1
|
Liu Z, Liu K, Shi S, Chen X, Gu X, Wang W, Mao K, Yibulayi R, Wu W, Zeng L, Zhou W, Lin X, Zhang F, Lou B. Alkali injury-induced pathological lymphangiogenesis in the iris facilitates the infiltration of T cells and ocular inflammation. JCI Insight 2024; 9:e175479. [PMID: 38587075 PMCID: PMC11128208 DOI: 10.1172/jci.insight.175479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
Inflammatory lymphangiogenesis is intimately linked to immune regulation and tissue homeostasis. However, current evidence has suggested that classic lymphatic vessels are physiologically absent in intraocular structures. Here, we show that neolymphatic vessels were induced in the iris after corneal alkali injury (CAI) in a VEGFR3-dependent manner. Cre-loxP-based lineage tracing revealed that these lymphatic endothelial cells (LECs) originate from existing Prox1+ lymphatic vessels. Notably, the ablation of iridial lymphangiogenesis via conditional deletion of VEGFR3 alleviated the ocular inflammatory response and pathological T cell infiltration. Our findings demonstrate that iridial neolymphatics actively participate in pathological immune responses following injury and suggest intraocular lymphangiogenesis as a valuable therapeutic target for the treatment of ocular inflammation.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Keli Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shunhua Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xinyu Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Weifa Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Keli Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Rukeye Yibulayi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wanwen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Weibin Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
2
|
Kauke-Navarro M, Sadigh S, Lee CAA, Panayi AC, Knoedler L, Knoedler S, Stoegner V, Huelsboemer L, Jamil A, Ko C, Lian CG, Murphy GF, Pomahac B. Lymphadenopathy and lymph node rejection following facial vascularized composite allotransplantation. J Plast Reconstr Aesthet Surg 2024; 91:268-275. [PMID: 38430863 DOI: 10.1016/j.bjps.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Apart from the skin, little is known about the immunological processes in deeper tissues, which are typically not accessible to biopsy and inspection, of vascularized composite allografts (VCAs). Face transplant patients develop prominent adenopathy shortly after transplantation that resolves over time. The mechanisms underlying this process are not understood. MATERIALS AND METHODS A retrospective cohort study was conducted on 9 patients who underwent 10 facial VCAs at the Brigham and Women's Hospital, Boston, MA, between April 2009 and July 2019. Clinical, radiological, and histological data related to lymphadenopathy of the head and neck were reviewed. RESULTS Patients who received donor-derived lymph nodes (LNs) developed bilateral lymphadenopathy of the submental or submandibular superficial LNs. Median time of presentation was POD18 (range POD6-POM3). Notably, bilateral adenopathy of the neck was not observed in later stages of follow-up (mean follow-up, 115 months). Histology of 3 LNs showed increased histiocytes and apoptosis, with the features reminiscent of necrotizing histiocytic lymphadenitis, and B and T lymphocytes (mostly CD8 + T) admixed with CD163 + histiocytes and dendritic cells. Molecular chimerism analysis in one case showed the coexistence of donor (81%) and recipient (19%) derived lymphocytes. Granzyme B (GZMB) expression confirmed the presence of increased cytotoxic T cells in this LN sample. CONCLUSION Our data suggested the involvement of an immunological process within the donor-derived LNs after facial allotransplantation between the recipient and donor cells. GZMB expression suggested LN rejection that can occurred independently of skin rejection. This finding supports the need to better define the role of donor-derived immune cells in the context of allograft rejection.
Collapse
Affiliation(s)
- Martin Kauke-Navarro
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, USA
| | - Sam Sadigh
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine A A Lee
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana C Panayi
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leonard Knoedler
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, USA
| | - Samuel Knoedler
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, USA; Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Viola Stoegner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, USA; Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Lioba Huelsboemer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, USA
| | - Azzi Jamil
- Department of Medicine, Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Children's Hospital, 221 Longwood Ave, Boston, MA, USA
| | - Christine Ko
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Christine G Lian
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bohdan Pomahac
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Baker ML, Cantley LG. The Lymphatic System in Kidney Disease. KIDNEY360 2023; 4:e841-e850. [PMID: 37019177 PMCID: PMC10371377 DOI: 10.34067/kid.0000000000000120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023]
Abstract
The high-capacity vessels of the lymphatic system drain extravasated fluid and macromolecules from nearly every part of the body. However, far from merely a passive conduit for fluid removal, the lymphatic system also plays a critical and active role in immune surveillance and immune response modulation through the presentation of fluid, macromolecules, and trafficking immune cells to surveillance cells in regional draining lymph nodes before their return to the systemic circulation. The potential effect of this system in numerous disease states both within and outside of the kidney is increasingly being explored for their therapeutic potential. In the kidneys, the lymphatics play a critical role in both fluid and macromolecule removal to maintain oncotic and hydrostatic pressure gradients for normal kidney function, as well as in shaping kidney immunity, and potentially in balancing physiological pathways that promote healthy organ maintenance and responses to injury. In many states of kidney disease, including AKI, the demand on the preexisting lymphatic network increases for clearance of injury-related tissue edema and inflammatory infiltrates. Lymphangiogenesis, stimulated by macrophages, injured resident cells, and other drivers in kidney tissue, is highly prevalent in settings of AKI, CKD, and transplantation. Accumulating evidence points toward lymphangiogenesis being possibly harmful in AKI and kidney allograft rejection, which would potentially position lymphatics as another target for novel therapies to improve outcomes. However, the extent to which lymphangiogenesis is protective rather than maladaptive in the kidney in various settings remains poorly understood and thus an area of active research.
Collapse
Affiliation(s)
- Megan L Baker
- Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
5
|
Iwakiri Y. Lymphatics in the liver for translational science. Clin Liver Dis (Hoboken) 2023; 21:122-124. [PMID: 37936952 PMCID: PMC10627586 DOI: 10.1097/cld.0000000000000019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/23/2022] [Indexed: 11/09/2023] Open
Abstract
1_k31wzfrsKaltura.
Collapse
|
6
|
Trivedi A, Reed HO. The lymphatic vasculature in lung function and respiratory disease. Front Med (Lausanne) 2023; 10:1118583. [PMID: 36999077 PMCID: PMC10043242 DOI: 10.3389/fmed.2023.1118583] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The lymphatic vasculature maintains tissue homeostasis via fluid drainage in the form of lymph and immune surveillance due to migration of leukocytes through the lymphatics to the draining lymph nodes. Lymphatic endothelial cells (LECs) form the lymphatic vessels and lymph node sinuses and are key players in shaping immune responses and tolerance. In the healthy lung, the vast majority of lymphatic vessels are found along the bronchovascular structures, in the interlobular septa, and in the subpleural space. Previous studies in both mice and humans have shown that the lymphatics are necessary for lung function from the neonatal period through adulthood. Furthermore, changes in the lymphatic vasculature are observed in nearly all respiratory diseases in which they have been analyzed. Recent work has pointed to a causative role for lymphatic dysfunction in the initiation and progression of lung disease, indicating that these vessels may be active players in pathologic processes in the lung. However, the mechanisms by which defects in lung lymphatic function are pathogenic are understudied, leaving many unanswered questions. A more comprehensive understanding of the mechanistic role of morphological, functional, and molecular changes in the lung lymphatic endothelium in respiratory diseases is a promising area of research that is likely to lead to novel therapeutic targets. In this review, we will discuss our current knowledge of the structure and function of the lung lymphatics and the role of these vessels in lung homeostasis and respiratory disease.
Collapse
Affiliation(s)
- Anjali Trivedi
- Weill Cornell Medical Center, New York, NY, United States
| | - Hasina Outtz Reed
- Weill Cornell Medical Center, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Hasina Outtz Reed,
| |
Collapse
|
7
|
Mohanka M, Banga A. Alterations in Pulmonary Physiology with Lung Transplantation. Compr Physiol 2023; 13:4269-4293. [PMID: 36715279 DOI: 10.1002/cphy.c220008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lung transplant is a treatment option for patients with end-stage lung diseases; however, survival outcomes continue to be inferior when compared to other solid organs. We review the several anatomic and physiologic changes that result from lung transplantation surgery, and their role in the pathophysiology of common complications encountered by lung recipients. The loss of bronchial circulation into the allograft after transplant surgery results in ischemia-related changes in the bronchial artery territory of the allograft. We discuss the role of bronchopulmonary anastomosis in blood circulation in the allograft posttransplant. We review commonly encountered complications related to loss of bronchial circulation such as allograft airway ischemia, necrosis, anastomotic dehiscence, mucociliary dysfunction, and bronchial stenosis. Loss of dual circulation to the lung also increases the risk of pulmonary infarction with acute pulmonary embolism. The loss of lymphatic drainage during transplant surgery also impairs the management of allograft interstitial fluid, resulting in pulmonary edema and early pleural effusion. We discuss the role of lymphatic drainage in primary graft dysfunction. Besides, we review the association of late posttransplant pleural effusion with complications such as acute rejection. We then review the impact of loss of afferent and efferent innervation from the allograft on control of breathing, as well as lung protective reflexes. We conclude with discussion about pulmonary function testing, allograft monitoring with spirometry, and classification of chronic lung allograft dysfunction phenotypes based on total lung capacity measurements. We also review factors limiting physical exercise capacity after lung transplantation, especially impairment of muscle metabolism. © 2023 American Physiological Society. Compr Physiol 13:4269-4293, 2023.
Collapse
Affiliation(s)
- Manish Mohanka
- Pulmonary and Critical Care Medicine, University of Texas Southwestern, Dallas, Texas, USA
| | - Amit Banga
- Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
8
|
Jeong J, Tanaka M, Iwakiri Y. Hepatic lymphatic vascular system in health and disease. J Hepatol 2022; 77:206-218. [PMID: 35157960 PMCID: PMC9870070 DOI: 10.1016/j.jhep.2022.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/13/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
In recent years, significant advances have been made in the study of lymphatic vessels with the identification of their specific markers and the development of research tools that have accelerated our understanding of their role in tissue homeostasis and disease pathogenesis in many organs. Compared to other organs, the lymphatic system in the liver is understudied despite its obvious importance for hepatic physiology and pathophysiology. In this review, we describe fundamental aspects of the hepatic lymphatic system and its role in a range of liver-related pathological conditions such as portal hypertension, ascites formation, malignant tumours, liver transplantation, congenital liver diseases, non-alcoholic fatty liver disease, and hepatic encephalopathy. The article concludes with a discussion regarding the modulation of lymphangiogenesis as a potential therapeutic strategy for liver diseases.
Collapse
Affiliation(s)
- Jain Jeong
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Masatake Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Solari E, Marcozzi C, Ottaviani C, Negrini D, Moriondo A. Draining the Pleural Space: Lymphatic Vessels Facing the Most Challenging Task. BIOLOGY 2022; 11:419. [PMID: 35336793 PMCID: PMC8945018 DOI: 10.3390/biology11030419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 01/06/2023]
Abstract
Lymphatic vessels exploit the mechanical stresses of their surroundings together with intrinsic rhythmic contractions to drain lymph from interstitial spaces and serosal cavities to eventually empty into the blood venous stream. This task is more difficult when the liquid to be drained has a very subatmospheric pressure, as it occurs in the pleural cavity. This peculiar space must maintain a very low fluid volume at negative hydraulic pressure in order to guarantee a proper mechanical coupling between the chest wall and lungs. To better understand the potential for liquid drainage, the key parameter to be considered is the difference in hydraulic pressure between the pleural space and the lymphatic lumen. In this review we collected old and new findings from in vivo direct measurements of hydraulic pressures in anaesthetized animals with the aim to better frame the complex physiology of diaphragmatic and intercostal lymphatics which drain liquid from the pleural cavity.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Moriondo
- Department of Medicine and Surgery, School of Medicine, University of Insubria, 21100 Varese, Italy; (E.S.); (C.M.); (C.O.); (D.N.)
| |
Collapse
|
10
|
Hou Y, Bock F, Hos D, Cursiefen C. Lymphatic Trafficking in the Eye: Modulation of Lymphatic Trafficking to Promote Corneal Transplant Survival. Cells 2021; 10:1661. [PMID: 34359831 PMCID: PMC8306557 DOI: 10.3390/cells10071661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
(Lymph)angiogenesis into the cornea prior to and after corneal transplantation is a critical risk factor for allograft rejection. Lymphatic vessels even more than blood vessels seem important in mediating immune responses, as they facilitate allograft sensitization in the draining lymph nodes. Thus, the concept of modulating lymphatic trafficking to promote corneal graft survival seems promising. A variety of approaches has been developed to inhibit progressive lymphangiogenesis in experimental settings. Recently, additionally to pharmacological approaches, clinically available techniques such as UVA-based corneal collagen crosslinking and fine needle diathermy were reported to be effective in regressing lymphatic vessels and to experimentally promote graft survival. Clinical pilot studies also suggest the efficacy of blocking antigen presenting cell trafficking to regional lymph nodes by regressing corneal lymphatic vessels to enhance allograft survival in high-risk eyes. In this article, we will give an overview of current strategies to modulate lymphatic trafficking with a special focus on recently reported strategies, which may be easy to translate into clinical practice. This novel concept of temporary, pretransplant regression of lymphatic vessels at the site of transplantation to promote subsequent corneal transplant survival ("lymphangioregressive preconditioning") may also be applicable to other transplantation sites later.
Collapse
Grants
- German Research Foundation (DFG) FOR2240 "(Lymph)angiogenesis and Cellular Immunity in Inflammatory Diseases of the Eye", HO 5556/1-2 (DH), Cu 47/4-2 (CC), Cu 47/6-1 (CC), Cu 47/9-1 (CC), Cu 47/12-1(www.for2240.de); German Research Foundation (DFG) FOR2240 "(Lymph)angiogenesis and Cellular Immunity in Inflammatory Diseases of the Eye", HO 5556/1-2 (DH), Cu 47/4-2 (CC), Cu 47/6-1 (CC), Cu 47/9-1 (CC), Cu 47/12-1(www.for2240.de);
- EU COST BM1302 EU COST BM1302 (DH, CC; www.biocornea.eu);
- EU Horizon 2020 ARREST BLINDNESS (CC; www.arrestblindness.eu); EU Horizon 2020 ARREST BLINDNESS (CC; www.arrestblindness.eu);
- EU COST Aniridia (CC; www.aniridia-net.eu); EU COST Aniridia (CC; www.aniridia-net.eu);
- Center for Molecular Medicine Cologne, University of Cologne (DH, CC; www.cmmc-uni-koeln.de/home/); Center for Molecular Medicine Cologne, University of Cologne (DH, CC; www.cmmc-uni-koeln.de/home/);
- Shanghai Sailing Program Shanghai Sailing Program
Collapse
Affiliation(s)
- Yanhong Hou
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Disease, National Clinical Research Center for Eye Diseases, Shanghai 200080, China
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
11
|
Li W, Gauthier JM, Tong AY, Terada Y, Higashikubo R, Frye CC, Harrison MS, Hashimoto K, Bery AI, Ritter JH, Nava RG, Puri V, Wong BW, Lavine KJ, Bharat A, Krupnick AS, Gelman AE, Kreisel D. Lymphatic drainage from bronchus-associated lymphoid tissue in tolerant lung allografts promotes peripheral tolerance. J Clin Invest 2021; 130:6718-6727. [PMID: 33196461 DOI: 10.1172/jci136057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Tertiary lymphoid organs are aggregates of immune and stromal cells including high endothelial venules and lymphatic vessels that resemble secondary lymphoid organs and can be induced at nonlymphoid sites during inflammation. The function of lymphatic vessels within tertiary lymphoid organs remains poorly understood. During lung transplant tolerance, Foxp3+ cells accumulate in tertiary lymphoid organs that are induced within the pulmonary grafts and are critical for the local downregulation of alloimmune responses. Here, we showed that tolerant lung allografts could induce and maintain tolerance of heterotopic donor-matched hearts through pathways that were dependent on the continued presence of the transplanted lung. Using lung retransplantation, we showed that Foxp3+ cells egressed from tolerant lung allografts via lymphatics and were recruited into donor-matched heart allografts. Indeed, survival of the heart allografts was dependent on lymphatic drainage from the tolerant lung allograft to the periphery. Thus, our work indicates that cellular trafficking from tertiary lymphoid organs regulates immune responses in the periphery. We propose that these findings have important implications for a variety of disease processes that are associated with the induction of tertiary lymphoid organs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jon H Ritter
- Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | | | - Andrew E Gelman
- Departments of Surgery.,Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Departments of Surgery.,Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Abstract
BACKGROUND Establishing lung lymphatic drainage is thought to be important for successful lung transplantation. To date, there has been a complete absence of knowledge of how lymphatic connections are reestablished after lung transplant, despite evidence suggesting that this does indeed occur. The present study aimed to elucidate whether and how lymphatic anastomosis occurs after lung transplant. METHODS An orthotopic murine model of lung transplant using lymphatic reporter mice and whole mount immunohistochemistry was used to evaluate the lymphatic vasculature and donor-host connections after lung transplantation. RESULTS Immunohistochemistry of transplanted lungs demonstrated robust lymphatic vessels, and functional assays demonstrated lymphatic drainage in the transplanted lung that was comparable with that in native lungs. Lymphatic vessels in the donor lung exhibited active sprouting toward the host at the anastomosis within the first 3 days after lung transplantation, with more numerous and complex lymphatic sprouting developing thereafter. Donor lymphatic vessels were numerous at the site of anastomosis by day 14 after lung transplantation and formed physical connections with host lymphatic vessels, demonstrating a mechanism by which lymphatic drainage is reestablished in the transplanted lung. CONCLUSIONS Lymphatic drainage after lung transplantation is established by active sprouting of donor lymphatic vessels towards the host and the formation of donor-host lymphatic connections at the level of the transplant anastomosis.
Collapse
|
13
|
Shrestha S, Cho W, Stump B, Imani J, Lamattina AM, Louis PH, Pazzanese J, Rosas IO, Visner G, Perrella MA, El-Chemaly S. FK506 induces lung lymphatic endothelial cell senescence and downregulates LYVE-1 expression, with associated decreased hyaluronan uptake. Mol Med 2020; 26:75. [PMID: 32736525 PMCID: PMC7395348 DOI: 10.1186/s10020-020-00204-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/24/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Therapeutic lymphangiogenesis in an orthotopic lung transplant model has been shown to improve acute allograft rejection that is mediated at least in part through hyaluronan drainage. Lymphatic vessel endothelial hyaluronan receptor (LYVE-1) expressed on the surface of lymphatic endothelial cells plays important roles in hyaluronan uptake. The impact of current immunosuppressive therapies on lung lymphatic endothelial cells is largely unknown. We tested the hypothesis that FK506, the most commonly used immunosuppressant after lung transplantation, induces lung lymphatic endothelial cell dysfunction. METHODS Lung lymphatic endothelial cells were cultured in vitro and treated with FK506. Telomerase activity was measured using the TRAP assay. Protein expression of LYVE-1 and senescence markers p21 and β-galactosidase was assessed with western blotting. Matrigel tubulation assay were used to investigate the effects of FK506 on TNF-α-induced lymphangiogenesis. Dual luciferase reporter assay was used to confirm NFAT-dependent transcriptional regulation of LYVE-1. Flow cytometry was used to examine the effects of FK506 on LYVE-1 in precision-cut-lung-slices ex vivo and on hyaluronan uptake in vitro. RESULTS In vitro, FK506 downregulated telomerase reverse transcriptase expression, resulting in decreased telomerase activity and subsequent induction of p21 expression and cell senescence. Treatment with FK506 decreased LYVE-1 mRNA and protein levels and resulted in decreased LEC HA uptake. Similar result showing reduction of LYVE-1 expression when treated with FK506 was observed ex vivo. We identified a putative NFAT binding site on the LYVE-1 promoter and cloned this region of the promoter in a luciferase-based reporter construct. We showed that this NFAT binding site regulates LYVE-1 transcription, and mutation of this binding site blunted FK506-dependent downregulation of LYVE-1 promoter-dependent transcription. Finally, FK506-treated lymphatic endothelial cells show a blunted response to TNF-α-mediated lymphangiogenesis. CONCLUSION FK506 alters lymphatic endothelial cell molecular characteristics and causes lymphatic endothelial cell dysfunction in vitro and ex vivo. These effects of FK506 on lymphatic endothelial cell may impair the ability of the transplanted lung to drain hyaluronan macromolecules in vivo. The implications of our findings on the long-term health of lung allografts merit more investigation.
Collapse
Affiliation(s)
- Shikshya Shrestha
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Woohyun Cho
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Present Address: Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Benjamin Stump
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jewel Imani
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anthony M Lamattina
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pierce H Louis
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - James Pazzanese
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Gary Visner
- Deparmtent of Pediatrics, Boston Children Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Yoshiyasu N, Sato M. Chronic lung allograft dysfunction post-lung transplantation: The era of bronchiolitis obliterans syndrome and restrictive allograft syndrome. World J Transplant 2020; 10:104-116. [PMID: 32864356 PMCID: PMC7428788 DOI: 10.5500/wjt.v10.i5.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023] Open
Abstract
Chronic lung allograft dysfunction (CLAD) following lung transplantation limits long-term survival considerably. The main reason for this is a lack of knowledge regarding the pathological condition and the establishment of treatment. The consensus statement from the International Society for Heart and Lung Transplantation on CLAD in 2019 classified CLAD into two main phenotypes: Bronchiolitis obliterans syndrome and restrictive allograft syndrome. Along with this clear classification, further exploration of the mechanisms and the development of appropriate prevention and treatment strategies for each phenotype are desired. In this review, we summarize the new definition of CLAD and update and summarize the existing knowledge on the underlying mechanisms of bronchiolitis obliterans syndrome and restrictive allograft syndrome, which have been elucidated from clinicopathological observations and animal experiments worldwide.
Collapse
Affiliation(s)
- Nobuyuki Yoshiyasu
- Department of Thoracic Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Masaaki Sato
- Department of Thoracic Surgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| |
Collapse
|
15
|
Abstract
PURPOSE To detect early growth of blood and lymphatic vessels in the mouse cornea and iris after penetrating keratoplasty. METHODS Penetrating keratoplasty was performed with C57BL/6 mice as donors and BALB/c mice as recipients. Graft transparency and neovascularization were examined by slit-lamp microscopy. Whole mounts of the cornea and iris were processed for detection of the outgrowth of blood and lymph vessels. RESULTS On day 3 after surgery, all corneal grafts were slightly edematous, and blood vessels in the corneoscleral limbus dilated. LYVE-1 lymphatic vessels and CD31 blood vessels were distributed in the peripheral cornea. In the iris, the density of blood vessels increased, and LYVE-1 cells nearly vanished. On day 7, the grafts became opaque, and blood vessels grew into the recipient bed. A great quantity of lymph vessels invaded the cornea. LYVE-1 arborescent cells were found around the lymphatic vessels. In the iris, blood vessels became bulky and stiff, and arborescent LYVE-1 cells increased in number. On day 14, corneal neovascular regression and graft clarity were found. Lymphatic vessels regressed more slowly than blood vessels in the cornea. In the iris, blood vessels remained coarse. Increasing arborescent LYVE-1 cells were also noted in the ciliary body. CONCLUSIONS Our findings suggest that the iris-ciliary body could amplify immune signals and in part promote initiation of immune rejection after keratoplasty by providing a pathway for macrophages, which might participate in corneal lymphangiogenesis.
Collapse
|
16
|
Reed HO, Wang L, Sonett J, Chen M, Yang J, Li L, Aradi P, Jakus Z, D'Armiento J, Hancock WW, Kahn ML. Lymphatic impairment leads to pulmonary tertiary lymphoid organ formation and alveolar damage. J Clin Invest 2019; 129:2514-2526. [PMID: 30946031 DOI: 10.1172/jci125044] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The lung is a specialized barrier organ that must tightly regulate interstitial fluid clearance and prevent infection in order to maintain effective gas exchange. Lymphatic vessels are important for these functions in other organs, but their roles in the lung have not been fully defined. In the present study, we addressed how the lymphatic vasculature participates in lung homeostasis. Studies using mice carrying a lymphatic reporter allele revealeded that, in contrast to other organs, lung lymphatic collecting vessels lack smooth muscle cells entirely, suggesting that forward lymph flow is highly dependent on movement and changes in pressure associated with respiration. Functional studies using CLEC2-deficient mice in which lymph flow is impaired due to loss of lympho-venous hemostasis or using inducible lung-specific ablation of lymphatic endothelial cells in a lung transplant model revealeded that loss of lymphatic function leads to an inflammatory state characterized by the formation of tertiary lymphoid organs (TLOs). In addition, impaired lymphatic flow in mice resulteds in hypoxia and features of lung injury that resemble emphysema. These findings reveal both a lung-specific mechanism of lymphatic physiology and a lung-specific consequence of lymphatic dysfunction that may contribute to chronic lung diseases that arise in association with TLO formation.
Collapse
Affiliation(s)
- Hasina Outtz Reed
- Department of Medicine and Division of Pulmonary and Critical Care.,Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liqing Wang
- Department of Pathology and Laboratory Medicine, Division of Transplant Immunology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jarrod Sonett
- Department of Anesthesiology, Center for Molecular Pulmonary Disease, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Mei Chen
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Larry Li
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Petra Aradi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.,MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Zoltan Jakus
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary.,MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, Budapest, Hungary
| | - Jeanine D'Armiento
- Department of Anesthesiology, Center for Molecular Pulmonary Disease, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Wayne W Hancock
- Department of Pathology and Laboratory Medicine, Division of Transplant Immunology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Abstract
Lymphatic vessels are essential for the uptake of fluid, immune cells, macromolecules, and lipids from the interstitial space. During lung transplant surgery, the pulmonary lymphatic vessel continuum is completely disrupted, and, as a result, lymphatic drainage function is severely compromised. After transplantation, the regeneration of an effective lymphatic drainage system plays a crucial role in maintaining interstitial fluid balance in the lung allograft. In the meantime, these newly formed lymphatic vessels are commonly held responsible for the development of immune responses leading to graft rejection, because they are potentially capable of transporting antigen-presenting cells loaded with allogeneic antigens to the draining lymph nodes. However, despite remarkable progress in the understanding of lymphatic biology, there is still a paucity of consistent evidence that demonstrates the exact impacts of lymphatic vessels on lung graft function. In this review, we examine the current literature related to roles of lymphatic vessels in the pathogenesis of lung transplant rejection.
Collapse
|
18
|
Inhibition of Lymphatic Drainage With a Self-Designed Surgical Approach Prolongs the Vascularized Skin Allograft Survival in Rats. Ann Plast Surg 2018; 80:76-82. [DOI: 10.1097/sap.0000000000001210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Abstract
PURPOSE OF REVIEW Airway microvessel injury following transplantation has been implicated in the development of chronic rejection. This review focuses on the most recent developments in the field describing preclinical and clinical findings that further implicate the loss of microvascular integrity as an important pathological event in the evolution of irreversible fibrotic remodeling. RECENT FINDINGS When lungs are transplanted, the airways appear vulnerable from the perspective of perfusion. Two vascular systems are lost, the bronchial artery and the lymphatic circulations, and the remaining vasculature in the airways expresses donor antigens susceptible to alloimmune-mediated injury via innate and adaptive immune mechanisms. Preclinical studies indicate the importance of hypoxia-inducible factor-1α in mediating microvascular repair and that hypoxia-inducible factor-1α can be upregulated to bolster endogenous repair. SUMMARY Airway microvascular injury is a feature of lung transplantation that limits short-term and long-term organ health. Although some problems are attributable to a missing bronchial artery circulation, another significant issue involves alloimmune-mediated injury to transplant airway microvessels. For a variety of reasons, bronchial artery revascularization surgery at the time of transplantation has not been widely adopted, and the current best hope for this era may be new medical approaches that offer protection against immune-mediated vascular injury or that promote microvascular repair.
Collapse
|
20
|
Stump B, Cui Y, Kidambi P, Lamattina AM, El-Chemaly S. Lymphatic Changes in Respiratory Diseases: More than Just Remodeling of the Lung? Am J Respir Cell Mol Biol 2017; 57:272-279. [PMID: 28443685 DOI: 10.1165/rcmb.2016-0290tr] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Advances in our ability to identify lymphatic endothelial cells and differentiate them from blood endothelial cells have led to important progress in the study of lymphatic biology. Over the past decade, preclinical and clinical studies have shown that there are changes to the lymphatic vasculature in nearly all lung diseases. Efforts to understand the contribution of lymphatics and their growth factors to disease initiation, progression, and resolution have led to seminal findings establishing critical roles for lymphatics in lung biology spanning from the first breath after birth to asthma, tuberculosis, and lung transplantation. However, in other diseases, it remains unclear if lymphatics are part of the overall lung remodeling process or real contributors to disease pathogenesis. The goal of this Translational Review is to highlight some of the advances in our understanding of the role(s) of lymphatics in lung disease and shed light on the critical needs and unanswered questions that might lead to novel translational applications.
Collapse
Affiliation(s)
- Benjamin Stump
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ye Cui
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pranav Kidambi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anthony M Lamattina
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
The Lymphatic Phenotype of Lung Allografts in Patients With Bronchiolitis Obliterans Syndrome and Restrictive Allograft Syndrome. Transplantation 2017; 101:310-315. [PMID: 27163544 DOI: 10.1097/tp.0000000000001263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic lung allograft dysfunction (CLAD), presenting as bronchiolitis obliterans syndrome (BOS) or restrictive allograft syndrome (RAS) is the major limiting factor of long-term survival in lung transplantation. Its pathogenesis is still obscure. In BOS, persistent alloimmune injury and chronic airway inflammation are suggested. One of the main tasks of the lymphatic vessel (LV) system is the promotion of immune cell trafficking. The formation of new LVs has been shown to trigger chronic allograft rejection in kidney transplants. We therefore sought to address the role of lymphangiogenesis in CLAD. METHODS Formalin-fixed paraffin-embedded tissue samples of 22 patients receiving a lung retransplantation due to BOS or RAS were collected. Lymphatic vessel density (LVD) was determined by immunohistochemical staining for podoplanin. Lung tissue obtained from 13 non-CLAD patients served as control. The impact of LVD on graft survival was assessed. RESULTS Lymphatic vessel density in CLAD patients did not differ from those in control subjects (median number of LVs per bronchiole: 4.75 (BOS), 6.47 (RAS), 4.25 (control), P = 0.97). Moreover, the number of LVs was not associated with regions of cellular infiltrates (median number of LVs per bronchiole: with infiltrates, 5.00 (BOS), 9.00 (RAS), 4.00 (control), P = 0.62; without infiltrates, 4.5 (BOS), 0.00 (RAS), 4.56 (control), P = 0.74). Lymphatic vessel density did not impact the time to development of BOS or RAS in lung transplantation (low vs high LVD: 38.5 vs 86.0 months, P = 0.15 [BOS]; 60.5 vs 69.5 months, P = 0.80 [RAS]). CONCLUSIONS Unlike chronic organ failure in kidney transplantation, lymphangiogenesis is not altered in CLAD patients. Our findings highlight unique immunological processes leading to BOS and RAS.
Collapse
|
22
|
Abstract
BACKGROUND Corneal neovascularization increases the risk of T cell-mediated allograft rejection. Here, we investigate whether T cells promote angiogenesis in transplantation. METHODS Conventional effector T cells were collected from draining lymph nodes of allogeneic or syngeneic corneal transplanted BALB/c mice. T cells were either cocultured with vascular endothelial cells (VECs) to assess VEC proliferation or used in a mixed lymphocyte reaction assay. Messenger RNA (mRNA) expression of vascular endothelial growth factor (VEGF)-A, -C, and VEGF receptor 2 (VEGF-R2) in VECs was assessed by real-time PCR. VEGF-A protein expression was determined by enzyme-linked immunosorbent assay. Flow cytometry was used to analyze VEGF-R2 expression in corneal CD31 cells, and VEGF-A and IFNγ expression in corneal CD4 T cells. RESULTS Allogeneic T cells from high-risk (HR) grafted mice induced more VEC proliferation than those from syngeneic transplant recipients (P = 0.03). Vascular endothelial growth factor-A mRNA and protein expression were higher in T cells from draining lymph nodes (P = 0.03 and P = 0.04, respectively) and cornea (protein; P = 0.04) of HR compared with low-risk (LR) grafted hosts. Vascular endothelial growth factor-A, VEGF-C, and VEGF-R2 mRNA expression were increased in VECs when cocultured with T cells from HR transplants compared with LR transplants and naive mice. In addition, IFNγ blockade in T cell/VEC coculture increased VEC proliferation and VEGF-A protein expression, whereas blocking VEGF-A significantly reduced VEC proliferation (P = 0.04). CONCLUSIONS Allogeneic T cells from corneal transplant hosts promote VEC proliferation, probably via VEGF-A signaling, whereas IFNγ shows an antiangiogenic effect. Our data suggest that T cells are critical mediators of angiogenesis in transplantation.
Collapse
|
23
|
Lymphangiogenesis is a feature of acute GVHD, and VEGFR-3 inhibition protects against experimental GVHD. Blood 2017; 129:1865-1875. [PMID: 28096093 DOI: 10.1182/blood-2016-08-734210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023] Open
Abstract
Lymph vessels play a crucial role in immune reactions in health and disease. In oncology the inhibition of lymphangiogenesis is an established therapeutic concept for reducing metastatic spreading of tumor cells. During allogeneic tissue transplantation, the inhibition of lymphangiogenesis has been successfully used to attenuate graft rejection. Despite its critical importance for tumor growth, alloimmune responses, and inflammation, the role of lymphangiogenesis has not been investigated during allogeneic hematopoietic stem cell transplantation (allo-HSCT). We found that acute graft-versus-host disease (aGVHD) is associated with lymphangiogenesis in murine allo-HSCT models as well as in patient intestinal biopsies. Inhibition of aGVHD-associated lymphangiogenesis by monoclonal antibodies against vascular endothelial growth factor receptor 3 (VEGFR-3) ameliorated aGVHD and improved survival in murine models. The administration of anti-VEGFR-3 antibodies did not interfere with hematopoietic engraftment and improved immune reconstitution in allo-HSCT recipients with aGVHD. Anti-VEGFR-3 therapy had no significant impact on growth of malignant lymphoma after allo-HSCT. We conclude that aGVHD is associated with lymphangiogenesis in intestinal lesions and in lymph nodes. Our data show that anti-VEGFR-3 treatment ameliorates lethal aGVHD and identifies the lymphatic vasculature as a novel therapeutic target in the setting of allo-HSCT.
Collapse
|
24
|
Tanaka M, Iwakiri Y. The Hepatic Lymphatic Vascular System: Structure, Function, Markers, and Lymphangiogenesis. Cell Mol Gastroenterol Hepatol 2016; 2:733-749. [PMID: 28105461 PMCID: PMC5240041 DOI: 10.1016/j.jcmgh.2016.09.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023]
Abstract
The lymphatic vascular system has been minimally explored in the liver despite its essential functions including maintenance of tissue fluid homeostasis. The discovery of specific markers for lymphatic endothelial cells has advanced the study of lymphatics by methods including imaging, cell isolation, and transgenic animal models and has resulted in rapid progress in lymphatic vascular research during the last decade. These studies have yielded concrete evidence that lymphatic vessel dysfunction plays an important role in the pathogenesis of many diseases. This article reviews the current knowledge of the structure, function, and markers of the hepatic lymphatic vascular system as well as factors associated with hepatic lymphangiogenesis and compares liver lymphatics with those in other tissues.
Collapse
Key Words
- CCl4, carbon tetrachloride
- Cirrhosis
- EHE, epithelioid hemangioendothelioma
- HA, hyaluronan
- HBx Ag, hepatitis B x antigen
- HCC, hepatocellular carcinoma
- IFN, interferon
- IL, interleukin
- Inflammation
- LSEC, liver sinusoidal endothelial cell
- LYVE-1, lymphatic vessel endothelial hyaluronan receptor 1
- LyEC, lymphatic endothelial cell
- NO, nitric oxide
- Portal Hypertension
- Prox1, prospero homeobox protein 1
- VEGF
- VEGF, vascular endothelial growth factor
- VEGFR, vascular endothelial growth factor receptor
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
| | - Yasuko Iwakiri
- Reprint requests Address requests for reprints to: Yasuko Iwakiri, PhD, Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, TAC S223B, 333 Cedar Street, New Haven, Connecticut 06520. fax: (203) 785-7273.Section of Digestive DiseasesDepartment of Internal MedicineYale University School of MedicineTAC S223B, 333 Cedar StreetNew HavenConnecticut 06520
| |
Collapse
|
25
|
Toyama H, Saito K, Takei Y, Saito K, Fujimine T, Ejima Y, Kamei T, Watanabe T, Okada Y, Yamauchi M. Perioperative management of esophagectomy in a patient who previously underwent bilateral lung transplantation. JA Clin Rep 2016; 2:15. [PMID: 29497670 PMCID: PMC5818771 DOI: 10.1186/s40981-016-0041-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/06/2016] [Indexed: 01/19/2023] Open
Abstract
Background General theory of anesthetic managements for nontransplant procedures in lung transplant patients was proposed. However, there are few literatures reporting the perioperative management of thoracoabdominal major surgery following lung transplantation in detail. Herein, we scrupulously report a perioperative management of esophagectomy in a patient who previously underwent bilateral lung transplantation (BLTx), focusing on protection of the transplanted lungs and the respiratory function of the patient. Case presentation A 50-year-old woman was listed for cadaveric BLTx for severe respiratory failure due to end-stage diffuse panbronchiolitis. She underwent BLTx under veno-arterial extracorporeal membranous oxygenation support. Blood loss during the BLTx was 13,675 mL, and mild lung edema developed. She was weaned from the ventilator on the sixth postoperative day (POD) and discharged on the 65th POD. Two years after the BLTx, respiratory function improved markedly, but she was diagnosed with esophageal cancer and was scheduled for thoracoscopic esophagectomy with radical lymph node dissection, hand-assisted laparoscopic gastric mobilization, and anastomosis of the gastric conduit to the cervical esophagus via posterior mediastinum. We were concerned that impaired lymphatic drainage could cause pulmonary edema or lymphangiogenesis could cause a severe immunologic response against the lung grafts. To avoid graft injury and rejection, we addressed lung protective ventilation, reduced transfusion volume, continued immunosuppressive agents, administered volatile anesthetics, and prevented dynamic pain by epidural analgesia. These factors and the improved respiratory function may have contributed to successful management of esophagectomy. During the perioperative period, the major respiratory problems were a slight right lung edema and a persistent pulmonary air leak due to the division of thoracic adhesions, which resolved on 13th POD. Conclusions Cancer surgeries in lung transplant recipients become more common. When such patients undergo thoracoabdominal major surgery, we should pay special attention to respiratory function, operative stress, immunosuppressive therapy, transfusion volume for the prevention of lung edema, and thoracic adhesions.
Collapse
Affiliation(s)
- Hiroaki Toyama
- Department of Anesthesiology, Tohoku University Hospital, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574 Japan
| | - Kazutomo Saito
- Department of Anesthesiology, Tohoku University Hospital, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574 Japan
| | - Yusuke Takei
- Department of Anesthesiology, Tohoku University Hospital, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574 Japan
| | - Kana Saito
- Department of Anesthesiology, Tohoku University Hospital, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574 Japan
| | - Takuya Fujimine
- Department of Anesthesiology, Tohoku University Hospital, 1-1 Seiryomachi, Aoba-ku, Sendai, 980-8574 Japan
| | - Yutaka Ejima
- Division of Surgical Center and Supply, Sterilization, Tohoku University Hospital, Sendai, Japan
| | - Takashi Kamei
- Department of Advanced Surgical Science and Technology, Tohoku University School of Medicine, Sendai, Japan
| | - Tatsuaki Watanabe
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University School of Medicine, Sendai, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University School of Medicine, Sendai, Japan
| | - Masanori Yamauchi
- Anesthesiology and Perioperative Medicine, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
26
|
Dashkevich A, Raissadati A, Syrjälä SO, Zarkada G, Keränen MAI, Tuuminen R, Krebs R, Anisimov A, Jeltsch M, Leppänen VM, Alitalo K, Nykänen AI, Lemström KB. Ischemia-Reperfusion Injury Enhances Lymphatic Endothelial VEGFR3 and Rejection in Cardiac Allografts. Am J Transplant 2016; 16:1160-72. [PMID: 26689983 DOI: 10.1111/ajt.13564] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 09/13/2015] [Accepted: 10/02/2015] [Indexed: 01/25/2023]
Abstract
Organ damage and innate immunity during heart transplantation may evoke adaptive immunity with serious consequences. Because lymphatic vessels bridge innate and adaptive immunity, they are critical in immune surveillance; however, their role in ischemia-reperfusion injury (IRI) in allotransplantation remains unknown. We investigated whether the lymphangiogenic VEGF-C/VEGFR3 pathway during cardiac allograft IRI regulates organ damage and subsequent interplay between innate and adaptive immunity. We found that cardiac allograft IRI, within hours, increased graft VEGF-C expression and lymphatic vessel activation in the form of increased lymphatic VEGFR3 and adhesion protein expression. Pharmacological VEGF-C/VEGFR3 stimulation resulted in early lymphatic activation and later increase in allograft inflammation. In contrast, pharmacological VEGF-C/VEGFR3 inhibition during cardiac allograft IRI decreased early lymphatic vessel activation with subsequent dampening of acute and chronic rejection. Genetic deletion of VEGFR3 specifically in the lymphatics of the transplanted heart recapitulated the survival effect achieved by pharmacological VEGF-C/VEGFR3 inhibition. Our results suggest that tissue damage rapidly changes lymphatic vessel phenotype, which, in turn, may shape the interplay of innate and adaptive immunity. Importantly, VEGF-C/VEGFR3 inhibition during solid organ transplant IRI could be used as lymphatic-targeted immunomodulatory therapy to prevent acute and chronic rejection.
Collapse
Affiliation(s)
- A Dashkevich
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - A Raissadati
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - S O Syrjälä
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - G Zarkada
- Wihuri Research Institute, Translational Cancer Biology Program and Helsinki University Central Hospital, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - M A I Keränen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - R Tuuminen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - R Krebs
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - A Anisimov
- Wihuri Research Institute, Translational Cancer Biology Program and Helsinki University Central Hospital, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - M Jeltsch
- Wihuri Research Institute, Translational Cancer Biology Program and Helsinki University Central Hospital, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - V-M Leppänen
- Wihuri Research Institute, Translational Cancer Biology Program and Helsinki University Central Hospital, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - K Alitalo
- Wihuri Research Institute, Translational Cancer Biology Program and Helsinki University Central Hospital, Research Programs Unit, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - A I Nykänen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - K B Lemström
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
27
|
Padera TP, Meijer EFJ, Munn LL. The Lymphatic System in Disease Processes and Cancer Progression. Annu Rev Biomed Eng 2016; 18:125-58. [PMID: 26863922 DOI: 10.1146/annurev-bioeng-112315-031200] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Advances in our understanding of the structure and function of the lymphatic system have made it possible to identify its role in a variety of disease processes. Because it is involved not only in fluid homeostasis but also in immune cell trafficking, the lymphatic system can mediate and ultimately alter immune responses. Our rapidly increasing knowledge of the molecular control of the lymphatic system will inevitably lead to new and effective therapies for patients with lymphatic dysfunction. In this review, we discuss the molecular and physiological control of lymphatic vessel function and explore how the lymphatic system contributes to many disease processes, including cancer and lymphedema.
Collapse
Affiliation(s)
- Timothy P Padera
- Edwin L. Steele Laboratories, Department of Radiation Oncology, and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114;
| | - Eelco F J Meijer
- Edwin L. Steele Laboratories, Department of Radiation Oncology, and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114;
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114;
| |
Collapse
|
28
|
Intravital Imaging Reveals Dynamics of Lymphangiogenesis and Valvulogenesis. Sci Rep 2016; 6:19459. [PMID: 26785921 PMCID: PMC4726360 DOI: 10.1038/srep19459] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/09/2015] [Indexed: 02/06/2023] Open
Abstract
Lymphatic research signifies a field of rapid progression in recent years. Though lymphatic dysfunction has been found in a myriad of disorders, to date, few effective treatments are available for lymphatic diseases. It is therefore urgent to develop new experimental approaches and therapeutic protocols. The cornea offers an ideal site for lymphatic research due to its transparent nature, accessible location, and lymphatic-free but -inducible features. Moreover, we have recently discovered that corneal lymphatic vessels develop luminal valves as lymphangiogenesis proceeds. This tissue thus provides an optimal tool to study both lymphangiogenesis and valvulogenesis upon a pathological insult. In this paper, we show that the modified Prox-1-GFP mice carrying wildtype C57BL/6 background provide a valuable tool for intravital imaging of corneal lymphatic vessels and valves and can be used to study pathological lymphangiogenesis induced by various insults. Further, we demonstrate the multifaceted dynamics of lymphangiogenesis and valvulogenesis associated with transplantation, from the initiation to regression phases, and report several novel and critical phenomena and mechanisms that cannot be detected by conventional ex vivo approaches. Further investigation holds the great potential for divulging new mechanisms and therapeutic strategies for lymphangiogenesis and lymphangiogenesis-related diseases at various stages and inside or outside the eye.
Collapse
|
29
|
Abstract
Lung allografts are prone to rejection, even though recipients undergo aggressive immunosuppressive therapy. Lymphatic vessels serve as conduits for immune cell trafficking and have been implicated in the mediation of allograft rejection. In this issue of the JCI, Cui et al. provide compelling evidence that lymphatic vessel formation improves lung allograft survival in a murine transplant model. Moreover, their data suggest a potential mechanism for the beneficial effects of lymphatics that does not involve immune cell or antigen transport. Together, the results of this study provide new insight into the role of lymphatic vessels in transplant tolerance.
Collapse
|
30
|
Cui Y, Liu K, Monzon-Medina ME, Padera RF, Wang H, George G, Toprak D, Abdelnour E, D'Agostino E, Goldberg HJ, Perrella MA, Forteza RM, Rosas IO, Visner G, El-Chemaly S. Therapeutic lymphangiogenesis ameliorates established acute lung allograft rejection. J Clin Invest 2015; 125:4255-68. [PMID: 26485284 DOI: 10.1172/jci79693] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 08/28/2015] [Indexed: 01/13/2023] Open
Abstract
Lung transplantation is the only viable option for patients suffering from otherwise incurable end-stage pulmonary diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Despite aggressive immunosuppression, acute rejection of the lung allograft occurs in over half of transplant recipients, and the factors that promote lung acceptance are poorly understood. The contribution of lymphatic vessels to transplant pathophysiology remains controversial, and data that directly address the exact roles of lymphatic vessels in lung allograft function and survival are limited. Here, we have shown that there is a marked decline in the density of lymphatic vessels, accompanied by accumulation of low-MW hyaluronan (HA) in mouse orthotopic allografts undergoing rejection. We found that stimulation of lymphangiogenesis with VEGF-C156S, a mutant form of VEGF-C with selective VEGFR-3 binding, alleviates an established rejection response and improves clearance of HA from the lung allograft. Longitudinal analysis of transbronchial biopsies from human lung transplant recipients demonstrated an association between resolution of acute lung rejection and decreased HA in the graft tissue. Taken together, these results indicate that lymphatic vessel formation after lung transplantation mediates HA drainage and suggest that treatments to stimulate lymphangiogenesis have promise for improving graft outcomes.
Collapse
|
31
|
Nassiri N, Rootman J, Rootman DB, Goldberg RA. Orbital lymphaticovenous malformations: Current and future treatments. Surv Ophthalmol 2015; 60:383-405. [DOI: 10.1016/j.survophthal.2015.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/02/2015] [Accepted: 03/06/2015] [Indexed: 12/23/2022]
|
32
|
Frenay ARS, Yazdani S, Boersema M, van der Graaf AM, Waanders F, van den Born J, Navis GJ, van Goor H. Incomplete Restoration of Angiotensin II-Induced Renal Extracellular Matrix Deposition and Inflammation Despite Complete Functional Recovery in Rats. PLoS One 2015; 10:e0129732. [PMID: 26061812 PMCID: PMC4464893 DOI: 10.1371/journal.pone.0129732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/12/2015] [Indexed: 01/13/2023] Open
Abstract
Some diseases associated with a temporary deterioration in kidney function and/or development of proteinuria show an apparently complete functional remission once the initiating trigger is removed. While it was earlier thought that a transient impairment of kidney function is harmless, accumulating evidence now suggests that these patients are more prone to developing renal failure later in life. We therefore sought to investigate to what extent renal functional changes, inflammation and collagen deposition are reversible after cessation of disease induction, potentially explaining residual sensitivity to damage. Using a rat model of Angiotensin II (Ang II)-induced hypertensive renal disease we show the development of severe hypertension (212 ± 10.43 vs. 146 ± 1.4 mmHg, p<0.001) and proteinuria (51.4 ± 6.3 vs. 14.7 ± 2.0 mg/24h, p<0.01) with declined creatinine clearance (2.0 ± 0.5 vs. 4.9 ± 0.6 mL/min, p<0.001) to occur after 3 weeks of Ang II infusion. At the structural level, Ang II infusion resulted in interstitial inflammation (18.8 ± 4.8 vs. 3.6 ± 0.5 number of macrophages, p<0.001), renal interstitial collagen deposition and lymphangiogenesis (4.1 ± 0.4 vs. 2.2 ± 0.4 number of lymph vessels, p<0.01). Eight weeks after cessation of Ang II, all clinical parameters, pre-fibrotic changes such as myofibroblast transformation and increase in lymph vessel number (lymphangiogenesis) returned to control values. However, glomerular desmin expression, glomerular and periglomerular macrophages and interstitial collagens remained elevated. These dormant abnormalities indicate that after transient renal function decline, inflammation and collagen deposition may persist despite normalization of the initiating pathophysiological stimulus perhaps rendering the kidney more vulnerable to further damage.
Collapse
Affiliation(s)
- Anne-Roos S. Frenay
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Saleh Yazdani
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Miriam Boersema
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Anne Marijn van der Graaf
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
- Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Femke Waanders
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Gerjan J. Navis
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
33
|
Antilymphangiogenic therapy to promote transplant survival and to reduce cancer metastasis: what can we learn from the eye? Semin Cell Dev Biol 2014; 38:117-30. [PMID: 25460541 DOI: 10.1016/j.semcdb.2014.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/01/2014] [Accepted: 11/12/2014] [Indexed: 12/22/2022]
Abstract
The lymphatic vasculature is - amongst other tasks - essentially involved in inflammation, (auto)immunity, graft rejection and cancer metastasis. The eye is mainly devoid of lymphatic vessels except for its adnexa, the conjunctiva and the limbus. However, several pathologic conditions can result in the secondary ingrowth of lymphatic vessels into physiologically alymphatic parts of the eye such as the cornea or the inner eye. Therefore, the cornea has served as an excellent in vivo model system to study lymphangiogenesis, and findings from such studies have substantially contributed to the understanding of central principles of lymphangiogenesis also with relevance outside the eye. Grafting experiments at the cornea have been extensively used to analyze the role of lymphangiogenesis in transplant immunology. In this regard, we recently demonstrated the crucial role of lymphatic vessels in mediating corneal allograft rejection and could show that antilymphangiogenic therapy increases graft survival. In the field of cancer research, we recently detected tumor-associated lymphangiogenesis in the most common malignant tumors of the eye, such as conjunctival carcinoma and melanoma, and ciliochoroidal melanoma with extraocular extension. These neolymphatics correlate with an increased risk of local recurrence, metastasis and tumor related death, and may offer potential therapeutic targets for the treatment of these tumors. This review will focus on corneal and tumor-associated ocular lymphangiogenesis. First, we will describe common experimentally used corneal lymphangiogenesis models and will recapitulate recent findings regarding the involvement of lymphatic vessels in corneal diseases and transplant immunology. The second part of this article will summarize findings about the participation of tumor-associated lymphangiogenesis in ocular malignancies and their implications for the development of future therapeutic strategies.
Collapse
|
34
|
Abstract
Lymphatic vessels (LVs) are involved in a number of physiological and pathophysiological processes such as fluid homoeostasis, immune surveillance, and resolution of inflammation and wound healing. Lymphangiogenesis, the outgrowth of existing LVs and the formation of new ones, has received increasing attention over the past decade on account of its prominence in organ physiology and pathology, which has been enabled by the development of specific tools to study lymph vessel functions. Several studies have been devoted to renal lymphatic vasculature and lymphangiogenesis in kidney diseases, such as chronic renal transplant dysfunction, primary renal fibrotic disorders, proteinuria, diabetic nephropathy and renal inflammation. This review describes the most recent findings on lymphangiogenesis, with a specific focus on renal lymphangiogenesis and its impact on renal diseases. We suggest renal lymphatics as a possible target for therapeutic interventions in renal medicine to dampen tubulointerstitial tissue remodelling and improve renal functioning.
Collapse
|
35
|
Singh I, Swami R, Khan W, Sistla R. Lymphatic system: a prospective area for advanced targeting of particulate drug carriers. Expert Opin Drug Deliv 2013; 11:211-29. [PMID: 24350774 DOI: 10.1517/17425247.2014.866088] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The lymphatic system has a critical role in the immune system's recognition and response to disease and it is an additional circulatory system throughout the entire body. Extensive multidisciplinary investigations have been carried out in the area of lymphatic delivery, and lymphatic targeting has attracted a lot of attention for providing preferential chemotherapy and improving bioavailability of drugs that undergo hepatic first-pass metabolism. AREAS COVERED This review focuses on progress in the field of lymphatic therapeutics and diagnosis. Moreover, the anatomy and physiology of the lymphatic system, particulate drug carriers and different physicochemical parameters of both modified and unmodified particulate drug carriers and their effect on lymphatic targeting are addressed. EXPERT OPINION Particulate drug carriers have encouraged lymphatic targeting, but there are still challenges in targeting drugs and bioactives to specific sites, maintaining desired action and crossing all the physiological barriers. Lymphatic therapy using drug-encapsulated lipid carriers, especially liposomes and solid lipid nanoparticles, emerges as a new technology to provide better penetration into the lymphatics where residual disease exists. Size is the most important criteria when designing nanocarriers for targeting lymphatic vessels as the transportation of these particles into lymphatic vessels is size dependent. By increasing our understanding of lymphatic transport and uptake, and the role of lymphatics in various diseases, we can design new therapeutics for effective disease control.
Collapse
Affiliation(s)
- Indu Singh
- National Institute of Pharmaceutical Education & Research (NIPER), Department of Pharmaceutics , Hyderabad 500037 , India +91 40 27193004, +91 40 23073741 ; +91 40 27193753, +91 40 23073751 ; ;
| | | | | | | |
Collapse
|
36
|
Expansion of the lymphatic vasculature in cancer and inflammation: New opportunities for in vivo imaging and drug delivery. J Control Release 2013; 172:550-7. [DOI: 10.1016/j.jconrel.2013.04.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 12/30/2022]
|
37
|
Aebischer D, Iolyeva M, Halin C. The inflammatory response of lymphatic endothelium. Angiogenesis 2013; 17:383-93. [PMID: 24154862 DOI: 10.1007/s10456-013-9404-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022]
Abstract
Lymphatic vessels have traditionally been regarded as a rather inert drainage system, which just passively transports fluids, leukocytes and antigen. However, it is becoming increasingly clear that the lymphatic vasculature is highly dynamic and plays a much more active role in inflammatory and immune processes. Tissue inflammation induces a rapid, stimulus-specific upregulation of chemokines and adhesion molecules in lymphatic endothelial cells and a proliferative expansion of the lymphatic network in the inflamed tissue and in draining lymph nodes. Moreover, increasing evidence suggests that inflammation-induced changes in the lymphatic vasculature have a profound impact on the course of inflammatory and immune responses, by modulating fluid drainage, leukocyte migration or the removal of inflammatory mediators from tissues. In this review we will summarize and discuss current knowledge of the inflammatory response of lymphatic endothelium and of inflammation-induced lymphangiogenesis and the current perspective on the overall functional significance of these processes.
Collapse
Affiliation(s)
- David Aebischer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Wolfgang-Pauli Str. 10, HCI H413, 8093, Zurich, Switzerland
| | | | | |
Collapse
|
38
|
Daly KP, Seifert ME, Chandraker A, Zurakowski D, Nohria A, Givertz MM, Karumanchi SA, Briscoe DM. VEGF-C, VEGF-A and related angiogenesis factors as biomarkers of allograft vasculopathy in cardiac transplant recipients. J Heart Lung Transplant 2013; 32:120-8. [PMID: 23260712 DOI: 10.1016/j.healun.2012.09.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/30/2012] [Accepted: 09/25/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cardiac allograft vasculopathy (CAV), the major cause of late allograft loss after cardiac transplantation, results from donor-directed cellular and humoral alloimmune responses. Graft vascular endothelial cells (EC) are primary targets of these destructive responses, suggesting that factors associated with endothelial injury and repair could serve as biomarkers of CAV. METHODS Using a protein profiler array platform, we measured the levels of 55 angiogenesis-related proteins in sera from 33 adult heart transplant recipients, including 17 with angiographically documented CAV and 16 age- and gender-matched controls without CAV. All patients were >2 years after heart transplant. RESULTS The study population was 75% male with a mean age of 62 ± 11 years. On average, patients were 12 ± 5 years after heart transplantation. We found that vascular endothelial growth factor (VEGF)-C, VEGF-A, angiopoietin-2, artemin, urokinase-type plasminogen activator and vasohibin were strongly associated with established CAV (all p < 0.01). Multivariable modeling identified VEGF-C, VEGF-A and platelet factor-4 (PF-4) as significant independent biomarkers of CAV. Furthermore, receiver-operating characteristic curve analysis demonstrated that the combination of all 3 molecules provided outstanding performance for the diagnosis of CAV (area under the curve [AUC] = 0.98; p < 0.001). CONCLUSIONS Serum levels of VEGF-C, VEGF-A and PF-4 demonstrate strong associations with established CAV and, together with related angiogenesis factors, may serve as a reliable, non-invasive diagnostic test for CAV in cardiac transplant recipients.
Collapse
Affiliation(s)
- Kevin P Daly
- Transplantation Research Center, Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Davis JM, Hyjek E, Husain AN, Shen L, Jones J, Schuger LA. Lymphatic endothelial differentiation in pulmonary lymphangioleiomyomatosis cells. J Histochem Cytochem 2013; 61:580-90. [PMID: 23609227 DOI: 10.1369/0022155413489311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary lymphangioleiomyomatosis (LAM) is a rare, low-grade neoplasm affecting almost exclusively women of childbearing age. LAM belongs to the family of perivascular epithelioid cell tumors, characterized by spindle and epithelioid cells with smooth muscle and melanocytic differentiation. LAM cells infiltrate the lungs, producing multiple, bilateral lesions rich in lymphatic channels and forming cysts, leading to respiratory insufficiency. Here we used antibodies against four lymphatic endothelial markers-podoplanin (detected by D2-40), prospero homeobox 1 (PROX1), vascular endothelial growth factor receptor 3 (VEGFR-3), and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1)-to determine whether LAM cells show lymphatic differentiation. Twelve of 12 diagnostic biopsy specimens (early-stage LAM) and 19 of 19 explants (late-stage LAM) showed immunopositivity for D2-40 in most neoplastic cells. PROX1, VEGFR-3, and LYVE1 immunoreactivity varied from scarce in the early stage to abundant in the late stage. Lymphatic endothelial, smooth muscle, and melanocytic markers were partially co-localized. These findings indicate that lymphatic endothelial differentiation is a feature of LAM and provide evidence of a previously unidentified third lineage of differentiation in this neoplasm. This study has implications for the histological diagnosis of LAM, the origin of the neoplastic cells, and potential future treatment with drugs targeting lymphangiogenesis.
Collapse
Affiliation(s)
- Jennifer M Davis
- Department of Pathology, Biological Sciences Division, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
40
|
Butler KS, Lovato DM, Adolphi NL, Belfon R, Fegan DL, Monson TC, Hathaway HJ, Huber DL, Tessier TE, Bryant HC, Flynn ER, Larson RS. Development of antibody-tagged nanoparticles for detection of transplant rejection using biomagnetic sensors. Cell Transplant 2012; 22:1943-54. [PMID: 23069078 DOI: 10.3727/096368912x657963] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Organ transplantation is a life-saving procedure and the preferred method of treatment for a growing number of disease states. The advent of new immunosuppressants and improved care has led to great advances in both patient and graft survival. However, acute T-cell-mediated graft rejection occurs in a significant quantity of recipients and remains a life-threatening condition. Acute rejection is associated with decrease in long-term graft survival, demonstrating a need to carefully monitor transplant patients. Current diagnostic criteria for transplant rejection rely on invasive tissue biopsies or relatively nonspecific clinical features. A noninvasive way is needed to detect, localize, and monitor transplant rejection. Capitalizing on advances in targeted contrast agents and magnetic-based detection technology, we developed anti-CD3 antibody-tagged nanoparticles. T cells were found to bind preferentially to antibody-tagged nanoparticles, as identified through light microscopy, transmission electron microscopy, and confocal microscopy. Using mouse skin graft models, we were also able to demonstrate in vivo vascular delivery of T-cell targeted nanoparticles. We conclude that targeting lymphocytes with magnetic nanoparticles is conducive to developing a novel, noninvasive strategy for identifying transplant rejection.
Collapse
Affiliation(s)
- Kimberly S Butler
- Department of Pathology, University of New Mexico, and Cancer Research and Treatment Center, Albuquerque, NM, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vass DG, Shrestha B, Haylor J, Hughes J, Marson L. Inflammatory lymphangiogenesis in a rat transplant model of interstitial fibrosis and tubular atrophy. Transpl Int 2012; 25:792-800. [PMID: 22533613 DOI: 10.1111/j.1432-2277.2012.01482.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously reported de novo lymphangiogenesis in human renal allograft nephrectomy specimens that exhibited interstitial fibrosis and tubular atrophy (IFTA). This study examined whether a similar pathology developed in an experimental model of renal transplantation in the rat. Renal transplants were carried out in rats comprising both isografts (Lewis kidneys → Lewis rats) and allografts (Fisher kidneys → Lewis rats). Animals were immunosuppressed in the immediate postoperative period and sacrificed at 12 months. Experimental readouts included lymphatic vessel number and location, inflammatory cell infiltration, interstitial fibrosis, renal function, blood pressure and proteinuria. Rat allografts demonstrated the characteristic features of IFTA with increased macrophage and T cell infiltration and scattered B cells aggregates. Rat allografts exhibited impaired renal function and proteinuria. Although there was no difference in the number of perivascular lymphatic vessels, there was a striking 18-fold increase in the number of interstitial lymphatic vessels in renal allografts. Furthermore, the lymphatic vessel number correlated with the extent of interstitial fibrosis. This rat allograft model of IFTA demonstrates a marked increase in the number of interstitial lymphatic vessels and mirrors previous work in failing human renal allografts.
Collapse
Affiliation(s)
- David George Vass
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | | | | | | | | |
Collapse
|
42
|
Abstract
The lymphatic system has long been accepted as a passive escape route for metastasizing tumor cells. The classic view that lymphatics solely regulate fluid balance, lipid metabolism, and immune cell trafficking to the LN is now being challenged. Research in the field is entering a new phase with increasing evidence suggesting that lymphatics play an active role modulating inflammation, autoimmune disease, and the anti-tumor immune response. Evidence exists to suggest that the lymphatics and chemokines guide LN bi-functionally, driving immunity vs. tolerance according to demand. At sites of chronic inflammation, autoimmunity, and tumors, however, the same chemokines and aberrant lymphangiogenesis foster disease progression. These caveats point to the existence of a complex, finely balanced relationship between lymphatics and the immune system in health and disease. This review discusses emerging concepts in the fields of immunology, tumor biology, and lymphatic physiology, identifying critical, overlapping functions of lymphatics, the LN and lymphoid factors in tipping the balance of immunity vs. tolerance in favor of a growing tumor.
Collapse
Affiliation(s)
- Jacqueline D Shields
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Cambridge, UK.
| |
Collapse
|
43
|
Jones D, Min W. An overview of lymphatic vessels and their emerging role in cardiovascular disease. J Cardiovasc Dis Res 2011; 2:141-52. [PMID: 22022141 PMCID: PMC3195192 DOI: 10.4103/0975-3583.85260] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Over the past decade, molecular details of lymphatic vessels (lymphatics) have been rapidly acquired due to the identification of lymphatic endothelial-specific markers. Separate from the cardiovascular system, the lymphatic system is also an elaborate network of vessels that are important in normal physiology. Lymphatic vessels have the unique task to regulate fluid homeostasis, assist in immune surveillance, and transport dietary lipids. However, dysfunctional lymphatic vessels can cause pathology, while normal lymphatics can exacerbate pathology. This review summarizes the development and growth of lymphatic vessels in addition to highlighting their critical roles in physiology and pathology. Also, we discuss recent work that suggests a connection between lymphatic dysfunction and cardiovascular disease.
Collapse
Affiliation(s)
- Dennis Jones
- Interdepartmental Program in Vascular Biology and Therapeutics, CT, USA
| | | |
Collapse
|
44
|
Stromal activation and formation of lymphoid-like stroma in chronic lung allograft dysfunction. Transplantation 2011; 91:1398-405. [PMID: 21512432 DOI: 10.1097/tp.0b013e31821b2f7a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Lymphoid neogenesis is associated with the development of chronic lung allograft dysfunction (CLAD). Activation of stromal resident cells may be an important mechanism of lymphoid neogenesis. METHODS Twenty CLAD lungs explanted for retransplantation were immunohistochemically examined for lymphoid neogenesis, ectopic lymphoid chemokines, and dendritic cells (DCs). Formation of peripheral lymph node addressin (PNAd)+ high endothelial venule (HEV)-like vessels was examined in 134 transbronchial biopsies taken over 2 years posttransplant from 20 consecutive lung transplant recipients. RESULTS CLAD lungs were characterized by higher grades of CXCL12 in alveolar (P=0.002) and airway epithelial cells (P=0.001), CCL21+ lymph vessels (P=0.01), and infiltration of DC-specific intercellular adhesion molecule-grabbing nonintegrin+ immature DCs (P=0.056) than normal control lungs. Activation of stromal resident cells in CLAD lungs was highlighted by formation of lymphoid-like stroma including expression of CCL21 and CXCL13, fibroblastic reticular-like cells and DC-specific lysosome-associated membrane protein+ mature DCs in association with a significantly larger number of lymphoid aggregates (P<0.001) with lymphangitc distribution compared with normal lungs. A larger number of PNAd+ HEV-like vessels were also observed outside of lymphoid aggregates with a lymphangitic distribution (P<0.001). HEV-like vessels in transbronchial biopsies were more graded in lungs that eventually developed CLAD (n=7) than those that did not (n=13) by 3 years after transplantation (P=0.001). CONCLUSION Lymphoid neogenesis associated with CLAD accompanies activation of stromal resident cells and formation of lymphoid-like stroma. Induction of PNAd+ HEV-like vessels occurs before the manifestation of CLAD.
Collapse
|
45
|
da Cunha Castro EC, Galambos C. Prox-1: a specific and sensitive marker for lymphatic endothelium in normal and diseased human tissues. Ann Thorac Surg 2011; 92:407; author reply 407-8. [PMID: 21718895 DOI: 10.1016/j.athoracsur.2011.01.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 11/20/2010] [Accepted: 01/26/2011] [Indexed: 12/27/2022]
|
46
|
|
47
|
Ishii E, Shimizu A, Kuwahara N, Arai T, Kataoka M, Wakamatsu K, Ishikawa A, Nagasaka S, Fukuda Y. Lymphangiogenesis associated with acute cellular rejection in rat liver transplantation. Transplant Proc 2011; 42:4282-5. [PMID: 21168683 DOI: 10.1016/j.transproceed.2010.09.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 09/20/2010] [Indexed: 11/15/2022]
Abstract
Lymphangiogenesis may be important for the cellular immune response in liver transplantation. In the present study, we examined lymphangiogenesis in liver allografts displaying acute cellular rejection (ACR), or long-term acceptance, or severe ACR plus antibody-mediated rejection (AMR). ACR and subsequent long-term graft acceptance developed in liver transplantations from DA to PVG rats without immunosuppression (mean survival time more than 90 days). Severe ACR and AMR developed in liver transplantations from DA to Lewis rats without immunosuppression (mean survival = 11 days). Normal DA donor livers before transplantation showed a small number of lymphatic vessels around portal veins. DA liver grafts in PVG showed ACR with lymphangiogenesis in portal areas and portal-portal bridging areas with cellular infiltration. Newly formed lymphatic vessels in ACR were characterized by proliferating endothelial cells with expression of the homeobox transcription factor PROX-1 and surrounded by discontinuous basement membranes. Thereafter, the infiltrates spontaneously disappeared, and the grafts survived more than 90 days. During the resolution of the cellular infiltration, expanded lymphatic vessels were packed with many lymphocytes. Thereafter, the number of lymphatic vessels decreased. In contrast, severe ACR and AMR in DA-to-Lewis transplantations showed lymphatic vessels disappeared with edema in the portal areas at day 11. In conclusion, lymphangiogenesis occurred during ACR. It may be involved in the resolution of ACR and reduction of inflammation. In severe ACR and AMR, lymphatic vessels were destroyed, which may be involved in persistent severe inflammation.
Collapse
Affiliation(s)
- E Ishii
- Department of Analytic Human Pathlogy, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Blei F. Literature Watch. Lymphat Res Biol 2010. [DOI: 10.1089/lrb.2010.8402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Invited commentary. Ann Thorac Surg 2010; 90:411-2. [PMID: 20667321 DOI: 10.1016/j.athoracsur.2010.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 11/23/2022]
|