CH. Ex vivo experimental characterizations for understanding the interrelationship between tissue mechanics and collagen microstructure of porcine mitral valve leaflets. J Mech Behav Biomed Mater 2022; 134:105401. [DOI: 10.1016/j.jmbbm.2022.105401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022]
|
3
|
Biomechanics of mitral valve leaflets: Second harmonic generation microscopy, biaxial mechanical tests and tissue modeling. Acta Biomater 2022; 141:244-254. [PMID: 35007783 DOI: 10.1016/j.actbio.2022.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 12/30/2022]
Abstract
Collagen fibers are the main load carrier in the mitral valve (MV) leaflets. Their orientation and dispersion are an important factor for the mechanical behavior. Most recent studies of collagen fibers in MVs lack either entire thickness study or high transmural resolution. The present study uses second harmonic generation (SHG) microscopy in combination with planar biaxial mechanical tests to better model and examine collagen fibers and mechanical properties of MV leaflets. SHG in combination with tissue clearing enables the collagen fibers to be examined through the entire thickness of the MV leaflets. Planar biaxial mechanical tests, on the other hand, enable the characterization of the mechanical tissue behavior, which is represented by a structural tissue model. Twelve porcine MV leaflets are examined. The SHG recording shows that the mean fiber angle for all samples varies on average by ±12° over the entire thickness and the collagen fiber dispersion changes strongly over the thickness. A constitutive model based on the generalized structure tensor approach is used for the associated tissue characterization. The model represents the tissue with three mechanical parameters plus the mean fiber direction and the dispersion, and predicts the biomechanical response of the leaflets with a good agreement (average r2=0.94). It is found that the collagen structure can be represented by a mean direction and a dispersion with a single family of fibers despite the variation in the collagen fiber direction and the dispersion over the entire thickness of MV leaflets. STATEMENT OF SIGNIFICANCE: Despite its prominent role in the mechanical behavior of mitral valve (MV) leaflets, the collagen structure has not yet been investigated over the entire thickness with high transmural resolution. The present study quantifies the detailed through thickness collagen fiber structure and examines the effects of its variation on MV tissue modeling. This is important because the study evaluates the assumption that the collagen fibers can be modeled with a representative single fiber family despite the variation across the thickness. In addition, the current comprehensive data set paves the way for quantifying the disruption of collagen fibers in myxomatous MV leaflets associated with disrupted collagen fibers.
Collapse
|
4
|
Chen Y, Gao Q, Li J, Mao F, Tang R, Jiang H. Activation of Topological Defects Induces a Brittle-to-Ductile Transition in Epithelial Monolayers. PHYSICAL REVIEW LETTERS 2022; 128:018101. [PMID: 35061486 DOI: 10.1103/physrevlett.128.018101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Epithelial monolayers are subjected to various mechanical forces, such as stretching, shearing, and compression. Thus, its mechanical response to external loadings is essential for its biological functions. However, the mechanism of the fracture failure of the epithelial monolayer remains poorly understood. Here, by introducing a new type of topological transition, i.e., detach transition or T4 transition, we develop a modified cellular vertex model to investigate the rupture of the cell monolayer. Interestingly, we find a brittle-to-ductile transition in epithelial monolayers, which is controlled by the mechanical properties of single cells and cell-cell contacts. We reveal that the external loadings can activate cell rearrangement in ductile cell monolayers. The plastic deformation results from the nucleation and propagation of "pentagon-heptagon defects" in analogy with the topological defects commonly seen in 2D materials. By using a simplified four-cell model, we further demonstrate that the brittle-to-ductile transition is induced by the competition between cell rearrangement and cell detachment. Our work provides a new theoretical framework to study the rupture of living tissues and may have important implications for many other biological processes, such as wound healing and tissue morphogenesis.
Collapse
Affiliation(s)
- Yixia Chen
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qigan Gao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingchen Li
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fangtao Mao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ruowen Tang
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyuan Jiang
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Mao F, Yang Y, Jiang H. Endocytosis and exocytosis protect cells against severe membrane tension variations. Biophys J 2021; 120:5521-5529. [PMID: 34838532 DOI: 10.1016/j.bpj.2021.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023] Open
Abstract
The ability of cells to regulate their shape and volume is critical for many cell functions. How endocytosis and exocytosis, as important ways of membrane trafficking, affect cellular volume regulation is still unclear. Here, we develop a theoretical framework to study the dynamics of cell volume, endocytosis, and exocytosis in response to osmotic shocks and mechanical loadings. This model can not only explain observed dynamics of endocytosis and exocytosis during osmotic shocks but also predict the dynamics of endocytosis and exocytosis during cell compressions. We find that a hypotonic shock stimulates exocytosis, while a hypertonic shock stimulates endocytosis; and exocytosis in turn allows cells to have a dramatic change in cell volume but a small change in membrane tension during hyposmotic swelling, protecting cells from rupture under high tension. In addition, we find that cell compressions with various loading speeds induce three distinct dynamic modes of endocytosis and exocytosis. Finally, we show that increasing endocytosis and exocytosis rates reduce the changes in cell volume and membrane tension under fast cell compression, whereas they enhance the changes in cell volume and membrane tension under slow cell compression. Together, our findings reveal critical roles of endocytosis and exocytosis in regulating cell volume and membrane tension.
Collapse
Affiliation(s)
- Fangtao Mao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuehua Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
6
|
Narang H, Rego BV, Khalighi AH, Aly A, Pouch AM, Gorman RC, Gorman Iii JH, Sacks MS. Pre-surgical Prediction of Ischemic Mitral Regurgitation Recurrence Using In Vivo Mitral Valve Leaflet Strains. Ann Biomed Eng 2021; 49:3711-3723. [PMID: 33837494 PMCID: PMC9134826 DOI: 10.1007/s10439-021-02772-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
Ischemic mitral regurgitation (IMR) is a prevalent cardiac disease associated with substantial morbidity and mortality. Contemporary surgical treatments continue to have limited long-term success, in part due to the complex and multi-factorial nature of IMR. There is thus a need to better understand IMR etiology to guide optimal patient specific treatments. Herein, we applied our finite element-based shape-matching technique to non-invasively estimate peak systolic leaflet strains in human mitral valves (MVs) from in-vivo 3D echocardiographic images taken immediately prior to and post-annuloplasty repair. From a total of 21 MVs, we found statistically significant differences in pre-surgical MV size, shape, and deformation patterns between the with and without IMR recurrence patient groups at 6 months post-surgery. Recurrent MVs had significantly less compressive circumferential strains in the anterior commissure region compared to the recurrent MVs (p = 0.0223) and were significantly larger. A logistic regression analysis revealed that average pre-surgical circumferential leaflet strain in the Carpentier A1 region independently predicted 6-month recurrence of IMR (optimal cutoff value - 18%, p = 0.0362). Collectively, these results suggest greater disease progression in the recurrent group and underscore the highly patient-specific nature of IMR. Importantly, the ability to identify such factors pre-surgically could be used to guide optimal treatment methods to reduce post-surgical IMR recurrence.
Collapse
Affiliation(s)
- Harshita Narang
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Bruno V Rego
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amir H Khalighi
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ahmed Aly
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alison M Pouch
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Gorman Iii
- Gorman Cardiovascular Research Group, Smilow Center for Translational Research, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
7
|
Ross CJ, Laurence DW, Echols AL, Babu AR, Gu T, Duginski GA, Johns CH, Mullins BT, Casey KM, Laurence KA, Zhao YD, Amini R, Fung KM, Mir A, Burkhart HM, Wu Y, Holzapfel GA, Lee CH. Effects of enzyme-based removal of collagen and elastin constituents on the biaxial mechanical responses of porcine atrioventricular heart valve anterior leaflets. Acta Biomater 2021; 135:425-440. [PMID: 34481053 DOI: 10.1016/j.actbio.2021.08.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022]
Abstract
The leaflets of the atrioventricular heart valves (AHVs) regulate the one-directional flow of blood through a coordination of the extracellular matrix components, including the collagen fibers, elastin, and glycosaminoglycans. Dysfunction of the AHVs, such as those caused by unfavorable microstructural remodeling, lead to valvular heart diseases and improper blood flow, which can ultimately cause heart failure. In order to better understand the mechanics and remodeling of the AHV leaflets and how therapeutics can inadvertently cause adverse microstructural changes, a systematic characterization of the role of each constituent in the biomechanical properties is appropriate. Previous studies have quantified the contributions of the individual microstructural components to tissue-level behavior for the semilunar valve cusps, but not for the AHV leaflets. In this study, for the first time, we quantify the relationships between microstructure and mechanics of the AHV leaflet using a three-step experimental procedure: (i) biaxial tension and stress relaxation testing of control (untreated) porcine AHV anterior leaflet specimens; (ii) enzyme treatment to remove a portion of either the collagen or elastin constituent; and (iii) biaxial tensile and stress relaxation testing of the constituent-removed (treated) specimens. We have observed that the removal of ∼100% elastin resulted in a ∼10% decrease in the tissue extensibility with biaxial tension and a ∼10% increase in the overall stress reduction with stress relaxation. In contrast, removal of 46% of the collagen content insignificantly affected tissue extensibility with biaxial tension and significantly increased stress decay (10%) with stress relaxation. These findings provide an insight into the microstructure-mechanics relationship of the AHVs and will be beneficial for future developments and refinements of microstructurally informed constitutive models for the simulation of diseased and surgically intervened AHV function. STATEMENT OF SIGNIFICANCE: This study presents, for the first time, a thorough mechanical characterization of the atrioventricular heart valve leaflets before and after enzymatic removal of elastin and collagen. We found that the biaxial tensile properties of elastin-deficient tissues and collagen-deficient are stiffer. The fact of elastin supporting low-stress valve function and collagen as the main load-bearing component was evident in a decrease in the low-tension modulus for elastin-deficient tissues and in the high-tension modulus for collagen-deficient tissues. Our quantification and experimental technique could be useful in predicting the disease-related changes in heart valve mechanics. The information obtained from this work is valuable for refining the constitutive models that describe the essential microstructure-mechanics relationship.
Collapse
|
8
|
Adventures in Heart Valve Function A Personal Thank You to Dr. Ajit P. Yoganathan. Cardiovasc Eng Technol 2021; 12:651-653. [PMID: 34145557 DOI: 10.1007/s13239-021-00555-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 01/19/2023]
|
9
|
Taghizadeh B, Ghavami L, Derakhshankhah H, Zangene E, Razmi M, Jaymand M, Zarrintaj P, Zarghami N, Jaafari MR, Moallem Shahri M, Moghaddasian A, Tayebi L, Izadi Z. Biomaterials in Valvular Heart Diseases. Front Bioeng Biotechnol 2020; 8:529244. [PMID: 33425862 PMCID: PMC7793990 DOI: 10.3389/fbioe.2020.529244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/16/2020] [Indexed: 01/07/2023] Open
Abstract
Valvular heart disease (VHD) occurs as the result of valvular malfunction, which can greatly reduce patient's quality of life and if left untreated may lead to death. Different treatment regiments are available for management of this defect, which can be helpful in reducing the symptoms. The global commitment to reduce VHD-related mortality rates has enhanced the need for new therapeutic approaches. During the past decade, development of innovative pharmacological and surgical approaches have dramatically improved the quality of life for VHD patients, yet the search for low cost, more effective, and less invasive approaches is ongoing. The gold standard approach for VHD management is to replace or repair the injured valvular tissue with natural or synthetic biomaterials. Application of these biomaterials for cardiac valve regeneration and repair holds a great promise for treatment of this type of heart disease. The focus of the present review is the current use of different types of biomaterials in treatment of valvular heart diseases.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laleh Ghavami
- Laboratory of Biophysics and Molecular Biology, Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Zangene
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Razmi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Payam Zarrintaj
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Moallem Shahri
- Cardiology Department, Taleghani Trauma Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, United States
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Academic Center for Education, Culture and Research (ACECR), Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| |
Collapse
|
10
|
Ayoub S, Howsmon DP, Lee CH, Sacks MS. On the role of predicted in vivo mitral valve interstitial cell deformation on its biosynthetic behavior. Biomech Model Mechanobiol 2020; 20:135-144. [PMID: 32761471 DOI: 10.1007/s10237-020-01373-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Ischemic mitral regurgitation (IMR), a frequent complication of myocardial infarction, is characterized by regurgitation of blood from the left ventricle back into the left atrium. Physical interventions via surgery or less-invasive techniques are the only available therapies for IMR, with valve repair via undersized ring annuloplasty (URA) generally preferred over valve replacement. However, recurrence of IMR after URA occurs frequently and is attributed to continued remodeling of the MV and infarct region of the left ventricle. The mitral valve interstitial cells (MVICs) that maintain the tissue integrity of the MV leaflets are highly mechanosensitive, and altered loading post-URA is thought to lead to aberrant MVIC-directed tissue remodeling. Although studies have investigated aspects of mechanically directed VIC activation and remodeling potential, there remains a substantial disconnect between organ-level biomechanics and cell-level phenomena. Herein, we utilized an extant multiscale computational model of the MV that linked MVIC to organ-level MV biomechanical behaviors to simulate changes in MVIC deformation following URA. A planar biaxial bioreactor system was then used to cyclically stretch explanted MV leaflet tissue, emulating the in vivo changes in loading following URA. This simulation-directed experimental investigation revealed that post-URA deformations resulted in decreased MVIC activation and collagen mass fraction. These results are consistent with the hypothesis that URA failures post-IMR are due, in part, to reduced MVIC-mediated maintenance of the MV leaflet tissue resulting from a reduction in physical stimuli required for leaflet tissue homeostasis. Such information can inform the development of novel URA strategies with improved durability.
Collapse
Affiliation(s)
- Salma Ayoub
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
| | - Daniel P Howsmon
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA.
| |
Collapse
|
11
|
Feng L, Gao H, Griffith B, Niederer S, Luo X. Analysis of a coupled fluid-structure interaction model of the left atrium and mitral valve. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3254. [PMID: 31454470 PMCID: PMC7003446 DOI: 10.1002/cnm.3254] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 05/17/2023]
Abstract
We present a coupled left atrium-mitral valve model based on computed tomography scans with fibre-reinforced hyperelastic materials. Fluid-structure interaction is realised by using an immersed boundary-finite element framework. Effects of pathological conditions, eg, mitral valve regurgitation and atrial fibrillation, and geometric and structural variations, namely, uniform vs non-uniform atrial wall thickness and rule-based vs atlas-based fibre architectures, on the system are investigated. We show that in the case of atrial fibrillation, pulmonary venous flow reversal at late diastole disappears, and the filling waves at the left atrial appendage orifice during systole have reduced magnitude. In the case of mitral regurgitation, a higher atrial pressure and disturbed flows are seen, especially during systole, when a large regurgitant jet can be found with the suppressed pulmonary venous flow. We also show that both the rule-based and atlas-based fibre defining methods lead to similar flow fields and atrial wall deformations. However, the changes in wall thickness from non-uniform to uniform tend to underestimate the atrial deformation. Using a uniform but thickened wall also lowers the overall strain level. The flow velocity within the left atrial appendage, which is important in terms of appendage thrombosis, increases with the thickness of the left atrial wall. Energy analysis shows that the kinetic and dissipation energies of the flow within the left atrium are altered differently by atrial fibrillation and mitral valve regurgitation, providing a useful indication of the atrial performance in pathological situations.
Collapse
Affiliation(s)
- Liuyang Feng
- School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK
| | - Hao Gao
- School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK
| | - Boyce Griffith
- Departments of Mathematics, Applied Physical Sciences, and Biomedical EngineeringUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Steven Niederer
- Department of Biomedical EngineeringKing's College LondonLondonUK
| | - Xiaoyu Luo
- School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK
| |
Collapse
|
12
|
Some Effects of Different Constitutive Laws on FSI Simulation for the Mitral Valve. Sci Rep 2019; 9:12753. [PMID: 31484963 PMCID: PMC6726639 DOI: 10.1038/s41598-019-49161-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022] Open
Abstract
In this paper, three different constitutive laws for mitral leaflets and two laws for chordae tendineae are selected to study their effects on mitral valve dynamics with fluid-structure interaction. We first fit these three mitral leaflet constitutive laws and two chordae tendineae laws with experimental data. The fluid-structure interaction is implemented in an immersed boundary framework with finite element extension for solid, that is the hybrid immersed boundary/finite element(IB/FE) method. We specifically compare the fluid-structure results of different constitutive laws since fluid-structure interaction is the physiological loading environment. This allows us to look at the peak jet velocity, the closure regurgitation volume, and the orifice area. Our numerical results show that different constitutive laws can affect mitral valve dynamics, such as the transvalvular flow rate, closure regurgitation and the orifice area, while the differences in fiber strain and stress are insignificant because all leaflet constitutive laws are fitted to the same set of experimental data. In addition, when an exponential constitutive law of chordae tendineae is used, a lower closure regurgitation flow is observed compared to that of a linear material model. In conclusion, combining numerical dynamic simulations and static experimental tests, we are able to identify suitable constitutive laws for dynamic behaviour of mitral leaflets and chordae under physiological conditions.
Collapse
|
13
|
Rausch MK, Mathur M, Meador WD. Biomechanics of the Tricuspid Annulus: A Review of the Annulus' In Vivo Dynamics With Emphasis on Ovine Data. MITTEILUNGEN DER GESELLSCHAFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK 2019; 42:e201900012. [PMID: 38690196 PMCID: PMC11058966 DOI: 10.1002/gamm.201900012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/28/2019] [Indexed: 05/02/2024]
Abstract
The tricuspid annulus forms the boundary between the tricuspid valve leaflets and their surrounding perivalvular tissue of the right atrioventricular junction. Its shape changes throughout the cardiac cycle in response to the forces from the contracting right heart myocardium and the blood-valve interaction. Alterations to annular shape and dynamics in disease lead to valvular dysfunctions such as tricuspid regurgitation from which millions of patients suffer. Successful treatment of such dysfunction requires an in-depth understanding of the normal shape and dynamics of the tricuspid annulus and of the changes following disease and subsequent repair. In this manuscript we review what we know about the shape and dynamics of the normal tricuspid annulus and about the effects of both disease and repair based on non-invasive imaging studies and invasive fiduciary marker-based studies. We further show, by means of ovine data, that detailed engineering analyses of the tricuspid annulus provide regionally-resolved insight into the kinematics of the annulus which would remain hidden if limiting analyses to simple geometric metrics.
Collapse
Affiliation(s)
- Manuel K. Rausch
- Aerospace Engineering & Engineering Mechanics, Biomedical Engineering, Institute for Computational Engineering and Sciences, University of Texas at Austin, TX, USA
| | - Mrudang Mathur
- Aerospace Engineering & Engineering Mechanics, Biomedical Engineering, Institute for Computational Engineering and Sciences, University of Texas at Austin, TX, USA
| | - William D. Meador
- Aerospace Engineering & Engineering Mechanics, Biomedical Engineering, Institute for Computational Engineering and Sciences, University of Texas at Austin, TX, USA
| |
Collapse
|
14
|
Vekilov DP, Singh M, Aglyamov SR, Larin KV, Grande-Allen KJ. Mapping the spatial variation of mitral valve elastic properties using air-pulse optical coherence elastography. J Biomech 2019; 93:52-59. [PMID: 31300156 PMCID: PMC10575695 DOI: 10.1016/j.jbiomech.2019.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/18/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
The mitral valve is a highly heterogeneous tissue composed of two leaflets, anterior and posterior, whose unique composition and regional differences in material properties are essential to overall valve function. While mitral valve mechanics have been studied for many decades, traditional testing methods limit the spatial resolution of measurements and can be destructive. Optical coherence elastography (OCE) is an emerging method for measuring viscoelastic properties of tissues in a noninvasive, nondestructive manner. In this study, we employed air-pulse OCE to measure the spatial variation in mitral valve elastic properties with micro-scale resolution at 1 mm increments along the radial length of the leaflets. We analyzed differences between the leaflets, as well as between regions of the valve. We found that the anterior leaflet has a higher elastic wave velocity, which is reported as a surrogate for stiffness, than the posterior leaflet, most notably at the annular edge of the sample. In addition, we found a spatial elastic gradient in the anterior leaflet, where the annular edge was found to have a greater elastic wave velocity than the free edge. This gradient was less pronounced in the posterior leaflet. These patterns were confirmed using established uniaxial tensile testing methods. Overall, the anterior leaflet was stiffer and had greater heterogeneity in its mechanical properties than the posterior leaflet. This study measures differences between the two mitral leaflets with greater resolution than previously feasible and demonstrates a method that may be suitable for assessing valve mechanics following repair or during the engineering of synthetic valve replacements.
Collapse
Affiliation(s)
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, TX, United States
| | - Salavat R Aglyamov
- University of Houston, Department of Mechanical Engineering, Houston, TX, United States; University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, United States
| | - Kirill V Larin
- University of Houston, Department of Biomedical Engineering, Houston, TX, United States
| | | |
Collapse
|
15
|
Khalilgharibi N, Fouchard J, Asadipour N, Barrientos R, Duda M, Bonfanti A, Yonis A, Harris A, Mosaffa P, Fujita Y, Kabla A, Mao Y, Baum B, Muñoz JJ, Miodownik M, Charras G. Stress relaxation in epithelial monolayers is controlled by the actomyosin cortex. NATURE PHYSICS 2019; 15:839-847. [PMID: 33569083 PMCID: PMC7116713 DOI: 10.1038/s41567-019-0516-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/01/2019] [Indexed: 05/19/2023]
Abstract
Epithelial monolayers are one-cell thick tissue sheets that line most of the body surfaces, separating internal and external environments. As part of their function, they must withstand extrinsic mechanical stresses applied at high strain rates. However, little is known about how monolayers respond to mechanical deformations. Here, by subjecting suspended epithelial monolayers to stretch, we find that they dissipate stresses on a minute timescale and that relaxation can be described by a power law with an exponential cut-off at timescales larger than ~10 s. This process involves an increase in monolayer length, pointing to active remodelling of cellular biopolymers at the molecular scale during relaxation. Strikingly, monolayers consisting of tens of thousands of cells relax stress with similar dynamics to single rounded cells and both respond similarly to perturbations of the actomyosin cytoskeleton. By contrast, cell-cell junctional complexes and intermediate filaments do not relax tissue stress, but form stable connections between cells, allowing monolayers to behave rheologically as single cells. Taken together our data show that actomyosin dynamics governs the rheological properties of epithelial monolayers, dissipating applied stresses, and enabling changes in monolayer length.
Collapse
Affiliation(s)
- Nargess Khalilgharibi
- London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, UK
- Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK
| | - Jonathan Fouchard
- London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nina Asadipour
- Laboratori de Càlcul Numèric (LaCàN), Dept. Mathematics, Esc. d'Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya - Barcelona Tech (UPC), 08036, Barcelona, Spain
| | - Ricardo Barrientos
- Centre for Computation, Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Maria Duda
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | - Amina Yonis
- London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, UK
- Department of Cell and Developmental Biology, University College London, UK
| | - Andrew Harris
- London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, UK
- Department of Physics, University College London, London WC1E 6BT, UK
- Engineering Doctorate Program, Department of Chemistry, University College London, London WC1H 0AJ, UK
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA 94720, USA
| | - Payman Mosaffa
- Laboratori de Càlcul Numèric (LaCàN), Dept. Mathematics, Esc. d'Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya - Barcelona Tech (UPC), 08036, Barcelona, Spain
| | | | - Alexandre Kabla
- Department of Mechanical Engineering, Cambridge University, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, UK
| | - José J Muñoz
- Laboratori de Càlcul Numèric (LaCàN), Dept. Mathematics, Esc. d'Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya - Barcelona Tech (UPC), 08036, Barcelona, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Spain
| | - Mark Miodownik
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, UK
- Department of Cell and Developmental Biology, University College London, UK
- Institute for the Physics of Living Systems, University College London, UK
| |
Collapse
|
16
|
Luo Y, Lou D, Ma L, Gao C. Optimizing detergent concentration and processing time to balance the decellularization efficiency and properties of bioprosthetic heart valves. J Biomed Mater Res A 2019; 107:2235-2243. [DOI: 10.1002/jbm.a.36732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Luo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang University Hangzhou China
| | - Dong Lou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang University Hangzhou China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang University Hangzhou China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang University Hangzhou China
| |
Collapse
|
17
|
Sacks M, Drach A, Lee CH, Khalighi A, Rego B, Zhang W, Ayoub S, Yoganathan A, Gorman RC, Gorman Iii JH. On the simulation of mitral valve function in health, disease, and treatment. J Biomech Eng 2019; 141:2731932. [PMID: 31004145 PMCID: PMC6611349 DOI: 10.1115/1.4043552] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/26/2019] [Indexed: 12/19/2022]
Abstract
The mitral valve (MV) is the heart valve that regulates blood ?ow between the left atrium and left ventricle (LV). In situations where the MV fails to fully cover the left atrioventricular ori?ce during systole, the resulting regurgitation causes pulmonary congestion, leading to heart failure and/or stroke. The causes of MV insuf?ciency can be either primary (e.g. myxomatous degeneration) where the valvular tissue is organically diseased, or secondary (typically inducded by ischemic cardiomyopathy) termed ischemic mitral regurgitation (IMR), is brought on by adverse LV remodeling. IMR is present in up to 40% of patients and more than doubles the probability of cardiovascular morbidity after 3.5 years. There is now agreement that adjunctive procedures are required to treat IMR caused by lea?et tethering. However, there is no consensus regarding the best procedure. Multicenter registries and randomized trials would be necessary to prove which procedure is superior. Given the number of proposed procedures and the complexity and duration of such studies, it is highly unlikely that IMR procedure optimization will be achieved by prospective clinical trials. There is thus an urgent need for cell and tissue physiologically based quantitative assessments of MV function to better design surgical solutions and associated therapies. Novel computational approaches directed towards optimized surgical repair procedures can substantially reduce the need for such trial-and-error approaches. We present the details of our MV modeling techniques, with an emphasis on what is known and investigated at various length scales.
Collapse
Affiliation(s)
- Michael Sacks
- aWillerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Andrew Drach
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Chung-Hao Lee
- Department of Mechanical and Aerospace Engineering, University of Oklahoma, Norman, OK
| | - Amir Khalighi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Bruno Rego
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Will Zhang
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Salma Ayoub
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX
| | - Ajit Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Joseph H Gorman Iii
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
18
|
Mathur M, Jazwiec T, Meador WD, Malinowski M, Goehler M, Ferguson H, Timek TA, Rausch MK. Tricuspid valve leaflet strains in the beating ovine heart. Biomech Model Mechanobiol 2019; 18:1351-1361. [PMID: 30980211 DOI: 10.1007/s10237-019-01148-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/03/2019] [Indexed: 12/25/2022]
Abstract
The tricuspid leaflets coapt during systole to facilitate proper valve function and, thus, ensure efficient transport of deoxygenated blood to the lungs. Between their open state and closed state, the leaflets undergo large deformations. Quantification of these deformations is important for our basic scientific understanding of tricuspid valve function and for diagnostic or prognostic purposes. To date, tricuspid valve leaflet strains have never been directly quantified in vivo. To fill this gap in our knowledge, we implanted four sonomicrometry crystals per tricuspid leaflet and six crystals along the tricuspid annulus in a total of five sheep. In the beating ovine hearts, we recorded crystal coordinates alongside hemodynamic data. Once recorded, we used a finite strain kinematic framework to compute the temporal evolutions of area strain, radial strain, and circumferential strain for each leaflet. We found that leaflet strains were larger in the anterior leaflet than the posterior and septal leaflets. Additionally, we found that radial strains were larger than circumferential strains. Area strains were as large as 97% in the anterior leaflet, 31% in the posterior leaflet, and 31% in the septal leaflet. These data suggest that tricuspid valve leaflet strains are significantly larger than those in the mitral valve. Should our findings be confirmed they could suggest either that the mechanobiological equilibrium of tricuspid valve resident cells is different than that of mitral valve resident cells or that the mechanotransductive apparatus between the two varies. Either phenomenon may have important implications for the development of tricuspid valve-specific surgical techniques and medical devices.
Collapse
Affiliation(s)
- M Mathur
- Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | - T Jazwiec
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, USA
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - W D Meador
- Department of Biomedical Engineering, University of Texas at Austin, 2501 Speedway, Room 7.620, Austin, TX, 78712, USA
| | - M Malinowski
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, USA
- Department of Cardiac Surgery, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - M Goehler
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, USA
| | - H Ferguson
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, USA
| | - T A Timek
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, USA
| | - M K Rausch
- Department of Biomedical Engineering, University of Texas at Austin, 2501 Speedway, Room 7.620, Austin, TX, 78712, USA.
- Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, USA.
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
19
|
Ali MS, Wang X, Lacerda CMR. The effect of physiological stretch and the valvular endothelium on mitral valve proteomes. Exp Biol Med (Maywood) 2019; 244:241-251. [PMID: 30722697 PMCID: PMC6425102 DOI: 10.1177/1535370219829006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/09/2019] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT This work is important to the field of heart valve pathophysiology as it provides new insights into molecular markers of mechanically induced valvular degeneration as well as the protective role of the valvular endothelium. These discoveries reported here advance our current knowledge of the valvular endothelium and how its removal essentially takes valve leaflets into an environmental shock. In addition, it shows that static conditions represent a mild pathological state for valve leaflets, while 10% cyclic stretch provides valvular cell quiescence. These findings impact the field by informing disease stages and by providing potential new drug targets to reverse or slow down valvular change before it affects cardiac function.
Collapse
Affiliation(s)
- Mir S Ali
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| | - Xinmei Wang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| | - Carla MR Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| |
Collapse
|
20
|
Rego BV, Khalighi AH, Drach A, Lai EK, Pouch AM, Gorman RC, Gorman JH, Sacks MS. A noninvasive method for the determination of in vivo mitral valve leaflet strains. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3142. [PMID: 30133180 DOI: 10.1002/cnm.3142] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/21/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Assessment of mitral valve (MV) function is important in many diagnostic, prognostic, and surgical planning applications for treatment of MV disease. Yet, to date, there are no accepted noninvasive methods for determination of MV leaflet deformation, which is a critical metric of MV function. In this study, we present a novel, completely noninvasive computational method to estimate MV leaflet in-plane strains from clinical-quality real-time three-dimensional echocardiography (rt-3DE) images. The images were first segmented to produce meshed medial-surface leaflet geometries of the open and closed states. To establish material point correspondence between the two states, an image-based morphing pipeline was implemented within a finite element (FE) modeling framework in which MV closure was simulated by pressurizing the open-state geometry, and local corrective loads were applied to enforce the actual MV closed shape. This resulted in a complete map of local systolic leaflet membrane strains, obtained from the final FE mesh configuration. To validate the method, we utilized an extant in vitro database of fiducially labeled MVs, imaged in conditions mimicking both the healthy and diseased states. Our method estimated local anisotropic in vivo strains with less than 10% error and proved to be robust to changes in boundary conditions similar to those observed in ischemic MV disease. Next, we applied our methodology to ovine MVs imaged in vivo with rt-3DE and compared our results to previously published findings of in vivo MV strains in the same type of animal as measured using surgically sutured fiducial marker arrays. In regions encompassed by fiducial markers, we found no significant differences in circumferential(P = 0.240) or radial (P = 0.808) strain estimates between the marker-based measurements and our novel noninvasive method. This method can thus be used for model validation as well as for studies of MV disease and repair.
Collapse
Affiliation(s)
- Bruno V Rego
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Amir H Khalighi
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrew Drach
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Eric K Lai
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alison M Pouch
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Sacks
- Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
21
|
Nappi F. Minimally Invasive Approach for Complex Mitral Disease: Time to Choose the Lesser of Evils? Ann Thorac Surg 2018; 107:1287-1288. [PMID: 30316855 DOI: 10.1016/j.athoracsur.2018.08.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/25/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord-Saint-Denis, 36 Rue des Moulins Gémeaux, 93200 Saint-Denis, France.
| |
Collapse
|
22
|
Nguyen-Truong M, Wang Z. Biomechanical Properties and Mechanobiology of Cardiac ECM. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1098:1-19. [PMID: 30238363 DOI: 10.1007/978-3-319-97421-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The heart is comprised of cardiac cells and extracellular matrix (ECM) which function together to pump blood throughout the body, provide organs with nutrients and oxygen, and remove metabolic wastes. Cardiac ECM provides a scaffold to cardiac cells and contributes to the mechanical properties and function of the cardiac tissue. Recently, more evidence suggests that cardiac ECM plays an active role in cardiac remodeling in response to mechanical loads. To that end, we provide an overview of the structure and function of the heart and the currently available in vivo and ex vivo mechanical measurements of cardiac tissues. We also review the biomechanical properties of cardiac tissues including the myocardium and heart valves, with a discussion on the differences between the right ventricle and left ventricle. Lastly, we go into the mechanical factors involved in cardiac remodeling and review the mechanobiology of cardiac tissues, i.e., the biomechanical responses at the cellular and tissue level, with an emphasis on the impact on the cardiac ECM. The regulation of cardiac ECM on cell function, which is a new and open area of research, is also briefly discussed. Future investigation into the ECM deposition and the interaction of cardiac cells and ECM components for mechanotransduction can assist to understand cardiac remodeling and inspire new therapies for cardiac diseases.
Collapse
Affiliation(s)
| | - Zhijie Wang
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA. .,Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
23
|
Driesbaugh KH, Branchetti E, Grau JB, Keeney SJ, Glass K, Oyama MA, Rioux N, Ayoub S, Sacks MS, Quackenbush J, Levy RJ, Ferrari G. Serotonin receptor 2B signaling with interstitial cell activation and leaflet remodeling in degenerative mitral regurgitation. J Mol Cell Cardiol 2017; 115:94-103. [PMID: 29291394 DOI: 10.1016/j.yjmcc.2017.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 11/17/2022]
Abstract
AIMS Mitral valve interstitial cells (MVIC) play an important role in the pathogenesis of degenerative mitral regurgitation (MR) due to mitral valve prolapse (MVP). Numerous clinical studies have observed serotonin (5HT) dysregulation in cardiac valvulopathies; however, the impact of 5HT-mediated signaling on MVIC activation and leaflet remodeling in MVP have been investigated to a limited extent. Here we test the hypothesis that 5HT receptors (5HTRs) signaling contributes to MVP pathophysiology. METHODS AND RESULTS Diseased human MV leaflets were obtained during cardiac surgery for MVP; normal MV leaflets were obtained from heart transplants. MV RNA was used for microarray analysis of MVP patients versus control, highlighting genes that indicate the involvement of 5HTR pathways and extracellular matrix remodeling in MVP. Human MV leaflets were also studied in vitro and ex vivo with biomechanical testing to assess remodeling in the presence of a 5HTR2B antagonist (LY272015). MVP leaflets from Cavalier King Charles Spaniels were used as a naturally acquired in vivo model of MVP. These canine MVP leaflets (N=5/group) showed 5HTR2B upregulation. This study also utilized CB57.1ML/6 mice in order to determine the effect of Angiotensin II infusion on MV remodeling. Histological analysis showed that MV thickening due to chronic Angiotensin II remodeling is mitigated by a 5HTR2B antagonist (LY272015) but not by 5HTR2A inhibitors. CONCLUSION In humans, MVP is associated with an upregulation in 5HTR2B expression and increased 5HT receptor signaling in the leaflets. Antagonism of 5HTR2B mitigates MVIC activation in vitro and MV remodeling in vivo. These observations support the view that 5HTR signaling is involved not only in previously reported 5HT-related valvulopathies, but it is also involved in the pathological remodeling of MVP.
Collapse
Affiliation(s)
| | | | - Juan B Grau
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Samuel J Keeney
- University of Pennsylvania, Philadelphia, PA, United States; Columbia University, New York, NY, United States
| | - Kimberly Glass
- Dana Farber Cancer Center, Harvard University, Boston, MT, United States
| | - Mark A Oyama
- University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy Rioux
- The Valley Hospital, Ridgewood, NJ, United States
| | - Salma Ayoub
- University of Texas at Austin, Austin, TX, United States
| | | | - John Quackenbush
- Dana Farber Cancer Center, Harvard University, Boston, MT, United States
| | - Robert J Levy
- The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | | |
Collapse
|
24
|
Amini Khoiy K, Biswas D, Decker TN, Asgarian KT, Loth F, Amini R. Surface Strains of Porcine Tricuspid Valve Septal Leaflets Measured in Ex Vivo Beating Hearts. J Biomech Eng 2017; 138:2551875. [PMID: 27598222 DOI: 10.1115/1.4034621] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Indexed: 11/08/2022]
Abstract
Quantification of the tricuspid valve (TV) leaflets mechanical strain is important in order to understand valve pathophysiology and to develop effective treatment strategies. Many of the traditional methods used to dynamically open and close the cardiac valves in vitro via flow simulators require valve dissection. Recent studies, however, have shown that restriction of the atrioventricular valve annuli could significantly change their in vivo deformation. For the first time, the porcine valve leaflets deformation was measured in a passive ex vivo beating heart without isolating and remounting the valve annuli. In particular, the right ventricular apexes of porcine hearts (n = 8) were connected to a pulse-duplicator pump that maintained a pulsatile flow from and to a reservoir connected to the right atrium and the pulmonary arteries. This pump provided a right ventricular pressure (RVP) waveform that closely matched physiological values, leading to opening and closure of the tricuspid and pulmonary valves (PVs). At the midsection of the valve leaflets, the peak areal strain was 9.8 ± 2.0% (mean±standard error). The peak strain was 5.6 ± 1.1% and 4.3 ± 1.0% in the circumferential and radial directions, respectively. Although the right ventricle was beating passively, the leaflet peak areal strains closely matched the values measured in other atrioventricular valves (i.e., the mitral valve (MV)) in vivo. This technique can be used to measure leaflet strains with and without the presence of valve lesions to help develop/evaluate treatment strategies to restore normal valve deformation.
Collapse
Affiliation(s)
- Keyvan Amini Khoiy
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 e-mail:
| | - Dipankar Biswas
- Department of Mechanical Engineering, The University of Akron, Akron, OH 44325 e-mail:
| | - Thomas N Decker
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 e-mail:
| | - Kourosh T Asgarian
- Cardiothoracic Surgery, St. Joseph's Regional Medical Center, Paterson, NJ 07503 e-mail:
| | - Francis Loth
- Department of Mechanical Engineering, The University of Akron, Akron, OH 44325 e-mail:
| | - Rouzbeh Amini
- Mem. ASME Department of Biomedical Engineering, The University of Akron, 260 S Forge Street, Olson Research Center Room 301F, Akron, OH 44325 e-mail:
| |
Collapse
|
25
|
Sakamoto Y, Buchanan RM, Sanchez-Adams J, Guilak F, Sacks MS. On the Functional Role of Valve Interstitial Cell Stress Fibers: A Continuum Modeling Approach. J Biomech Eng 2017; 139:2595420. [PMID: 28024085 DOI: 10.1115/1.4035557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 01/20/2023]
Abstract
The function of the heart valve interstitial cells (VICs) is intimately connected to heart valve tissue remodeling and repair, as well as the onset and progression of valvular pathological processes. There is yet only very limited knowledge and extant models for the complex three-dimensional VIC internal stress-bearing structures, the associated cell-level biomechanical behaviors, and how they change under varying activation levels. Importantly, VICs are known to exist and function within the highly dynamic valve tissue environment, including very high physiological loading rates. Yet we have no knowledge on how these factors affect VIC function. To this end, we extended our previous VIC computational continuum mechanics model (Sakamoto, et al., 2016, "On Intrinsic Stress Fiber Contractile Forces in Semilunar Heart Valve Interstitial Cells Using a Continuum Mixture Model," J. Mech. Behav. Biomed. Mater., 54(244-258)). to incorporate realistic stress-fiber geometries, force-length relations (Hill model for active contraction), explicit α-smooth muscle actin (α-SMA) and F-actin expression levels, and strain rate. Novel micro-indentation measurements were then performed using cytochalasin D (CytoD), variable KCl molar concentrations, both alone and with transforming growth factor β1 (TGF-β1) (which emulates certain valvular pathological processes) to explore how α-SMA and F-actin expression levels influenced stress fiber responses under quasi-static and physiological loading rates. Simulation results indicated that both F-actin and α-SMA contributed substantially to stress fiber force generation, with the highest activation state (90 mM KCL + TGF-β1) inducing the largest α-SMA levels and associated force generation. Validation was performed by comparisons to traction force microscopy studies, which showed very good agreement. Interestingly, only in the highest activation state was strain rate sensitivity observed, which was captured successfully in the simulations. These unique findings demonstrated that only VICs with high levels of αSMA expression exhibited significant viscoelastic effects. Implications of this study include greater insight into the functional role of α-SMA and F-actin in VIC stress fiber function, and the potential for strain rate-dependent effects in pathological states where high levels of α-SMA occur, which appear to be unique to the valvular cellular in vivo microenvironment.
Collapse
Affiliation(s)
- Yusuke Sakamoto
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Rachel M Buchanan
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Johannah Sanchez-Adams
- Departments of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710;Departments of Biomedical Engineering, Duke University Medical Center, Durham, NC 27710
| | - Farshid Guilak
- Departments of Orthopaedic Surgery, Washington University, St. Louis, MO 63110;Departments of Biomedical Engineering, Washington University, St. Louis, MO 63110;Departments of Developmental Biology, Washington University, St. Louis, MO 63110
| | - Michael S Sacks
- W. A. "Tex" Moncrief, Jr. Simulation-Based Engineering Science Chair I Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 e-mail:
| |
Collapse
|
26
|
Ayoub S, Lee CH, Driesbaugh KH, Anselmo W, Hughes CT, Ferrari G, Gorman RC, Gorman JH, Sacks MS. Regulation of valve interstitial cell homeostasis by mechanical deformation: implications for heart valve disease and surgical repair. J R Soc Interface 2017; 14:20170580. [PMID: 29046338 PMCID: PMC5665836 DOI: 10.1098/rsif.2017.0580] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/21/2017] [Indexed: 11/12/2022] Open
Abstract
Mechanical stress is one of the major aetiological factors underlying soft-tissue remodelling, especially for the mitral valve (MV). It has been hypothesized that altered MV tissue stress states lead to deviations from cellular homeostasis, resulting in subsequent cellular activation and extracellular matrix (ECM) remodelling. However, a quantitative link between alterations in the organ-level in vivo state and in vitro-based mechanobiology studies has yet to be made. We thus developed an integrated experimental-computational approach to elucidate MV tissue and interstitial cell responses to varying tissue strain levels. Comprehensive results at different length scales revealed that normal responses are observed only within a defined range of tissue deformations, whereas deformations outside of this range lead to hypo- and hyper-synthetic responses, evidenced by changes in α-smooth muscle actin, type I collagen, and other ECM and cell adhesion molecule regulation. We identified MV interstitial cell deformation as a key player in leaflet tissue homeostatic regulation and, as such, used it as the metric that makes the critical link between in vitro responses to simulated equivalent in vivo behaviour. Results indicated that cell responses have a delimited range of in vivo deformations that maintain a homeostatic response, suggesting that deviations from this range may lead to deleterious tissue remodelling and failure.
Collapse
Affiliation(s)
- Salma Ayoub
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Kathryn H Driesbaugh
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wanda Anselmo
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connor T Hughes
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Giovanni Ferrari
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
27
|
Gao H, Qi N, Feng L, Ma X, Danton M, Berry C, Luo X. Modelling mitral valvular dynamics-current trend and future directions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e2858. [PMID: 27935265 PMCID: PMC5697636 DOI: 10.1002/cnm.2858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/30/2016] [Accepted: 11/26/2016] [Indexed: 05/19/2023]
Abstract
Dysfunction of mitral valve causes morbidity and premature mortality and remains a leading medical problem worldwide. Computational modelling aims to understand the biomechanics of human mitral valve and could lead to the development of new treatment, prevention and diagnosis of mitral valve diseases. Compared with the aortic valve, the mitral valve has been much less studied owing to its highly complex structure and strong interaction with the blood flow and the ventricles. However, the interest in mitral valve modelling is growing, and the sophistication level is increasing with the advanced development of computational technology and imaging tools. This review summarises the state-of-the-art modelling of the mitral valve, including static and dynamics models, models with fluid-structure interaction, and models with the left ventricle interaction. Challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Hao Gao
- School of Mathematics and StatisticsUniversity of GlasgowUK
| | - Nan Qi
- School of Mathematics and StatisticsUniversity of GlasgowUK
| | - Liuyang Feng
- School of Mathematics and StatisticsUniversity of GlasgowUK
| | | | - Mark Danton
- Department of Cardiac SurgeryRoyal Hospital for ChildrenGlasgowUK
| | - Colin Berry
- Institute of Cardiovascular and Medical SciencesUniversity of GlasgowUK
| | - Xiaoyu Luo
- School of Mathematics and StatisticsUniversity of GlasgowUK
| |
Collapse
|
28
|
Vukicevic M, Vekilov DP, Grande-Allen JK, Little SH. Patient-specific 3D Valve Modeling for Structural Intervention. STRUCTURAL HEART-THE JOURNAL OF THE HEART TEAM 2017. [DOI: 10.1080/24748706.2017.1377363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marija Vukicevic
- Department of Cardiology, Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas, USA
| | | | | | - Stephen H. Little
- Department of Cardiology, Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
29
|
Mao W, Caballero A, McKay R, Primiano C, Sun W. Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model. PLoS One 2017; 12:e0184729. [PMID: 28886196 PMCID: PMC5590990 DOI: 10.1371/journal.pone.0184729] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
In this study, we present a fully-coupled fluid-structure interaction (FSI) framework that combines smoothed particle hydrodynamics (SPH) and nonlinear finite element (FE) method to investigate the coupled aortic and mitral valves structural response and the bulk intraventricular hemodynamics in a realistic left ventricle (LV) model during the entire cardiac cycle. The FSI model incorporates valve structures that consider native asymmetric leaflet geometries, anisotropic hyperelastic material models and human material properties. Comparison of FSI results with subject-specific echocardiography data demonstrates that the SPH-FE approach is able to quantitatively predict the opening and closing times of the valves, the mitral leaflet opening and closing angles, and the large-scale intraventricular flow phenomena with a reasonable agreement. Moreover, comparison of FSI results with a LV model without valves reveals substantial differences in the flow field. Peak systolic velocities obtained from the FSI model and the LV model without valves are 2.56 m/s and 1.16 m/s, respectively, compared to the Doppler echo data of 2.17 m/s. The proposed SPH-FE FSI framework represents a further step towards modeling patient-specific coupled LV-valve dynamics, and has the potential to improve our understanding of cardiovascular physiology and to support professionals in clinical decision-making.
Collapse
Affiliation(s)
- Wenbin Mao
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Andrés Caballero
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Raymond McKay
- Cardiology Department, The Hartford Hospital, Hartford, Connecticut, United States of America
| | - Charles Primiano
- Cardiology Department, The Hartford Hospital, Hartford, Connecticut, United States of America
| | - Wei Sun
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| |
Collapse
|
30
|
Baxter J, Buchan KG, Espino DM. Viscoelastic properties of mitral valve leaflets: An analysis of regional variation and frequency-dependency. Proc Inst Mech Eng H 2017; 231:938-944. [PMID: 28707559 DOI: 10.1177/0954411917719741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to determine the regional variation in viscoelastic properties of mitral valve leaflets over a range of physiological and patho-physiological frequencies. This included comparisons to be made between anterior and posterior leaflets, anterior leaflet clear and rough zones, and radial and circumferential leaflet orientation. Dynamic mechanical analysis was used to determine frequency-dependent viscoelastic properties. The valve leaflets were dissected from eight porcine hearts. The leaflets were loaded under a sinusoidal tensile displacement, with a mean dynamic peak to trough strain of 11%, applied to all leaflet samples at nine different frequencies, ranging from 0.5 to 10 Hz. The anterior leaflet has higher storage and loss stiffness than the posterior leaflet. The storage stiffness of circumferential tissue is greater than that of radially oriented valve tissue (2.0 ± 1.6 N/mm cf. 1.7 ± 0.9 N/mm; p < 0.05); however, the loss stiffness is greater for radial tissue (0.15 ± 0.07 cf. 0.14 ± 0.09 N/mm; p < 0.05). Likewise, the storage stiffness of the anterior leaflet clear zone is greater than that of the rough zone (2.4 ± 1.6 cf. 2.1 ± 1.2; p < 0.05), but the loss stiffness is greater for the rough zone (0.17 ± 0.09 N/mm cf. 0.14 ± 0.08 N/mm; p < 0.05). In conclusion, the viscoelastic properties of porcine mitral valve leaflets have regional variations, with dynamic stiffness being dependent on circumferential or radial orientation and on location at a clear or rough zones.
Collapse
Affiliation(s)
- Jonathan Baxter
- 1 Department of Mechanical Engineering, University of Birmingham, Birmingham, UK
| | - Keith G Buchan
- 2 Cardiothoracic Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Daniel M Espino
- 1 Department of Mechanical Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
31
|
Lee CH, Zhang W, Feaver K, Gorman RC, Gorman JH, Sacks MS. On the in vivo function of the mitral heart valve leaflet: insights into tissue-interstitial cell biomechanical coupling. Biomech Model Mechanobiol 2017; 16:1613-1632. [PMID: 28429161 DOI: 10.1007/s10237-017-0908-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
There continues to be a critical need for developing data-informed computational modeling techniques that enable systematic evaluations of mitral valve (MV) function. This is important for a better understanding of MV organ-level biomechanical performance, in vivo functional tissue stresses, and the biosynthetic responses of MV interstitial cells (MVICs) in the normal, pathophysiological, and surgically repaired states. In the present study, we utilized extant ovine MV population-averaged 3D fiducial marker data to quantify the MV anterior leaflet (MVAL) deformations in various kinematic states. This approach allowed us to make the critical connection between the in vivo functional and the in vitro experimental configurations. Moreover, we incorporated the in vivo MVAL deformations and pre-strains into an enhanced inverse finite element modeling framework (Path 1) to estimate the resulting in vivo tissue prestresses [Formula: see text] and the in vivo peak functional tissue stresses [Formula: see text]. These in vivo stress estimates were then cross-verified with the results obtained from an alternative forward modeling method (Path 2), by taking account of the changes in the in vitro and in vivo reference configurations. Moreover, by integrating the tissue-level kinematic results into a downscale MVIC microenvironment FE model, we were able to estimate, for the first time, the in vivo layer-specific MVIC deformations and deformation rates of the normal and surgically repaired MVALs. From these simulations, we determined that the placement of annuloplasty ring greatly reduces the peak MVIC deformation levels in a layer-specific manner. This suggests that the associated reductions in MVIC deformation may down-regulate MV extracellular matrix maintenance, ultimately leading to reduction in tissue mechanical integrity. These simulations provide valuable insight into MV cellular mechanobiology in response to organ- and tissue-level alternations induced by MV disease or surgical repair. They will also assist in the future development of computer simulation tools for guiding MV surgery procedure with enhanced durability and improved long-term surgical outcomes.
Collapse
Affiliation(s)
- Chung-Hao Lee
- School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall, Rm. 219C, Norman, OK, 73019, USA.,Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, POB 5.236, 1 University Station, C0200, Austin, TX, 78712, USA
| | - Will Zhang
- Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, POB 5.236, 1 University Station, C0200, Austin, TX, 78712, USA
| | - Kristen Feaver
- Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, POB 5.236, 1 University Station, C0200, Austin, TX, 78712, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Michael S Sacks
- Department of Biomedical Engineering, Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, POB 5.236, 1 University Station, C0200, Austin, TX, 78712, USA. .,W. A. Moncrief, Jr. Simulation-Based Engineering Science Chair I, Department of Biomedical Engineering, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, ACES 5.438, 1 University Station, C0200, Austin, TX, 78712-0027, USA.
| |
Collapse
|
32
|
Prot V, Skallerud B. Contributions of prestrains, hyperelasticity, and muscle fiber activation on mitral valve systolic performance. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e2806. [PMID: 27274001 DOI: 10.1002/cnm.2806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/01/2016] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
The present study addresses the contributions of prestrains and muscle fiber activation to the global response of the mitral valve during systole. A finite element model of a porcine mitral valve is created using anatomical measurements and 3D echocardiographic recordings. The passive behavior of the leaflets is modeled using a transversely isotropic hyperelastic constitutive model, and we assume orthotropic muscle activations in the anterior leaflet. A simple approach to incorporate prestrains in the mitral valve apparatus is used by expanding the mitral annulus before applying the ventricular pressure to the mitral leaflets. Several finite element analyses are run with or without muscle activation and with or without prestrains. The analysis results are compared at peak systole with the echocardiograpic recordings. The case where prestrains and activation are accounted for simultaneously is the most efficient to approach the physiological flat shape of the closed valve observed in the echocardiograpic measurements. These results suggest that the active components present in the mitral leaflets and the presence of prestrains contribute to the physiological deformations of the mitral valve at peak systole and that material models based on in vitro mechanical testing are not sufficient for numerical studies of the mitral apparatus. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Victorien Prot
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjorn Skallerud
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
33
|
Ayoub S, Ferrari G, Gorman RC, Gorman JH, Schoen FJ, Sacks MS. Heart Valve Biomechanics and Underlying Mechanobiology. Compr Physiol 2016; 6:1743-1780. [PMID: 27783858 PMCID: PMC5537387 DOI: 10.1002/cphy.c150048] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heart valves control unidirectional blood flow within the heart during the cardiac cycle. They have a remarkable ability to withstand the demanding mechanical environment of the heart, achieving lifetime durability by processes involving the ongoing remodeling of the extracellular matrix. The focus of this review is on heart valve functional physiology, with insights into the link between disease-induced alterations in valve geometry, tissue stress, and the subsequent cell mechanobiological responses and tissue remodeling. We begin with an overview of the fundamentals of heart valve physiology and the characteristics and functions of valve interstitial cells (VICs). We then provide an overview of current experimental and computational approaches that connect VIC mechanobiological response to organ- and tissue-level deformations and improve our understanding of the underlying functional physiology of heart valves. We conclude with a summary of future trends and offer an outlook for the future of heart valve mechanobiology, specifically, multiscale modeling approaches, and the potential directions and possible challenges of research development. © 2016 American Physiological Society. Compr Physiol 6:1743-1780, 2016.
Collapse
Affiliation(s)
- Salma Ayoub
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
| | - Giovanni Ferrari
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, USA
| | - Robert C. Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, USA
| | - Joseph H. Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, USA
| | - Frederick J. Schoen
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Michael S. Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
| |
Collapse
|
34
|
Soares JS, Feaver KR, Zhang W, Kamensky D, Aggarwal A, Sacks MS. Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance. Cardiovasc Eng Technol 2016; 7:309-351. [PMID: 27507280 DOI: 10.1007/s13239-016-0276-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
The use of replacement heart valves continues to grow due to the increased prevalence of valvular heart disease resulting from an ageing population. Since bioprosthetic heart valves (BHVs) continue to be the preferred replacement valve, there continues to be a strong need to develop better and more reliable BHVs through and improved the general understanding of BHV failure mechanisms. The major technological hurdle for the lifespan of the BHV implant continues to be the durability of the constituent leaflet biomaterials, which if improved can lead to substantial clinical impact. In order to develop improved solutions for BHV biomaterials, it is critical to have a better understanding of the inherent biomechanical behaviors of the leaflet biomaterials, including chemical treatment technologies, the impact of repetitive mechanical loading, and the inherent failure modes. This review seeks to provide a comprehensive overview of these issues, with a focus on developing insight on the mechanisms of BHV function and failure. Additionally, this review provides a detailed summary of the computational biomechanical simulations that have been used to inform and develop a higher level of understanding of BHV tissues and their failure modes. Collectively, this information should serve as a tool not only to infer reliable and dependable prosthesis function, but also to instigate and facilitate the design of future bioprosthetic valves and clinically impact cardiology.
Collapse
Affiliation(s)
- Joao S Soares
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX, 78712-1129, USA
| | - Kristen R Feaver
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX, 78712-1129, USA
| | - Will Zhang
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX, 78712-1129, USA
| | - David Kamensky
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX, 78712-1129, USA
| | - Ankush Aggarwal
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX, 78712-1129, USA
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX, 78712-1129, USA.
| |
Collapse
|
35
|
Bark DL, Dasi LP. The Impact of Fluid Inertia on In Vivo Estimation of Mitral Valve Leaflet Constitutive Properties and Mechanics. Ann Biomed Eng 2016; 44:1425-35. [PMID: 26416720 PMCID: PMC4809800 DOI: 10.1007/s10439-015-1463-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/15/2015] [Indexed: 11/24/2022]
Abstract
We examine the influence of the added mass effect (fluid inertia) on mitral valve leaflet stress during isovolumetric phases. To study this effect, oscillating flow is applied to a flexible membrane at various frequencies to control inertia. Resulting membrane strain is calculated through a three-dimensional reconstruction of markers from stereo images. To investigate the effect in vivo, the analysis is repeated on a published dataset for an ovine mitral valve (Journal of Biomechanics 42(16): 2697-2701). The membrane experiment demonstrates that the relationship between pressure and strain must be corrected with a fluid inertia term if the ratio of inertia to pressure differential approaches 1. In the mitral valve, this ratio reaches 0.7 during isovolumetric contraction for an acceleration of 6 m/s(2). Acceleration is reduced by 72% during isovolumetric relaxation. Fluid acceleration also varies along the leaflet during isovolumetric phases, resulting in spatial variations in stress. These results demonstrate that fluid inertia may be the source of the temporally and spatially varying stiffness measurements previously seen through inverse finite element analysis of in vivo data during isovolumetric phases. This study demonstrates that there is a need to account for added mass effects when analyzing in vivo constitutive relationships of heart valves.
Collapse
Affiliation(s)
- David L. Bark
- Colorado State University, School of Mechanical Engineering, Fort Collins, CO, United States
| | - Lakshmi P. Dasi
- Colorado State University, School of Mechanical Engineering, Fort Collins, CO, United States
| |
Collapse
|
36
|
High-resolution subject-specific mitral valve imaging and modeling: experimental and computational methods. Biomech Model Mechanobiol 2016; 15:1619-1630. [PMID: 27094182 DOI: 10.1007/s10237-016-0786-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/29/2016] [Indexed: 10/21/2022]
Abstract
The diversity of mitral valve (MV) geometries and multitude of surgical options for correction of MV diseases necessitates the use of computational modeling. Numerical simulations of the MV would allow surgeons and engineers to evaluate repairs, devices, procedures, and concepts before performing them and before moving on to more costly testing modalities. Constructing, tuning, and validating these models rely upon extensive in vitro characterization of valve structure, function, and response to change due to diseases. Micro-computed tomography ([Formula: see text]CT) allows for unmatched spatial resolution for soft tissue imaging. However, it is still technically challenging to obtain an accurate geometry of the diastolic MV. We discuss here the development of a novel technique for treating MV specimens with glutaraldehyde fixative in order to minimize geometric distortions in preparation for [Formula: see text]CT scanning. The technique provides a resulting MV geometry which is significantly more detailed in chordal structure, accurate in leaflet shape, and closer to its physiological diastolic geometry. In this paper, computational fluid-structure interaction (FSI) simulations are used to show the importance of more detailed subject-specific MV geometry with 3D chordal structure to simulate a proper closure validated against [Formula: see text]CT images of the closed valve. Two computational models, before and after use of the aforementioned technique, are used to simulate closure of the MV.
Collapse
|
37
|
Zhang W, Ayoub S, Liao J, Sacks MS. A meso-scale layer-specific structural constitutive model of the mitral heart valve leaflets. Acta Biomater 2016; 32:238-255. [PMID: 26712602 DOI: 10.1016/j.actbio.2015.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/13/2015] [Accepted: 12/01/2015] [Indexed: 11/28/2022]
Abstract
Fundamental to developing a deeper understanding of pathophysiological remodeling in mitral valve (MV) disease is the development of an accurate tissue-level constitutive model. In the present work, we developed a novel meso-scale (i.e. at the level of the fiber, 10-100 μm in length scale) structural constitutive model (MSSCM) for MV leaflet tissues. Due to its four-layer structure, we focused on the contributions from the distinct collagen and elastin fiber networks within each tissue layer. Requisite collagen and elastin fibrous structural information for each layer were quantified using second harmonic generation microscopy and conventional histology. A comprehensive mechanical dataset was also used to guide model formulation and parameter estimation. Furthermore, novel to tissue-level structural constitutive modeling approaches, we allowed the collagen fiber recruitment function to vary with orientation. Results indicated that the MSSCM predicted a surprisingly consistent mean effective collagen fiber modulus of 162.72 MPa, and demonstrated excellent predictive capability for extra-physiological loading regimes. There were also anterior-posterior leaflet-specific differences, such as tighter collagen and elastin fiber orientation distributions (ODF) in the anterior leaflet, and a thicker and stiffer atrialis in the posterior leaflet. While a degree of angular variance was observed, the tight valvular tissue ODF also left little room for any physically meaningful angular variance in fiber mechanical responses. Finally, a novel fibril-level (0.1-1 μm) validation approach was used to compare the predicted collagen fiber/fibril mechanical behavior with extant MV small angle X-ray scattering data. Results demonstrated excellent agreement, indicating that the MSSCM fully captures the tissue-level function. Future utilization of the MSSCM in computational models of the MV will aid in producing highly accurate simulations in non-physiological loading states that can occur in repair situations, as well as guide the form of simplified models for real-time simulation tools.
Collapse
Affiliation(s)
- Will Zhang
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Salma Ayoub
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jun Liao
- Tissue Bioengineering Laboratory, Department of Ag. and Bio. Engineering, Bagley College of Engineering, College of Agriculture and Life Sciences, Mississippi State University, MS, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
38
|
Capulli AK, MacQueen LA, Sheehy SP, Parker KK. Fibrous scaffolds for building hearts and heart parts. Adv Drug Deliv Rev 2016; 96:83-102. [PMID: 26656602 PMCID: PMC4807693 DOI: 10.1016/j.addr.2015.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022]
Abstract
Extracellular matrix (ECM) structure and biochemistry provide cell-instructive cues that promote and regulate tissue growth, function, and repair. From a structural perspective, the ECM is a scaffold that guides the self-assembly of cells into distinct functional tissues. The ECM promotes the interaction between individual cells and between different cell types, and increases the strength and resilience of the tissue in mechanically dynamic environments. From a biochemical perspective, factors regulating cell-ECM adhesion have been described and diverse aspects of cell-ECM interactions in health and disease continue to be clarified. Natural ECMs therefore provide excellent design rules for tissue engineering scaffolds. The design of regenerative three-dimensional (3D) engineered scaffolds is informed by the target ECM structure, chemistry, and mechanics, to encourage cell infiltration and tissue genesis. This can be achieved using nanofibrous scaffolds composed of polymers that simultaneously recapitulate 3D ECM architecture, high-fidelity nanoscale topography, and bio-activity. Their high porosity, structural anisotropy, and bio-activity present unique advantages for engineering 3D anisotropic tissues. Here, we use the heart as a case study and examine the potential of ECM-inspired nanofibrous scaffolds for cardiac tissue engineering. We asked: Do we know enough to build a heart? To answer this question, we tabulated structural and functional properties of myocardial and valvular tissues for use as design criteria, reviewed nanofiber manufacturing platforms and assessed their capabilities to produce scaffolds that meet our design criteria. Our knowledge of the anatomy and physiology of the heart, as well as our ability to create synthetic ECM scaffolds have advanced to the point that valve replacement with nanofibrous scaffolds may be achieved in the short term, while myocardial repair requires further study in vitro and in vivo.
Collapse
Affiliation(s)
- A K Capulli
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - L A MacQueen
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Sean P Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - K K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
39
|
Roberts N, Morticelli L, Jin Z, Ingham E, Korossis S. Regional biomechanical and histological characterization of the mitral valve apparatus: Implications for mitral repair strategies. J Biomech 2015; 49:2491-501. [PMID: 26787008 DOI: 10.1016/j.jbiomech.2015.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 11/15/2022]
Abstract
The aim of this study was to investigate the regional and directional differences in the biomechanics and histoarchitecture of the porcine mitral valve (MV) apparatus, with a view to tailoring tissue-engineered constructs for MV repair. The anterior leaflet displayed the largest directional anisotropy with significantly higher strength in the circumferential direction compared to the posterior leaflet. The histological results indicated that this was due to the circumferential alignment of the collagen fibers. The posterior leaflet demonstrated no significant directional anisotropy in the mechanical properties, and there was no significant directionality of the collagen fibers in the main body of the leaflet. The thinner commissural chordae were found to be significantly stiffer and less extensible than the strut chordae. Histological staining demonstrated a tighter knit of the collagen fibers in the commissural chordae than the strut chordae. By elucidating the inhomogeneity of the histoarchitecture and biomechanics of the MV apparatus, the results from this study will aid the regional differentiation of MV repair strategies, with tailored mitral-component-specific biomaterials or tissue-engineered constructs.
Collapse
Affiliation(s)
- Nicholas Roberts
- Institute of Medical and Biological Engineering, University of Leeds, LS2 9JT Leeds, UK
| | - Lucrezia Morticelli
- Institute of Medical and Biological Engineering, University of Leeds, LS2 9JT Leeds, UK; Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany
| | - Zhongmin Jin
- Institute of Medical and Biological Engineering, University of Leeds, LS2 9JT Leeds, UK; State Key Laboratory for Manufacturing System Engineering, Xi׳an Jiaotong University, Xi׳an, China
| | - Eileen Ingham
- Institute of Medical and Biological Engineering, University of Leeds, LS2 9JT Leeds, UK
| | - Sotirios Korossis
- Institute of Medical and Biological Engineering, University of Leeds, LS2 9JT Leeds, UK; Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany; Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Feodor-Lynen-Strasse 31, Hannover 30625, Germany.
| |
Collapse
|
40
|
Characterization of CD133 Antibody-Directed Recellularized Heart Valves. J Cardiovasc Transl Res 2015; 8:411-20. [PMID: 26341225 DOI: 10.1007/s12265-015-9651-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/27/2015] [Indexed: 02/08/2023]
Abstract
CD133mAb conjugation (CD133-C) hastens in vivo recellularization of decellularized porcine heart valve scaffolds when placed in the pulmonary position of sheep. We now characterize this early cellularization process 4 h, 3, 7, 14, 30, or 90 days post-implantation. Quantitative immunohistochemistry identified cell types as well as changes in cell markers and developmental cues. CD133(+)/CD31(-) cells adhered to the leaflet surface of CD133-C leaflets by 3 days and transitioned to native leaflet-like CD133(-)/CD31(+) cells by 30 days. Leaflet interstitium became increasingly populated with both alpha-smooth muscle actin (αSMA) and vimentin(+) cells from 14 to 90 days post-implantation. Wnt3a, and beta-catenin proteins were expressed at early (3-14 days) but not later (30-90 days) time points. In contrast, matrix metalloproteinase-2 and periostin proteins were increasingly expressed over 90 days. Thus, early development of CD133-C constructs includes a fairly rapid transition from a precursor cell adhesion/migration/transdifferentiation phenotype to a more mature cell/native valve-like matrix metabolism phenotype.
Collapse
|
41
|
Vossler JD, Min Ju Y, Williams JK, Goldstein S, Hamlin J, Lee SJ, Yoo JJ, Atala A. CD133 antibody conjugation to decellularized human heart valves intended for circulating cell capture. ACTA ACUST UNITED AC 2015; 10:055001. [PMID: 26333364 DOI: 10.1088/1748-6041/10/5/055001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The long term efficacy of tissue based heart valve grafts may be limited by progressive degeneration characterized by immune mediated inflammation and calcification. To avoid this degeneration, decellularized heart valves with functionalized surfaces capable of rapid in vivo endothelialization have been developed. The aim of this study is to examine the capacity of CD133 antibody-conjugated valve tissue to capture circulating endothelial progenitor cells (EPCs). Decellularized human pulmonary valve tissue was conjugated with CD133 antibody at varying concentrations and exposed to CD133 expressing NTERA-2 cl.D1 (NT2) cells in a microflow chamber. The amount of CD133 antibody conjugated on the valve tissue surface and the number of NT2 cells captured in the presence of shear stress was measured. Both the amount of CD133 antibody conjugated to the valve leaflet surface and the number of adherent NT2 cells increased as the concentration of CD133 antibody present in the surface immobilization procedure increased. The data presented in this study support the hypothesis that the rate of CD133(+) cell adhesion in the presence of shear stress to decellularized heart valve tissue functionalized by CD133 antibody conjugation increases as the quantity of CD133 antibody conjugated to the tissue surface increases.
Collapse
Affiliation(s)
- John D Vossler
- Wake Forest Institute for Regenerative Medicine and, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA. Department of General Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Stephens EH, Connell PS, Fahrenholtz MM, Timek TA, Daughters GT, Kuo JJ, Patton AM, Ingels NB, Miller DC, Grande-Allen KJ. Heterogeneity of Mitral Leaflet Matrix Composition and Turnover Correlates with Regional Leaflet Strain. Cardiovasc Eng Technol 2015. [PMID: 26213589 DOI: 10.1007/s13239-015-0214-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To determine how extracellular matrix and contractile valvular cells contribute to the heterogeneous motion and strain across the mitral valve (MV) during the cardiac cycle, regional MV material properties, matrix composition, matrix turnover, and cell phenotype were related to regional leaflet strain. Radiopaque markers were implanted into 14 sheep to delineate the septal (SEPT), lateral (LAT), and anterior and posterior commissural leaflets (ANT-C, POST-C). Videofluoroscopy imaging was used to calculate radial and circumferential strains. Mechanical properties were assessed using uniaxial tensile testing and micropipette aspiration. Matrix composition and cell phenotypes were immunohistochemically evaluated within each leaflet region [basal leaflet (BL), mid-leaflet (ML), and free edge]. SEPT-BL segments were stiffer and stronger than other valve tissues, while LAT segments demonstrated more extensibility and strain. Collagens I and III in SEPT were greater than in LAT, although LAT showed greater collagen turnover [matrix metalloprotease (MMP)-13, lysyl oxidase] and cell activation [smooth muscle alpha-actin (SMaA), and non-muscle myosin (NMM)]. MMP13, NMM, and SMaA were strongly correlated with each other, as well as with radial and circumferential strains in both SEPT and LAT. SMaA and MMP13 in POST-C ML was greater than ANT-C, corresponding to greater radial strains in POST-C. This work directly relates leaflet strain, material properties, and matrix turnover, and suggests a role for myofibroblasts in the heterogeneity of leaflet composition and strain. New approaches to MV repair techniques and ring design should preserve this normal coupling between leaflet composition and motion.
Collapse
|
43
|
Lee CH, Carruthers CA, Ayoub S, Gorman RC, Gorman JH, Sacks MS. Quantification and simulation of layer-specific mitral valve interstitial cells deformation under physiological loading. J Theor Biol 2015; 373:26-39. [PMID: 25791285 PMCID: PMC4404233 DOI: 10.1016/j.jtbi.2015.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 02/12/2015] [Accepted: 03/03/2015] [Indexed: 01/15/2023]
Abstract
Within each of the four layers of mitral valve (MV) leaflet tissues there resides a heterogeneous population of interstitial cells that maintain the structural integrity of the MV tissue via protein biosynthesis and enzymatic degradation. There is increasing evidence that tissue stress-induced MV interstitial cell (MVIC) deformations can have deleterious effects on their biosynthetic states that are potentially related to the reduction of tissue-level maintenance and to subsequent organ-level failure. To better understand the interrelationships between tissue-level loading and cellular responses, we developed the following integrated experimental-computational approach. Since in vivo cellular deformations are not directly measurable, we quantified the in-situ layer-specific MVIC deformations for each of the four layers under a controlled biaxial tension loading device coupled to multi-photon microscopy. Next, we explored the interrelationship between the MVIC stiffness and deformation to layer-specific tissue mechanical and structural properties using a macro-micro finite element computational model. Experimental results indicated that the MVICs in the fibrosa and ventricularis layers deformed significantly more than those in the atrialis and spongiosa layers, reaching a nucleus aspect ratio of 3.3 under an estimated maximum physiological tension of 150N/m. The simulated MVIC moduli for the four layers were found to be all within a narrow range of 4.71-5.35kPa, suggesting that MVIC deformation is primarily controlled by each tissue layer's respective structure and mechanical behavior rather than the intrinsic MVIC stiffness. This novel result further suggests that while the MVICs may be phenotypically and biomechanically similar throughout the leaflet, they experience layer-specific mechanical stimulatory inputs due to distinct extracellular matrix architecture and mechanical behaviors of the four MV leaflet tissue layers. This also suggests that MVICs may behave in a layer-specific manner in response to mechanical stimuli in both normal and surgically modified MVs.
Collapse
Affiliation(s)
- Chung-Hao Lee
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712, USA
| | - Christopher A Carruthers
- Cardiac Rhythm Disease Management (CRDM) Clinical Specialist, Medtronic, Minneapolis, MN 55432, USA
| | - Salma Ayoub
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, POB 5.236, 1 University Station C0200, Austin, TX 78712, USA.
| |
Collapse
|
44
|
Lee CH, Zhang W, Liao J, Carruthers CA, Sacks JI, Sacks MS. On the presence of affine fibril and fiber kinematics in the mitral valve anterior leaflet. Biophys J 2015; 108:2074-87. [PMID: 25902446 PMCID: PMC4407258 DOI: 10.1016/j.bpj.2015.03.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/07/2015] [Accepted: 03/10/2015] [Indexed: 11/21/2022] Open
Abstract
In this study, we evaluated the hypothesis that the constituent fibers follow an affine deformation kinematic model for planar collagenous tissues. Results from two experimental datasets were utilized, taken at two scales (nanometer and micrometer), using mitral valve anterior leaflet (MVAL) tissues as the representative tissue. We simulated MVAL collagen fiber network as an ensemble of undulated fibers under a generalized two-dimensional deformation state, by representing the collagen fibrils based on a planar sinusoidally shaped geometric model. The proposed approach accounted for collagen fibril amplitude, crimp period, and rotation with applied macroscopic tissue-level deformation. When compared to the small angle x-ray scattering measurements, the model fit the data well, with an r(2) = 0.976. This important finding suggests that, at the homogenized tissue-level scale of ∼1 mm, the collagen fiber network in the MVAL deforms according to an affine kinematics model. Moreover, with respect to understanding its function, affine kinematics suggests that the constituent fibers are largely noninteracting and deform in accordance with the bulk tissue. It also suggests that the collagen fibrils are tightly bounded and deform as a single fiber-level unit. This greatly simplifies the modeling efforts at the tissue and organ levels, because affine kinematics allows a straightforward connection between the macroscopic and local fiber strains. It also suggests that the collagen and elastin fiber networks act independently of each other, with the collagen and elastin forming long fiber networks that allow for free rotations. Such freedom of rotation can greatly facilitate the observed high degree of mechanical anisotropy in the MVAL and other heart valves, which is essential to heart valve function. These apparently novel findings support modeling efforts directed toward improving our fundamental understanding of tissue biomechanics in healthy and diseased conditions.
Collapse
Affiliation(s)
- Chung-Hao Lee
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
| | - Will Zhang
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
| | - Jun Liao
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Starkville, Mississippi
| | | | - Jacob I Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
45
|
Brazile B, Wang B, Wang G, Bertucci R, Prabhu R, Patnaik SS, Butler JR, Claude A, Brinkman-Ferguson E, Williams LN, Liao J. On the bending properties of porcine mitral, tricuspid, aortic, and pulmonary valve leaflets. J Long Term Eff Med Implants 2015; 25:41-53. [PMID: 25955006 PMCID: PMC6721960 DOI: 10.1615/jlongtermeffmedimplants.2015011741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The atrioventricular valve leaflets (mitral and tricuspid) are different from the semilunar valve leaflets (aortic and pulmonary) in layered structure, ultrastructural constitution and organization, and leaflet thickness. These differences warrant a comparative look at the bending properties of the four types of leaflets. We found that the moment-curvature relationships in atrioventricular valves were stiffer than in semilunar valves, and the moment-curvature relationships of the left-side valve leaflets were stiffer than their morphological analog of the right side. These trends were supported by the moment-curvature curves and the flexural rigidity analysis (EI value decreased from mitral, tricuspid, aortic, to pulmonary leaflets). However, after taking away the geometric effect (moment of inertia I), the instantaneous effective bending modulus E showed a reversed trend. The overall trend of flexural rigidity (EI: mitral > tricuspid > aortic > pulmonary) might be correlated with the thickness variations among the four types of leaflets (thickness: mitral > tricuspid > aortic > pulmonary). The overall trend of the instantaneous effective bending modulus (E: mitral < tricuspid < aortic < pulmonary) might be correlated to the layered fibrous ultrastructures of the four types of leaflets, of which the fibers in mitral and tricuspid leaflets were less aligned, and the fibers in aortic and pulmonary leaflets were highly aligned. We also found that, for all types of leaflets, moment-curvature relationships are stiffer in against-curvature (AC) bending than in with-curvature bending (WC), which implies that leaflets tend to flex toward their natural curvature and comply with blood flow. Lastly, we observed that the leaflets were stiffer in circumferential bending compared with radial bending, likely reflecting the physiological motion of the leaflets, i.e., more bending moment and movement were experienced in radial direction than circumferential direction.
Collapse
Affiliation(s)
- Bryn Brazile
- Tissue Bioengineering Laboratory, Department of Biological
Engineering, Mississippi State University, MS, 39762
| | - Bo Wang
- Tissue Bioengineering Laboratory, Department of Biological
Engineering, Mississippi State University, MS, 39762
| | - Guangjun Wang
- Tissue Bioengineering Laboratory, Department of Biological
Engineering, Mississippi State University, MS, 39762
| | - Robbin Bertucci
- Tissue Bioengineering Laboratory, Department of Biological
Engineering, Mississippi State University, MS, 39762
| | - Raj Prabhu
- Tissue Bioengineering Laboratory, Department of Biological
Engineering, Mississippi State University, MS, 39762
| | - Sourav S. Patnaik
- Tissue Bioengineering Laboratory, Department of Biological
Engineering, Mississippi State University, MS, 39762
| | - J. Ryan Butler
- Department of Clinical Sciences, College of Veterinary
Medicine, Mississippi State University, MS, 39762
| | - Andrew Claude
- Department of Clinical Sciences, College of Veterinary
Medicine, Mississippi State University, MS, 39762
| | - Erin Brinkman-Ferguson
- Department of Clinical Sciences, College of Veterinary
Medicine, Mississippi State University, MS, 39762
| | - Lakiesha N. Williams
- Tissue Bioengineering Laboratory, Department of Biological
Engineering, Mississippi State University, MS, 39762
| | - Jun Liao
- Tissue Bioengineering Laboratory, Department of Biological
Engineering, Mississippi State University, MS, 39762
| |
Collapse
|
46
|
Gao H, Ma X, Qi N, Berry C, Griffith BE, Luo X. A finite strain nonlinear human mitral valve model with fluid-structure interaction. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:1597-613. [PMID: 25319496 PMCID: PMC4278556 DOI: 10.1002/cnm.2691] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/16/2014] [Accepted: 10/08/2014] [Indexed: 05/07/2023]
Abstract
A computational human mitral valve (MV) model under physiological pressure loading is developed using a hybrid finite element immersed boundary method, which incorporates experimentally-based constitutive laws in a three-dimensional fluid-structure interaction framework. A transversely isotropic material constitutive model is used to characterize the mechanical behaviour of the MV tissue based on recent mechanical tests of healthy human mitral leaflets. Our results show good agreement, in terms of the flow rate and the closing and opening configurations, with measurements from in vivo magnetic resonance images. The stresses in the anterior leaflet are found to be higher than those in the posterior leaflet and are concentrated around the annulus trigons and the belly of the leaflet. The results also show that the chordae play an important role in providing a secondary orifice for the flow when the valve opens. Although there are some discrepancies to be overcome in future work, our simulations show that the developed computational model is promising in mimicking the in vivo MV dynamics and providing important information that are not obtainable by in vivo measurements.
Collapse
Affiliation(s)
- Hao Gao
- School of Mathematics and Statistics, University of GlasgowGlasgow, UK
| | - Xingshuang Ma
- Bioengineering College, Chongqing UniversityChongqing, China
| | - Nan Qi
- School of Mathematics and Statistics, University of GlasgowGlasgow, UK
| | - Colin Berry
- Institute of Cardiovascular and Medical Sciences, University of GlasgowGlasgow, UK
| | - Boyce E Griffith
- Department of Mathematics, University of North CarolinaChapel Hill, NC, USA
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of GlasgowGlasgow, UK
| |
Collapse
|
47
|
Lee CH, Amini R, Gorman RC, Gorman JH, Sacks MS. An inverse modeling approach for stress estimation in mitral valve anterior leaflet valvuloplasty for in-vivo valvular biomaterial assessment. J Biomech 2014; 47:2055-63. [PMID: 24275434 PMCID: PMC4014535 DOI: 10.1016/j.jbiomech.2013.10.058] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 11/16/2022]
Abstract
Estimation of regional tissue stresses in the functioning heart valve remains an important goal in our understanding of normal valve function and in developing novel engineered tissue strategies for valvular repair and replacement. Methods to accurately estimate regional tissue stresses are thus needed for this purpose, and in particular to develop accurate, statistically informed means to validate computational models of valve function. Moreover, there exists no currently accepted method to evaluate engineered heart valve tissues and replacement heart valve biomaterials undergoing valvular stresses in blood contact. While we have utilized mitral valve anterior leaflet valvuloplasty as an experimental approach to address this limitation, robust computational techniques to estimate implant stresses are required. In the present study, we developed a novel numerical analysis approach for estimation of the in-vivo stresses of the central region of the mitral valve anterior leaflet (MVAL) delimited by a sonocrystal transducer array. The in-vivo material properties of the MVAL were simulated using an inverse FE modeling approach based on three pseudo-hyperelastic constitutive models: the neo-Hookean, exponential-type isotropic, and full collagen-fiber mapped transversely isotropic models. A series of numerical replications with varying structural configurations were developed by incorporating measured statistical variations in MVAL local preferred fiber directions and fiber splay. These model replications were then used to investigate how known variations in the valve tissue microstructure influence the estimated ROI stresses and its variation at each time point during a cardiac cycle. Simulations were also able to include estimates of the variation in tissue stresses for an individual specimen dataset over the cardiac cycle. Of the three material models, the transversely anisotropic model produced the most accurate results, with ROI averaged stresses at the fully-loaded state of 432.6±46.5 kPa and 241.4±40.5 kPa in the radial and circumferential directions, respectively. We conclude that the present approach can provide robust instantaneous mean and variation estimates of tissue stresses of the central regions of the MVAL.
Collapse
Affiliation(s)
- Chung-Hao Lee
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, ACES 5.236, 1 University Station C0200, Austin, TX 78712, USA
| | - Rouzbeh Amini
- Department of Biomedical Engineering, The University of Akron, Auburn Science and Engineering Center 275, West Tower, Akron, OH 44325, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES), Department of Biomedical Engineering, The University of Texas at Austin, 201 East 24th Street, ACES 5.236, 1 University Station C0200, Austin, TX 78712, USA.
| |
Collapse
|
48
|
Abstract
In the past two decades, major advances have been made in the clinical evaluation and treatment of valvular heart disease owing to the advent of noninvasive cardiac imaging modalities. In clinical practice, valvular disease evaluation is typically performed on two-dimensional (2D) images, even though most imaging modalities offer three-dimensional (3D) volumetric, time-resolved data. Such 3D data offer researchers the possibility to reconstruct the 3D geometry of heart valves at a patient-specific level. When these data are integrated with computational models, native heart valve biomechanical function can be investigated, and preoperative planning tools can be developed. In this review, we outline the advances in valve geometry reconstruction, tissue property modeling, and loading and boundary definitions for the purpose of realistic computational structural analysis of cardiac valve function and intervention.
Collapse
Affiliation(s)
- Wei Sun
- Tissue Mechanics Lab, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30313;
| | | | | |
Collapse
|
49
|
Wilcox A, Buchan K, Espino D. Frequency and diameter dependent viscoelastic properties of mitral valve chordae tendineae. J Mech Behav Biomed Mater 2014; 30:186-95. [DOI: 10.1016/j.jmbbm.2013.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 11/30/2022]
|
50
|
Pouch AM, Wang H, Takabe M, Jackson BM, Gorman JH, Gorman RC, Yushkevich PA, Sehgal CM. Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling. Med Image Anal 2014; 18:118-29. [PMID: 24184435 PMCID: PMC3897209 DOI: 10.1016/j.media.2013.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/18/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Abstract
Comprehensive visual and quantitative analysis of in vivo human mitral valve morphology is central to the diagnosis and surgical treatment of mitral valve disease. Real-time 3D transesophageal echocardiography (3D TEE) is a practical, highly informative imaging modality for examining the mitral valve in a clinical setting. To facilitate visual and quantitative 3D TEE image analysis, we describe a fully automated method for segmenting the mitral leaflets in 3D TEE image data. The algorithm integrates complementary probabilistic segmentation and shape modeling techniques (multi-atlas joint label fusion and deformable modeling with continuous medial representation) to automatically generate 3D geometric models of the mitral leaflets from 3D TEE image data. These models are unique in that they establish a shape-based coordinate system on the valves of different subjects and represent the leaflets volumetrically, as structures with locally varying thickness. In this work, expert image analysis is the gold standard for evaluating automatic segmentation. Without any user interaction, we demonstrate that the automatic segmentation method accurately captures patient-specific leaflet geometry at both systole and diastole in 3D TEE data acquired from a mixed population of subjects with normal valve morphology and mitral valve disease.
Collapse
Affiliation(s)
- A M Pouch
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States; Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, PA, United States.
| | | | | | | | | | | | | | | |
Collapse
|